
CS171: Artificial Intelligence
Monte Carlo Tree Search and Alpha Go

Jia Chen
Dec 5, 2017

1



Schedule

• Introduction
• Monte-Carlo Tree Search
• Policy and Value Networks
• Results

2



Introduction

• Go originated 2,500+ years ago
• Currently over 40 million players

3



Rules of Go
• Played on a 19x19 board
• Two players, black and white, each place 

one stone per turn
• Capture the opponent’s stones by 

surrounding them

4



Rules of Go
• Goal is to control as much territory as 

possible.

5



Why is Go Challenging?

• Hundreds of legal moves from any 
position, many of which are plausible

• Games can last hundreds of moves
• Unlike chess, endgames are too 

complicated to solve exactly
• Heavily dependent on pattern recognition

6



Game Trees

• A game tree is a directed graph whose 
nodes are positions in a game and whose 
edges are moves

• Fully searching this tree allows for best 
move for simple games like Tic-Tac-Toe

• Complexity for tree O(bd), where b is the 
branching factor (number of legal moves 
per position), and d is its depth (the length 
of the game)

7



Game Trees

• Chess: b≈35, d≈80, bd≈1080

• Go: b≈250, d≈150, bd≈10170

• Size of search tree for Go is more than the 
number of atoms in the universe! 

• Brute force intractable

8



A Brief History of Computer Go
• 1997: Super human chess w/ Alpha-Beta + fast computer
• 2005: Computer Go is impossible!
• 2006: Monte-Carlo Tree Search applied to 9x9 Go (bit of 

learning)
• 2007: Human master level achieved at 9x9 Go (more learning)
• 2008: Human grandmaster level achieved at 9x9 Go (even 

more learning)
• 2012: Zen program beats former international champion with 

only 4 stone handicap in 19x19
• 2015: DeepMind’s AlphaGo beats European Champion 5:0
• 2016: AlphaGo beats World Champion 4:1
• 2017: AlphaGo Zero beats AlphaGo 100:0 

9



10



Techniques behind AlphaGo

• Deep learning + Monte Carlo Tree Search 
+ High Performance Computing

• Learn from 30 million human expert moves 
and 128,000+ self play games

11

March	2016:
AlphaGo beats	Lee	Sedol 4-1



Schedule

• Introduction
• Monte-Carlo Tree Search
• Policy and Value Networks
• Results

12



Game Tree Search

13

• Good for 2-player zero-sum infinite 
deterministic games of perfect information



Game Tree Search

14

• Good for 2-player zero-sum finite 
deterministic games of perfect information



Conventional Game Tree Search

• Minimax algorithm with alpha-beta pruning

15

• Effective
– When modest branching factor
– When a good heuristic value function is known



Alpha-beta pruning for Go?

• Branching factor for Go is too large
– 250 moves on average
– Order of magnitude greater than the 

branching factor of 35 for chess
• Lack of good evaluation function

– Too subtle to model: similar looking positions 
can have completely different outcomes

16



Monte-Carlo Tree Search

• Heuristic search algorithm for decision 
trees

• Application to deterministic game pretty 
recent (less than 10 years)

17



Basic Idea

• No evaluation function?
– Simulate game using 

random moves
– Score game at the end, 

keep winning statistics
– Play move with best 

winning percentage
– Repeat

18



Monte Carlo Tree Search
(1) Selection

19

Selection	policy	is	
applied	recursively	
until	a	leaf	node	is	
reached



Monte Carlo Tree Search
(2) Expansion

20

One	or	more	nodes	
are	created.



Monte Carlo Tree Search
(3) Simulation

21

One	simulated	game	
is	played.



Monte Carlo Tree Search
(4) Backpropagation

22



Naïve Monte Carlo Tree Search

• Use simulation directly as an evaluation 
function for alpha-beta pruning

• Problems for Go
– Single simulation is very noisy, only 0/1signal
– Running many simulations for one evaluation 

is very slow, e.g., typical speed for chess is 1 
million eval/sec, for Go is only 25 eval/sec

• Result: MCTS is ignored for over 10 years 
in computer Go

23



Monte Carlo Tree Search

• Use results of simulation to guide the 
growth of the game tree

• What moves are interesting to us?
– Promising moves (simulated and won most)
– Moves where uncertainty about evaluation are 

high (less simulated)
• Seems two contradictory goals

– Theory of bandits can help

24



Multi-Armed Bandit Problem

25

• Assumptions
– Choice of several arms
– Each arm pull is independent of other pulls
– Each arm has fixed, unknown average payoff

• Which arm has the best average payoff?



