CS-171, Intro to A.I., SS-1, 2018 — Quiz \# 1 - 20 minutes

NAME: \qquad

YOUR ID: \qquad ID TO RIGHT: \qquad ROW \qquad NO. FROM RIGHT: \qquad

1. (36 pts total, 12 pts each) SEARCH STRATEGIES AND THE FRONTIER. (Adapted from Poole, Mackworth, \& Goebel, 1998.) This question asks you to think about search strategies and how they interact with the frontier (= fringe, open-list, or queue). Say that a search strategy is "fair" if any node on the frontier eventually will be expanded. Specifically, take a "snapshot" of the queue at any time t - then the strategy is fair if there is some later time t ' such that every node in the snapshot taken at time t has been expanded by time t^{\prime}. (Of course, if a goal node is found before time t ' then the search will stop and return without expanding the remaining nodes on the queue, so we also will assume that no goal node is found before time t^{\prime}.)

You are doing tree search, i.e., do not remember visited nodes. Recall that the branching factor b is always finite. Assume that all step costs are $\geq \varepsilon>0$.

\Rightarrow Mark X next to every fair search strategy in each condition below:

1.a. (12 pts total, 2 pts each) The search space is finite and has no loops.
\qquad Depth-first; \qquad Breadth-first; \qquad Uniform cost;
\qquad Iterated deepening; \qquad Greedy best first; \qquad A*
1.b. (12 pts total, 2 pts each) The search space is finite and does have loops.
\qquad Depth-first; \qquad Breadth-first; \qquad Uniform cost;
\qquad Iterated deepening; \qquad Greedy best first; \qquad A*
1.c. (12 pts total, 2 pts each) The search space is infinite and may or may not have loops.
\qquad Depth-first; \qquad Breadth-first; \qquad Uniform cost;
\qquad Iterated deepening; \qquad Greedy best first; \qquad A*

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

2. (64 pts total, 16 pts each) STATE-SPACE SEARCH STRATEGIES. Execute Tree Search through this graph (i.e., do not remember visited nodes). Step costs are given next to each arc. Heuristic values are next to each node (as $\mathrm{h}=\mathrm{x}$). The successors of each node are indicated by the arrows out of that node. Successors are returned in left-to-right order.

For each search strategy, show the order in which nodes are expanded (i.e., to expand a node means that its children are generated), ending with the goal node that is found. Show the path from start to goal, or write "None". Give the cost of the path found. The first one is done for you as an example.

2.a. (example) BREADTH FIRST SEARCH:

Order of node expansion: S A B G
Path found: S B G \qquad Cost of path found: \qquad

2.b. (16 pts) UNIFORM COST SEARCH:

($\mathbf{1 0} \mathbf{~ p t s) ~ O r d e r ~ o f ~ n o d e ~ e x p a n s i o n : ~}$ \qquad
(4 pts) Path found: \qquad ($\mathbf{2} \mathbf{~ p t s) ~ C o s t ~ o f ~ p a t h ~ f o u n d : ~}$ \qquad

2.c. (16 pts) GREEDY (BEST-FIRST) SEARCH:

($\mathbf{1 0} \mathbf{p t s}$) Order of node expansion: \qquad
($\mathbf{4} \mathbf{p t s}$) Path found: \qquad (2 pts) Cost of path found: \qquad
2.d. (16 pts) ITERATED DEEPENING SEARCH:
($\mathbf{1 0} \mathbf{~ p t s}$) Order of node expansion: \qquad
(4 pts) Path found: \qquad ($\mathbf{2} \mathbf{~ p t s) ~ C o s t ~ o f ~ p a t h ~ f o u n d : ~}$ \qquad

2.e. (16 pts) A* SEARCH:

(10 pts) Order of node expansion: \qquad
($\mathbf{4} \mathbf{p t s}$) Path found: \qquad (2 pts) Cost of path found: \qquad

