
CS-171, Intro to A.I., SS-1, 2018  — Quiz # 1 — 20 minutes 
 
NAME:         

 

YOUR ID:     ID TO RIGHT:   ROW:    NO. FROM RIGHT:    
 
 
1. (36 pts total, 12 pts each) SEARCH STRATEGIES AND THE FRONTIER. (Adapted from 
Poole, Mackworth, & Goebel, 1998.)  This question asks you to think about search strategies and 
how they interact with the frontier (= fringe, open-list, or queue). Say that a search strategy is 
“fair” if any node on the frontier eventually will be expanded. Specifically, take a “snapshot” of the 
queue at any time t  then the strategy is fair if there is some later time t’ such that every node in 
the snapshot taken at time t has been expanded by time t’. (Of course, if a goal node is found 
before time t’ then the search will stop and return without expanding the remaining nodes on the 
queue, so we also will assume that no goal node is found before time t’.) 
 You are doing tree search, i.e., do not remember visited nodes.  Recall that the 
branching factor b is always finite. Assume that all step costs are ≥ ε > 0. 
 
⇒ Mark X next to every fair search strategy in each condition below: 
 
 
1.a. (12 pts total, 2 pts each) The search space is finite and has no loops. 
 
 __X__ Depth-first;      __X__ Breadth-first;    __X__ Uniform cost; 
 
 __X__ Iterated deepening;     __X__ Greedy best first;     __X__ A* 
 
 
1.b. (12 pts total, 2 pts each) The search space is finite and does have loops. 
 
 _____ Depth-first;      __X__ Breadth-first;    __X__ Uniform cost; 
 
 __X__ Iterated deepening;     _____ Greedy best first;     __X__ A* 
 
 
1.c. (12 pts total, 2 pts each) The search space is infinite and may or may not have loops. 
 
 _____ Depth-first;      __X__ Breadth-first;    __X__ Uniform cost; 
 
 __X__ Iterated deepening;     _____ Greedy best first;     __X__ A* 
 
 
 

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE **** 
  

Note that the “fair” search strategies in 1.b and 1.c 
are also the ones that are complete in such spaces. 



 
 
 
2. (64 pts total, 16 pts each) STATE-SPACE SEARCH STRATEGIES. Execute Tree Search through 
this graph (i.e., do not remember visited nodes). Step costs are given next to each arc. Heuristic values are 
next to each node (as h=x). The successors of each node are indicated by the arrows out of that node. 
Successors are returned in left-to-right order. 
 For each search strategy, show the order in which nodes are expanded (i.e., to expand a node means 
that its children are generated), ending with the goal node that is found. Show the path from start to goal, or 
write “None”. Give the cost of the path found. The first one is done for you as an example.  

2.a. (example) BREADTH FIRST SEARCH:  
 
Order of node expansion: S A B (G)           
 
Path found: S B G        Cost of path found : 17  
 
2.b. (16 pts) UNIFORM COST SEARCH: 
 
(10 pts) Order of node expansion: S A B C (G)         
 
(4 pts) Path found: S A C G      (2 pts) Cost of path found:  12  
 
2.c. (16 pts) GREEDY (BEST-FIRST)  SEARCH: 
 
(10 pts) Order of node expansion: S A A A A A etc.        
 
(4 pts) Path found: None      (2 pts) Cost of path found:  None  
 
2.d. (16 pts) ITERATED DEEPENING SEARCH: 
 
(10 pts) Order of node expansion: S S A B (G)         
 
(4 pts) Path found: S B G      (2 pts) Cost of path found:  17  
 
2.e. (16 pts) A* SEARCH: 
 
(10 pts) Order of node expansion: S A B C (G)         
 
(4 pts) Path found: S A C G      (2 pts) Cost of path found:  12  
 

S 

A 
C 

G 

B h=3 h=2 

h=3 

h=1 

4 10 

7 4 

4 

h=0 
20 

See Chapter 3. 

See Section 3.4.1 
and Fig. 3.11. 

BFS does the Goal-test before the 
child is pushed onto the queue. The 
goal is found when B is expanded. 

See Section 3.4.2 
and Fig. 3.14. 

UCS does goal-test when 
node is popped off queue. 

See Section 3.5.1 
and Fig. 3.23. 

A always has lower h [h(A)=2] 
than any node on the queue. 

See Sections 3.4.4-5 
and Figs. 3.18-19. 

See Section 3.5.2 
and Figs. 3.24-25. 

A* does goal-test when 
node is popped off queue. 

TECHNICAL NOTE: Technically, the goal node is not expanded, because no children of a goal node are 
generated. The goal node is listed in “Order of node expansion” for your convenience. Your answer is correct 
if you do not show the goal node in “Order of node expansion” ― but it is a nicety to do so.  Nevertheless, 
“Path found” *always* must show the goal node, because a path to a goal always must end in a goal. 

IDS does the Goal-test iteratively 
on each child as generated, 
keeping the queue on the stack. 