Multi-Armed Bandit Problem

26

P(A wins)=45% P(B wins)=47% P(C wins)=30%

• But we don’t know the probability, how do 
we choose a good one?

• With infinite time, we may try each one for 
infinite times to estimate the probability 

• But in practice?



Exploration strategy

• Want to explore all arms
– We don’t want to miss any potentially good arm
– But, if we explore too much, may sacrifice the 

reward we could have gotten
• Want to exploit promising arms more often

– Good arms worth further investigation
– But, if we exploit too much, may get stuck with 

sub-optimal values 27



Upper Confidence Bound

28

• Policy
– First, try each arm once
– Then, at each time step

• Choose the arm that maximizes formula:

Prefers higher payoff arm Prefers less played arm



Schedule

• Introduction
• Monte-Carlo Tree Search
• Policy and Value Networks
• Results

29



Policy and Value Networks

• Goal: Reduce both branching factor and 
depth of search tree

• How?
– Use policy network to explore better (and 

fewer) moves
• How?

– Use value network to estimate lower branches 
of tree (rather than simulating to the end)
• How?

30



Policy and Value Networks

• Reducing branching factor: Policy Network

31



Policy and Value Networks

32

Predicts	the	probability	of	a	move	being	best	move



Policy and Value Networks

• Supervised learning

• Training data: 30 million positions from human 
expert games

• Likelihood of a human move selected at a state s
• Training time: 4 weeks
• Results: predicted human expert moves with 57% 

accuracy
33



Policy and Value Networks

• Reinforcement learning

• Training data: 128,000+ games of self-play using 
policy network in 2 stages

• Training algorithm: maximize wins of the action 
∆𝛔

• Training time: 1 week
• Results: won more than 80% games vs. 

supervised learning
34



Policy and Value Networks

• Reducing depth: Value Network

35

• Given	board	states,	estimate	probability	of	victory
• No	need	to	simulate	to	the	end	of	the	game



Policy and Value Network

• Reinforced learning

• Training data: 30 million games of self-play
• Training algorithm: minimize mean-squared error 

by stochastic gradient descent
• Training time: 1 week
• Results: AlphaGo ready for playing against pros36



MCTS + Policy / Value Networks

• Selection

37

Q+u(P)

• Initially	no	simulation	yet,	so	action	
value	=	0,	prefers	high	prior	
probability	and	low	visits	count

• Asymptotically,	prefers	actions	with	
high	action	value.



MCTS + Policy / Value Networks

• Expansion

38



MCTS + Policy / Value Networks

• Simulation

39

• Run multiple 
simulations in parallel

• Some with value 
network

• Some with rollout to 
the end of the game 



MCTS + Policy / Value Networks

• Propagate values back to root

40



MCTS + Policy / Value Networks

• Repeat

41

Selection



AlphaGo Zero

• AlphaGo
– Supervised learning from human expert 

moves
– Reinforcement learning from self-play

• AlphaGo Zero
– Solely reinforcement learning from self-play

42



AlphaGo Zero
• Beats AlphaGo by 100:0

43



What’s next for AI?

44

Go	is	still	in	the	“easy”	category	of	AI	problems.



What’s next for AI?

45



What’s next for AI?

46

The	idea	of	combining	search	with	learning	is	
very	general	and	is	widely	applicable.



References

• Silver, David, et al. "Mastering the game of Go with deep 
neural networks and tree search." Nature 529.7587 
(2016): 484-489.

• Silver, David, et al. "Mastering the game of go without 
human knowledge." Nature 550.7676 (2017): 354-359.

• Introduction to Monte Carlo Tree Search, by Jeff 
Bradberry https://jeffbradberry.com/posts/2015/09/intro-
to-monte-carlo-tree-search/

47


