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Local search algorithms 
• In many optimization problems, the path to the goal is 

irrelevant; the goal state itself is the solution 
– Local  search: widely used for very big problems 
– Returns good but not optimal solutions 
– Usually very slow, but can yield good solutions if you  wait 

 

• State space = set of "complete" configurations 
• Find a complete configuration satisfying constraints 

– Examples: n-Queens, VLSI layout, airline flight schedules 
 

• Local search algorithms 
– Keep a single "current" state, or small set of states 
– Iteratively try to improve it / them 
– Very memory efficient 

• keeps only one or a few states 
• You control how much memory you use 



Random restart wrapper 

• We’ll use stochastic local search methods 
– Return different solution for each trial & initial state 

 

• Almost every trial hits difficulties (see sequel) 
– Most trials will not yield a good result (sad!) 

 

• Using many random restarts improves your chances 
– Many “shots at goal” may finally get a good one 

 

• Restart a random initial state, many times 
– Report the best result found across many trials 



Random restart wrapper 
best_found ← RandomState()   // initialize to something 
 
// now do repeated local search 
loop do 
    if (tired of doing it) 
        then return best_found 
    else 
        result ← LocalSearch( RandomState() ) 
        if ( Cost(result) < Cost(best_found) ) 
           // keep best result found so far 

            then best_found ← result 

Typically, “tired of doing it” means that some resource limit has been 
exceeded, e.g., number of iterations, wall clock time, CPU time, etc. 
It may also mean that result improvements are small and infrequent, 
e.g., less than 0.1% result improvement in the last week of run time. 

You, as algorithm 
designer, write 
the functions 
named in red. 



Tabu search wrapper 

• Add recently visited states to a tabu-list 
– Temporarily excluded from being visited again 
– Forces solver away from explored regions 
– Less likely to get stuck in local minima (hope, in principle) 

 
• Implemented as a hash table + FIFO queue 

– Unit time cost per step; constant memory cost 
– You control how much memory is used 

 
• RandomRestart( TabuSearch ( LocalSearch() ) ) 



Tabu search wrapper (inside random restart! ) 

best_found ← current_state ← RandomState()   // initialize 
loop do // now do local search 
    if (tired of doing it) then return best_found else 
        neighbor ← MakeNeighbor( current_state ) 
        if ( neighbor is in hash_table ) then discard neighbor 

  else push neighbor onto fifo, pop oldest_state 
                remove oldest_state from hash_table, insert neighbor 

  current_state ← neighbor; 
           if ( Cost(current_state ) < Cost(best_found) ) 
               then best_found ← current_state  
 

 FIFO QUEUE Oldest 
State 

New 
State 

 HASH TABLE 
State 

Present? 



Local search algorithms 

• Hill-climbing search 
– Gradient descent in continuous state spaces 
– Can use, e.g., Newton’s method to find roots 

• Simulated annealing search 
• Local beam search 
• Genetic algorithms 
• Linear Programming (for specialized problems) 



Local Search Difficulties 

• Problems: depending on state, can get stuck in local maxima 
– Many other problems also endanger your success!! 

 

These difficulties apply to ALL local search algorithms, and become MUCH 
more difficult as the search space increases to high dimensionality. 



Local Search Difficulties 

• Ridge problem: Every neighbor appears to be downhill 
– But the search space has an uphill!! (worse in high dimensions) 

Ridge: 
Fold a piece of 
paper and hold 
it tilted up at an 
unfavorable 
angle to every 
possible search 
space step. 
Every step 
leads downhill; 
but the ridge 
leads uphill. 

These difficulties apply to ALL local search algorithms, and become MUCH 
more difficult as the search space increases to high dimensionality. 



Hill-climbing search 

“…like trying to find the top of Mount Everest in a thick fog while 
suffering from amnesia”  
 

Equivalently: “if COST[neighbor] ≥ COST[current] then …” 

Equivalently:  
“…a lowest-cost successor…” 

You must shift effortlessly between maximizing value and minimizing cost 



Simulated annealing (Physics!) 

• Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency 

•  
 

Improvement: Track the 
BestResultFoundSoFar. 
Here, this slide follows 
Fig. 4.5 of the textbook, 
which is simplified. 



Probability( accept worse successor ) 
•Decreases as temperature T decreases 
•Increases as |Δ E| decreases 
•Sometimes, step size also decreases with T 

 

Tem
perature 

e ∆E / T 
Temperature T 

High Low 

|∆E | 
High Medium Low 

Low High Medium 

(accept very bad moves early on; later, mainly accept “not very much worse”) 



Your “random restart 
wrapper” starts here. 

A 
Value=42 

B 
Value=41 

C 
Value=45 

D 
Value=44 

E 
Value=48 

F 
Value=47 

G  
Value=51 

Va
lu

e 

You want to get 
here.  HOW?? 

This is an illustrative cartoon… 

Arbitrary (Fictitious) Search Space Coordinate 

Goal: “ratchet up” a bumpy slope 
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale) 



C 
Value=45 

∆E(CB)=-4 
∆E(CD)=-1 

P(CB) ≈.018 
P(CD)≈.37 

B 
Value=41 
∆E(BA)=1 
∆E(BC)=4 
P(BA)=1 
P(BC)=1 

A 
Value=42 

∆E(AB)=-1 
P(AB) ≈.37 

D 
Value=44 
∆E(DC)=1 
∆E(DE)=4 
P(DC)=1 
P(DE)=1 

E 
Value=48 

∆E(ED)=-4 
∆E(EF)=-1 

P(ED) ≈.018 
P(EF)≈.37 

F 
Value=47 
∆E(FE)=1 
∆E(FG)=4 
P(FE)=1 
P(FG)=1 

G 
Value=51 

∆E(GF)=-4 
P(GF) ≈.018 

x -1 -4 

ex ≈.37 ≈.018 

From A you will accept a move to B with P(AB) ≈.37. 
From B you are equally likely to go to A or to C. 
From C you are ≈20X more likely to go to D than to B. 
From D you are equally likely to go to C or to E. 
From E you are ≈20X more likely to go to F than to D. 
From F you are equally likely to go to E or to G. 
Remember best point you ever found (G or neighbor?). This is an illustrative cartoon… 

Your “random 
restart wrapper” 
starts here. 

Goal: “ratchet up” a jagged slope 



Local beam search 

• Keep track of k states rather than just one 
 

• Start with k randomly generated states 
 

• At each iteration, all the successors of all k states are 
generated 

 

• If any one is a goal state, stop; else select the k best 
successors from the complete list and repeat. 

 

• Concentrates search effort in areas believed to be fruitful 
– May lose diversity as search progresses, resulting in wasted effort 



a1 b1 k1 … Create k random initial states 

… Generate their children 

a2 b2 k2 … Select the k best children 

… Repeat indefinitely… 

Is it better than simply running k searches?  
Maybe…?? 

Local beam search 



Genetic algorithms (Darwin!!) 
• A state = a string over a finite alphabet (an individual) 

– A successor state is generated by combining two parent states 
 

• Start with k randomly generated states (a population) 
 
• Fitness function (= our heuristic objective function). 

– Higher fitness values for better states. 
 

• Select individuals for next generation based on fitness 
– P(individual in next gen.) = individual fitness/total population fitness 

 
• Crossover fit parents to yield next generation (offspring) 

 
• Mutate the offspring randomly with some low probability 



Genetic algorithms 

 
 
 
 
 

 
• Fitness function (value): number of non-attacking pairs of 

queens (min = 0, max = 8 × 7/2 = 28) 
• 24/(24+23+20+11) = 31% 
• 23/(24+23+20+11) = 29%; etc. 



 
 
 
 

 
• Fitness function: #non-attacking queen pairs 

– min = 0, max = 8 × 7/2 = 28 

• Σ_i fitness_i = 24+23+20+11 = 78 
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31% 
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc 

fitness =  
#non-attacking 
queens 

probability of being  
in next generation = 
fitness/(Σ_i fitness_i) 

How to convert a 
fitness value into a 
probability of being in 
the next generation. 
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Review Constraint Satisfaction 
R&N 6.1-6.4 (except 6.3.3) 

• What is a CSP? 
 

