CS-171, Intro to A.I., SS-1, 2018 — Quiz \# 3 - 20 minutes
NAME: \qquad

YOUR ID: \qquad ID TO YOUR RIGHT: \qquad ROW NO.: \qquad SEAT NO.: \qquad

1. (15 pts total, -5 pts for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.

The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is Max's turn to move. At each leaf node (number at bottom) is the estimated score returned by the heuristic static evaluator.
1.a. Fill in each blank square with the proper mini-max search value.
1.b. What is the best move for Max? (write A, B, or C) A
1.c. What score does Max expect to achieve? \qquad

2. (35 pts total, -5 for each error, but not negative) ALPHA-BETA PRUNING. Process the tree left-toright. This is the same tree as above (1.a). You do not need to indicate the branch node values again.

Draw X over each leaf node (number at bottom) that will be pruned by Alpha-Beta Pruning.

3. (25 pts total, 5 pts each) Unifiers and Unification.

Write the most general unifier (or MGU) of the two terms given, or "None" if no unification is possible. Write your answer in the form of a substitution as given in your book, e.g., the substitution $\{x /$ John, y / Mary, z / Bill\} means substitute x by John, substitute y by Mary, and substitute z by Bill.

The first one is done for you as an example.
3.a. (example) UNIFY(Knows(John, x), Knows(John, Jane)) \{x/Jane $\}$
3.b. (5 pts) UNIFY(Knows(John, x), Knows(y, Jane)) \{x/Jane, $y /$ John $\}$

3.d. (5 pts) UNIFY(Knows(John, $F(x))$, Knows $(y, F(F(z))))\{y / J o h n, x / F(z)\}$
3.e. (5 pts) UNIFY(Knows(John, F(x)), Knows(y, G(z))) \qquad
3.f. (5 pts) UNIFY(Knows(John, $F(x)$), Knows($y, F(G(y))))$ \{y/John, x / G (John) \}
4. (25 pts total, 5 pts each) Quantifiers.

In this problem, Likes (A, B) means A likes B, and $\operatorname{Sister}(A, B)$ means A is a sister of B.
Single-argument predicates have their intended meaning; e.g., $\operatorname{Cat}(A)$ means A is a cat, etc. Fill in each blank below with $\mathrm{Y}(=\mathrm{Yes})$ or $\mathrm{N}(=\mathrm{No})$ depending on whether the first order logic sentence correctly expresses the English sentence.

The first one is done for you as an example.
4.a. (example) $\mathrm{N} \quad$ "All cats are mammals."
$\forall x \operatorname{Cat}(x) \wedge \operatorname{Mammal}(x)$
should be $\forall x \operatorname{Cat}(x) \Rightarrow \operatorname{Mammal}(x)$
4.b. (5 pts) Y "Spot has a sister who is a cat."
$\exists x \operatorname{Sister}(x, \operatorname{Spot}) \wedge \operatorname{Cat}(x)$
4.c. (5 pts) $\mathrm{N} \quad$ "Every person has someone that they like."
$\exists x$ Person $(x) \wedge(\forall y$ Person $(y) \Rightarrow \operatorname{Likes}(x, y))$
4.d. (5 pts) N here is someone who likes everyone."
$\forall x$ Person $(x) \Rightarrow(\exists y \operatorname{Person}(y) \wedge \operatorname{Likes}(x, y))$
4.e. (5 pts) $\mathrm{Y} \quad$ "Everyone likes ice cream."
$\forall x(\operatorname{Person}(x) \Rightarrow \operatorname{Likes}(x$, IceCream $)) \equiv \neg \exists x \neg(P e r s o n(x) \Rightarrow \operatorname{Likes}(x$, IceCream $))$
4.f. (5 pts) \qquad "All men are mortal."
$\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$

