## CS-171, Intro to A.I., SS-1, 2018 — Quiz # 3 — 20 minutes

| NAME:    |                   |          |           |  |
|----------|-------------------|----------|-----------|--|
|          |                   |          |           |  |
| YOUR ID: | ID TO YOUR RIGHT: | ROW NO.: | SEAT NO.: |  |

## 1. (15 pts total, -5 pts for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.

The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is **Max**'s turn to move. At each leaf node (number at bottom) is the estimated score returned by the heuristic static evaluator.

- 1.a. Fill in each blank square with the proper mini-max search value.
- **1.b. What is the best move for Max?** (write A, B, or C) <u>A</u>
- 1.c. What score does Max expect to achieve? \_\_\_\_\_6



**2.** (35 pts total, -5 for each error, but not negative) ALPHA-BETA PRUNING. Process the tree left-to-right. This is the same tree as above (1.a). You do not need to indicate the branch node values again.

## Draw X over each leaf node (number at bottom) that will be pruned by Alpha-Beta Pruning.



\*\*\*\* TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE \*\*\*\*

Write the **most general unifier** (or MGU) of the two terms given, or "None" if no unification is possible. Write your answer in the form of a substitution as given in your book, e.g., the substitution  $\{x \mid John, y \mid Mary, z \mid Bill\}$  means substitute x by John, substitute y by Mary, and substitute z by Bill. The first one is done for you as an example.

| <b>3.a</b> . <b>(example)</b> UNIFY( <i>Knows( John, x ), Knows( John, Jane )</i> ) <u>{ x / Jane }</u> |
|---------------------------------------------------------------------------------------------------------|
| 3.b. (5 pts) UNIFY( Knows( John, x ), Knows( y, Jane ) ) { x / Jane, y / John }                         |
|                                                                                                         |
| 3.c. (5 pts) UNIFY( Knows( John, x ), Knows( y, Father (y) ) ) _ { y / John, x / Father (John) }        |
| <b>3.d.</b> (5 pts) UNIFY( $Knows(John, F(x))$ , $Knows(y, F(F(z)))$ ) $\{y/John, x/F(z)\}$             |
| <b>3.e. (5 pts)</b> UNIFY( <i>Knows( John, F(x) ), Knows( y, G(z) )</i> ) None                          |
| 3 f (5 pts) UNIFY( $Knows(.lohn, F(x).)$ $Knows(.v, F(G(v)).)$ ) { $v/.lohn, x/G.(.lohn.)$ }            |

## 4. (25 pts total, 5 pts each) Quantifiers.

In this problem, Likes(A, B) means A likes B, and Sister(A, B) means A is a sister of B. Single-argument predicates have their intended meaning; e.g., Cat(A) means A is a cat, etc. Fill in each blank below with Y (= Yes) or N (= No) depending on whether the first order logic sentence correctly expresses the English sentence.

The first one is done for you as an example.

4.a. (example) N "All cats are mammals."

∀x Cat(x) ∧ Mammal(x)

should be ∀x Cat(x) ⇒ Mammal(x)
4.b. (5 pts) Y "Spot has a sister who is a cat."

∃x Sister(x, Spot) ∧ Cat(x)
4.c. (5 pts) N "Every person has someone that they like."

∃x Person(x) ∧ (∀y Person(y) → Likes(x, y))
4.d. (5 pts) N There is someone who likes everyone."

∀x Person(x) ⇒ (∃y Person(y) ∧ Likes(x, y))
4.e. (5 pts) Y "Everyone likes ice cream."

∀x (Person(x) ⇒ Likes(x, IceCream)) ≡ ¬∃x ¬ (Person(x) ⇒ Likes(x, IceCream))
4.f. (5 pts) Y "All men are mortal."

∀x Man(x) ⇒ Mortal(x)