• Backtracking search for CSPs 
• Choose a variable, then choose an order for values 
• Minimum Remaining Values (MRV), Degree 

Heuristic (DH), Least Constraining Value (LCV) 
 

• Constraint propagation 
• Forward Checking (FC), Arc Consistency (AC-3) 

 
• Local search for CSPs 

• Min-conflicts heuristic 



Constraint Satisfaction Problems 
• What is a CSP? 

– Finite set of variables, X1, X2, …, Xn  
– Nonempty domain of possible values for each: D1, ..., Dn  
– Finite set of constraints, C1, ..., Cm 

• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2 

– Each constraint Ci is a pair:  Ci = (scope, relation) 
• Scope = tuple of variables that participate in the constraint 
• Relation = list of allowed combinations of variables 
 May be an explicit list of allowed combinations 
 May be an abstract relation allowing membership testing & listing 

 

• CSP benefits 
– Standard representation pattern 
– Generic goal and successor functions 
– Generic heuristics (no domain-specific expertise required) 

 



CSPs --- what is a solution? 
 

• A state is an assignment of values to some variables. 
– Complete assignment 

• = every variable has a value.  
– Partial assignment 

• = some variables have no values. 
– Consistent assignment 

• = assignment does not violate any constraints 

 
• A solution  is a complete and consistent assignment. 
 



CSP example: map coloring 

• Variables: WA, NT, Q, NSW, V, SA, T 
• Domains: Di={red,green,blue} 
• Constraints: Adjacent regions must have 

different colors, e.g., WA ≠ NT.   

(WA) 

(NT) 

(SA) 

(Q) 

(NSW) 
(V) 
(T) 



Example: Map coloring solution 
All variables assigned, all constraints satisfied. 

(WA) 

(NT) 

(SA) 

(Q) 

(NSW) 

(V) 

(T) 



Example: Map Coloring 
• Constraint graph 

– Vertices: variables 
– Edges: constraints 
 (connect involved variables) 

 
 

• Graphical model 
– Abstracts the problem to a canonical form 
– Can reason about problem through graph connectivity 
– Ex: Tasmania can be solved independently (more later) 

 

• Binary CSP 
– Constraints involve at most two variables 
– Sometimes called “pairwise” 

 



Backtracking search 
• Similar to depth-first search 

– At each level, pick a single variable to expand 
– Iterate over the domain values of that variable 

 

• Generate children one at a time, 
– One child per value 
– Backtrack when no legal values left 

 
• Uninformed algorithm 

– Poor general performance 
 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Minimum remaining values 
(MRV) 

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

 
• A.k.a. most constrained variable heuristic 

 
• Heuristic Rule: choose variable with the fewest legal moves 

– e.g., will immediately detect failure if X has no legal values 
 



Degree heuristic for the initial 
variable 

• Heuristic Rule: select variable that is involved in the largest number of constraints on 
other unassigned variables. 
 

• Degree heuristic can be useful as a tie breaker. 
 

• In what order should a variable’s values be tried? 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Least constraining value for 
value-ordering 

• Least constraining value heuristic 
 

• Heuristic Rule: given a variable choose the least constraining value 
–  leaves the maximum flexibility for subsequent variable assignments 

 
 



Look-ahead: Constraint propagation 
• Intuition:  

– Some domains have values that are inconsistent with 
the values in some other domains 

– Propagate constraints to remove inconsistent values 
– Thereby reduce future branching factors 

• Forward checking  
– Check each unassigned neighbor in constraint graph 

• Arc consistency (AC-3 in R&N) 
– Full arc-consistency everywhere until quiescence 
– Can run as a preprocessor 

• Remove obvious inconsistencies 
– Can run after each step of backtracking search 

• Maintaining Arc Consistency (MAC) 
34 



Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

35 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

Assign {WA = red} 
Effect on other variables (neighbors of WA): 

