CS-171, Intro to A.I., SS-1, 2018 — Quiz # 3 — 20 minutes

NAME:				
Your ID:	ID TO YOUR RIGHT:	ROW NO.:	SEAT NO.:	

1. (15 pts total, -5 pts for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.

The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is **Max**'s turn to move. At each leaf node (number at bottom) is the estimated score returned by the heuristic static evaluator.

1.a. Fill in each blank square with the proper mini-max search value.

2. (**35 pts total, -5 for each error, but not negative**) **ALPHA-BETA PRUNING.** Process the tree left-toright. This is the same tree as above (1.a). You do not need to indicate the branch node values again.

Draw X over each leaf node (number at bottom) that will be pruned by Alpha-Beta Pruning.

3. (25 pts total, 5 pts each) Unifiers and Unification.

Write the **most general unifier** (or MGU) of the two terms given, or "None" if no unification is possible. Write your answer in the form of a substitution as given in your book, e.g., the substitution $\{x / John, y / Mary, z / Bill\}$ means substitute *x* by *John*, substitute *y* by *Mary*, and substitute *z* by *Bill*. **The first one is done for you as an example.**

3.a . (example) UNIFY(Knows(John, x), Knows(John, Jane)) { x / Jane }
3.b. (5 pts) UNIFY(Knows(John, x), Knows(y, Jane))
3.c. (5 pts) UNIFY(<i>Knows(John, x), Knows(y, Father (y))</i>)
3.d. (5 pts) UNIFY(<i>Knows</i> (<i>John, F(x)</i>), <i>Knows</i> (<i>y, F(F(z))</i>))
3.e. (5 pts) UNIFY(<i>Knows(John, F(x)), Knows(y, G(z))</i>)
3.f. (5 pts) UNIFY(<i>Knows</i> (John, F(x)), <i>Knows</i> (y, F(G(y))))

4. (25 pts total, 5 pts each) Quantifiers.

In this problem, Likes(A, B) means A likes B, and Sister(A, B) means A is a sister of B. Single-argument predicates have their intended meaning; e.g., Cat(A) means A is a cat, etc. Fill in each blank below with Y (= Yes) or N (= No) depending on whether the first order logic sentence correctly expresses the English sentence.

The first one is done for you as an example.

- **4.a.** (example) N "All cats are mammals." $\forall x \ Cat(x) \land Mammal(x)$
- **4.b.** (5 pts) _____ "Spot has a sister who is a cat." $\exists x \ Sister(x, \ Spot) \land Cat(x)$
- **4.c. (5 pts)** "Every person has someone that they like." $\exists x \operatorname{Person}(x) \land (\forall y \operatorname{Person}(y) \Rightarrow \operatorname{Likes}(x, y))$
- **4.d. (5 pts)** <u>"</u>"There is someone who likes everyone." $\forall x \ Person(x) \Rightarrow (\exists y \ Person(y) \land Likes(x, y))$
- **4.e. (5 pts)** "Everyone likes ice cream." $\forall x \ (Person(x) \Rightarrow Likes(x, IceCream)) = \neg \exists x \neg (Person(x) \Rightarrow Likes(x, IceCream))$
- **4.f. (5 pts)** "All men are mortal." $\forall x Man(x) \Rightarrow Mortal(x)$

Scratch Paper (1) Please Do Not Detach From Test

Scratch Paper (2) Please Do Not Detach From Test