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Schedule

• Introduction
• Monte-Carlo Tree Search
• Policy and Value Networks
• Results
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Introduction

• Go originated 2,500+ years ago
• Currently over 40 million players
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Rules of Go
• Played on a 19x19 board
• Two players, black and white, each place 

one stone per turn
• Capture the opponent’s stones by 

surrounding them
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Rules of Go
• Goal is to control as much territory as 

possible.
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Why is Go Challenging?

• Hundreds of legal moves from any 
position, many of which are plausible

• Games can last hundreds of moves
• Unlike chess, endgames are too 

complicated to solve exactly
• Heavily dependent on pattern recognition
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Game Trees

• A game tree is a directed graph whose 
nodes are positions in a game and whose 
edges are moves

• Fully searching this tree allows for best 
move for simple games like Tic-Tac-Toe

• Complexity for tree O(bd), where b is the 
branching factor (number of legal moves 
per position), and d is its depth (the length 
of the game)
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Game Trees

• Chess: b≈35, d≈80, bd≈1080

• Go: b≈250, d≈150, bd≈10170

• Size of search tree for Go is more than the 
number of atoms in the universe! 

• Brute force intractable
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A Brief History of Computer Go
• 1997: Super human chess w/ Alpha-Beta + fast computer
• 2005: Computer Go is impossible!
• 2006: Monte-Carlo Tree Search applied to 9x9 Go (bit of 

learning)
• 2007: Human master level achieved at 9x9 Go (more learning)
• 2008: Human grandmaster level achieved at 9x9 Go (even 

more learning)
• 2012: Zen program beats former international champion with 

only 4 stone handicap in 19x19
• 2015: DeepMind’s AlphaGo beats European Champion 5:0
• 2016: AlphaGo beats World Champion 4:1
• 2017: AlphaGo Zero beats AlphaGo 100:0 
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Techniques behind AlphaGo

• Deep learning + Monte Carlo Tree Search 
+ High Performance Computing

• Learn from 30 million human expert moves 
and 128,000+ self play games
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March	2016:
AlphaGo beats	Lee	Sedol 4-1
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Game Tree Search
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• Good for 2-player zero-sum infinite 
deterministic games of perfect information



Game Tree Search
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• Good for 2-player zero-sum finite 
deterministic games of perfect information



Conventional Game Tree Search

• Minimax algorithm with alpha-beta pruning
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• Effective
– When modest branching factor
– When a good heuristic value function is known



Alpha-beta pruning for Go?

• Branching factor for Go is too large
– 250 moves on average
– Order of magnitude greater than the 

branching factor of 35 for chess
• Lack of good evaluation function

– Too subtle to model: similar looking positions 
can have completely different outcomes
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Monte-Carlo Tree Search

• Heuristic search algorithm for decision 
trees

• Application to deterministic game pretty 
recent (less than 10 years)
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Basic Idea

• No evaluation function?
– Simulate game using 

random moves
– Score game at the end, 

keep winning statistics
– Play move with best 

winning percentage
– Repeat
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Monte Carlo Tree Search
(1) Selection
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Selection	policy	is	
applied	recursively	
until	a	leaf	node	is	
reached



Monte Carlo Tree Search
(2) Expansion
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One	or	more	nodes	
are	created.



Monte Carlo Tree Search
(3) Simulation
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One	simulated	game	
is	played.



Monte Carlo Tree Search
(4) Backpropagation
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Naïve Monte Carlo Tree Search

• Use simulation directly as an evaluation 
function for alpha-beta pruning

• Problems for Go
– Single simulation is very noisy, only 0/1signal
– Running many simulations for one evaluation 

is very slow, e.g., typical speed for chess is 1 
million eval/sec, for Go is only 25 eval/sec

• Result: MCTS is ignored for over 10 years 
in computer Go
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Monte Carlo Tree Search

• Use results of simulation to guide the 
growth of the game tree

• What moves are interesting to us?
– Promising moves (simulated and won most)
– Moves where uncertainty about evaluation are 

high (less simulated)
• Seems two contradictory goals

– Theory of bandits can help
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Multi-Armed Bandit Problem
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• Assumptions
– Choice of several arms
– Each arm pull is independent of other pulls
– Each arm has fixed, unknown average payoff

• Which arm has the best average payoff?



Multi-Armed Bandit Problem
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P(A wins)=45% P(B wins)=47% P(C wins)=30%

• But we don’t know the probability, how do 
we choose a good one?

• With infinite time, we may try each one for 
infinite times to estimate the probability 

• But in practice?



Exploration strategy

• Want to explore all arms
– We don’t want to miss any potentially good arm
– But, if we explore too much, may sacrifice the 

reward we could have gotten
• Want to exploit promising arms more often

– Good arms worth further investigation
– But, if we exploit too much, may get stuck with 

sub-optimal values 27



Upper Confidence Bound
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• Policy
– First, try each arm once
– Then, at each time step

• Choose the arm that maximizes formula:

Prefers higher payoff arm Prefers less played arm
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Policy and Value Networks

• Goal: Reduce both branching factor and 
depth of search tree

• How?
– Use policy network to explore better (and 

fewer) moves
• How?

– Use value network to estimate lower branches 
of tree (rather than simulating to the end)
• How?
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Policy and Value Networks

• Reducing branching factor: Policy Network
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Policy and Value Networks
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Predicts	the	probability	of	a	move	being	best	move



Policy and Value Networks

• Supervised learning

• Training data: 30 million positions from human 
expert games

• Likelihood of a human move selected at a state s
• Training time: 4 weeks
• Results: predicted human expert moves with 57% 

accuracy
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Policy and Value Networks

• Reinforcement learning

• Training data: 128,000+ games of self-play using 
policy network in 2 stages

• Training algorithm: maximize wins of the action 
∆𝛔

• Training time: 1 week
• Results: won more than 80% games vs. 

supervised learning
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Policy and Value Networks

• Reducing depth: Value Network

35

• Given	board	states,	estimate	probability	of	victory
• No	need	to	simulate	to	the	end	of	the	game



Policy and Value Network

• Reinforced learning

• Training data: 30 million games of self-play
• Training algorithm: minimize mean-squared error 

by stochastic gradient descent
• Training time: 1 week
• Results: AlphaGo ready for playing against pros36



MCTS + Policy / Value Networks

• Selection
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Q+u(P)

• Initially	no	simulation	yet,	so	action	
value	=	0,	prefers	high	prior	
probability	and	low	visits	count

• Asymptotically,	prefers	actions	with	
high	action	value.



MCTS + Policy / Value Networks

• Expansion
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MCTS + Policy / Value Networks

• Simulation
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• Run multiple 
simulations in parallel

• Some with value 
network

• Some with rollout to 
the end of the game 



MCTS + Policy / Value Networks

• Propagate values back to root
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MCTS + Policy / Value Networks

• Repeat
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Selection



AlphaGo Zero

• AlphaGo
– Supervised learning from human expert 

moves
– Reinforcement learning from self-play

• AlphaGo Zero
– Solely reinforcement learning from self-play
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AlphaGo Zero
• Beats AlphaGo by 100:0
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What’s next for AI?
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Go	is	still	in	the	“easy”	category	of	AI	problems.



What’s next for AI?
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What’s next for AI?
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The	idea	of	combining	search	with	learning	is	
very	general	and	is	widely	applicable.
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