• NT can no longer be red 
• SA can no longer be red 

Red 

Not red 

Not red 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Assign {Q = green} 
Effect on other variables (neighbors of Q): 

• NT can no longer be green 
• SA can no longer be green 
• NSW can no longer be green 

Red 

Not red 
Not green 

Green 

Not red 
Not green 

Not green 

(We already have failure, but FC 
is too simple to detect it now) 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Forward checking has detected that this partial assignment is inconsistent 
with any complete assignment 

Assign {V = blue} 
Effect on other variables (neighbors of V): 

• NSW can no longer be blue 
• SA can no longer be blue   (no values possible!) 

Red 

Not red 
Not green 

Green 

Not red 
Not green 
Not blue 

Not green 
 
 

Not blue 
Blue 



Arc consistency (AC-3) algorithm 
• An Arc X → Y is consistent iff   for every value x of X 

there is some value y of Y that is consistent with x 
• Put all arcs X → Y on a queue 

– Each undirected constraint graph arc is two directed arcs 
– Undirected X Y becomes directed X → Y  and Y → X  
– X → Y  and Y → X both go on queue, separately 

• Pop one arc X → Y and remove any inconsistent 
values from X 

• If any change in X, put all arcs Z → X back on queue, 
where Z is any neighbor of X that is not equal to Y 

• Continue until queue is empty 
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Arc consistency (AC-3) 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff (iff = if and only if) 
         for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– SA →  NSW is consistent because 
 SA = blue and NSW = red satisfies all constraints on SA and NSW 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
         for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– NSW → SA consistent if  
 NSW = red  and  SA = blue 
 NSW = blue and SA = ??? 

 
 

=>  NSW = blue can be pruned 
No current domain value for SA is consistent 

If X loses a value, 
neighbors of X need to 
be rechecked 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 

 
• Enforce arc consistency:  

– arc can be made consistent by removing blue from NSW 

• Continue to propagate constraints: 
– Check V → NSW : not consistent for V = red; remove red from V 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 

 
 

• Continue to propagate constraints 
• SA  →   NT not consistent:  

– And cannot be made consistent!  Failure! 

• Arc consistency detects failure earlier than FC 
– But requires more computation: is it worth the effort? 



Local search: min-conflicts heuristic 
• Use complete-state representation 

– Initial state = all variables assigned values 
– Successor states = change 1 (or more) values 

 
• For CSPs 

– allow states with unsatisfied constraints (unlike backtracking) 
– operators reassign variable values 
– hill-climbing with n-queens is an example 

 

• Variable selection: randomly select any conflicted variable 
• Value selection: min-conflicts heuristic 

– Select new value that results in a minimum number of conflicts with 
the other variables 



Local search: min-conflicts heuristic 
function MIN-CONFLICTS(csp, max_steps) return solution or failure 
 inputs: csp, a constraint satisfaction problem 
  max_steps, the number of steps allowed before giving up  
 
 current ←   a (random) initial complete assignment for csp 
 for i = 1 to max_steps do 
  if current is a solution for csp then return current 
  var ←  a randomly chosen, conflicted variable from   

  VARIABLES[csp] 
  value  ←  the value v for var that minimize 

CONFLICTS(var,v,current,csp) 
  set var = value in current 
 return failure 

 



Min-conflicts example 1 

Use of min-conflicts heuristic in hill-climbing. 

h=5 h=3 h=1 



Summary 
• CSPs  

–  special kind of problem: states defined by values of a fixed set of variables, 
goal test defined by constraints on variable values 

 

• Backtracking = depth-first search, one variable assigned per node 
 

• Heuristics: variable order & value selection heuristics help a lot 
 

• Constraint propagation  
– does additional work to constrain values and detect inconsistencies 
– Works effectively when combined with heuristics 

 

• Iterative min-conflicts is often effective in practice. 
 

• Graph structure of CSPs determines problem complexity 
– e.g., tree structured CSPs can be solved in linear time. 
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Importance of representation 
• Definition of “state” can be very important 

 

• A good representation 
– Reveals important features 
– Hides irrelevant detail 
– Exposes useful constraints 
– Makes frequent operations easy to do 
– Supports local inferences from local features 

• Called “soda straw” principle, or “locality” principle 
• Inference from features “through a soda straw” 

– Rapidly or efficiently computable 
• It’s nice to be fast 

} Most important 



Terminology 

• Attributes 
– Also known as features, variables, independent 

variables, covariates 
 

• Target Variable 
– Also known as goal predicate, dependent variable, … 
 
 

• Classification 
– Also known as discrimination, supervised 

classification, … 
 

• Error function 
– Also known as objective function, loss function, … 
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Inductive or Supervised learning 
• Let x = input vector of attributes (feature vectors) 
 
• Let f(x) = target label 

– The implicit mapping from x to f(x) is unknown to us 
– We only have training data pairs, D = {x, f(x)} available 

 
• We want to learn a mapping from x to f(x) 

• Our hypothesis function is h(x, θ) 
• h(x, θ) ≈ f(x) for all training data points x 
• θ are the parameters of our predictor function h 

 
• Examples: 

– h(x, θ) = sign(θ1x1 + θ 2x2+ θ 3) (perceptron) 
– h(x, θ) = θ0  + θ1x1 + θ2x2 (regression) 
–  ℎ𝑘(𝑥) = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ ¬𝑥4) 
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Empirical Error Functions 
• E(h) = Σx distance[h(x, θ) , f(x)] 
Sum is over all training pairs in the training data D 
 

Examples: 
distance = squared error if h and f are real-valued  

(regression) 
distance = delta-function if h and f are categorical  

(classification) 
 

In learning, we get to choose  
 
 1. what class of functions h(..) we want to learn  
          – potentially a huge space!  (“hypothesis space”) 
 
    2. what error function/distance we want to use 
          - should be chosen to reflect real “loss” in problem 
          - but often chosen for mathematical/algorithmic 
    convenience 
 
 



Decision Tree Representations 
•Decision trees are fully expressive 

–Can represent any Boolean function (in DNF) 
–Every path in the tree could represent 1 row in the truth table 
–Might yield an exponentially large tree 

•Truth table is of size 2d, where d is the number of attributes 
 
 

 

A xor B = ( ¬ A ∧ B ) ∨ ( A ∧ ¬ B )  in DNF 
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Pseudocode for Decision tree learning 



Choosing an attribute 

• Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative" 

 
 
 
 
 
 
 
 
 
 
• Patrons? is a better choice 

– How can we quantify this? 
– One approach would be to use the classification error E directly (greedily) 

• Empirically it is found that this works poorly 
– Much better is to use information gain (next slides) 
– Other metrics are also used, e.g., Gini impurity, variance reduction 

– Often very similar results to information gain in practice 



• “Entropy” is a measure of randomness 
    = amount of disorder 

 

Entropy and Information 

https://www.youtube.com/watch?v=ZsY4WcQOrfk 

Low 
Entropy 

High 
Entropy 

Presenter
Presentation Notes
Entropy is a quantity that measures randomness or uncertainty in an outcome.  It is a fundamental idea to information theory , communications, and data compression, since it encapsulates how difficult it is to communicate a piece of information, which depends on how random it is (a function of the probabilities).For example, suppose I want to communicate a very long string of random coin tosses.  Any sequence of n outcomes is equally likely, and there are 2^n of them, so the best I can do is to represent it as a sequence of n bits.But, suppose I want to tell you about my last year’s worth of lottery entries.  Almost certainly, I lost every day – I can assign this a single bit sequence (“0”).  There is some small chance I will have won, and I will need to send more bits to tell you when; an even smaller chance I will have won twice, etc.  By using longer strings for unlikely sequences and shorter ones for likely outcomes, on average I will have to communicate far fewer bits.The second sequence takes fewer bits because it is less random – we can create a representation that exploits the fact that we know that losing is the most likely outcome.



Entropy, H(p), with only 2 outcomes 

Consider 2 class problem: 
 p = probability of class #1, 
 1 – p = probability of class #2 
 
In binary case: 
 H(p) = − p log p  −  (1−p) log (1−p) 
 

 
 
 

 

H(p) 

0.5 1 0 

1 

p 

high entropy, 
high disorder, 
high uncertainty 

Low entropy, low disorder, low uncertainty 



Entropy and Information 
• Entropy H(X) = E[ log 1/P(X) ] = ∑ x∈X P(x) log 1/P(x) 
  = −∑ x∈X P(x) log P(x) 

– Log base two, units of entropy are “bits” 
– If only two outcomes:  H(p) = − p log(p) − (1−p) log(1−p) 

• Examples: 

 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 + 
              .25 log 4 + .25 log 4 
        =  log 4 = 2 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4 
        = 0.8133 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1 
         = 0 bits 

Max entropy for 4 outcomes Min entropy 

Presenter
Presentation Notes
If one outcome has probability one, and the others probability zero, we get 1 log 1 = 0 bits of entropy – there is no uncertainty or randomness about the outcome.  In general, equally probable (uniform) probabilities result in the maximum possible entropy for a given set of outcomes, while the minimum entropy is zero.



Information Gain 

• H(P) = current entropy of class distribution P at a particular node, 
 before further partitioning the data 

 
• H(P | A) = conditional entropy given attribute A 
 = weighted average entropy of conditional class distribution, 
 after partitioning the data according to the values in A 

 
• Gain(A) = H(P) – H(P | A) 

– Sometimes written IG(A) = InformationGain(A) 
 

• Simple rule in decision tree learning 
– At each internal node, split on the node with the largest 

information gain [or equivalently, with smallest H(P|A) ] 
 

• Note that by definition, conditional entropy can’t be greater than 
the entropy, so Information Gain must be non-negative 
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Choosing an attribute 

IG(Patrons) = 0.541  bits IG(Type) = 0  bits 
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Overfitting and Underfitting 

X 

Y 



62 

A Complex Model 

X 

Y 

Y = high-order polynomial in X 
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A Much Simpler Model 

X 

Y 

Y = a X  + b  +  noise 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 

Ideal Range 
for Model Complexity 

Overfitting Underfitting 

Too-Simple Models Too-Complex Models 



65 

Training and Validation Data 

Full Data Set 

Training Data 

Validation Data 

Idea: train each 
model on the 
“training data” 
 
and then test 
each model’s 
accuracy on 
the validation data 
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 The k-fold Cross-Validation Method 

• Why just choose one particular 90/10 “split” of the data? 
– In principle we could do this multiple times 
 

• “k-fold Cross-Validation” (e.g., k=10) 
– randomly partition our full data set into k disjoint subsets (each 

roughly of size n/k, n = total number of training data points) 
•for  i = 1:10  (here k = 10) 

–train on 90% of data, 
–Acc(i) =  accuracy on other 10% 

•end 

•Cross-Validation-Accuracy =  1/k  Σi  Acc(i) 
– choose the method with the highest cross-validation accuracy 
– common values for k are 5 and 10 
– Can also do “leave-one-out” where k = n 
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Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

Validation  
Data 

1st partition 2nd partition 

3rd partition 4th partition 5th partition 
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Classification in Euclidean Space 

• A classifier is a partition of the space x into disjoint decision 
regions 
– Each region has a label attached  
– Regions with the same label need not be contiguous 
– For a new test point, find what decision region it is in, and predict 

the corresponding label 
 

• Decision boundaries = boundaries between decision regions 
– The “dual representation” of decision regions 

 
• We can characterize a classifier by the equations for its 

decision boundaries 
 

• Learning a classifier  searching for the decision boundaries 
that optimize our objective function  
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Decision Tree Example 

t1 t3 

t2 

Income 

Debt 
Income > t1 

Debt > t2 

Income > t3 
Note: tree boundaries are   
linear and axis-parallel 



A Simple Classifier: Minimum Distance Classifier 

• Training 
– Separate training vectors by class 
– Compute the mean for each class, µk,   k = 1,… m 

 
• Prediction 

– Compute the closest mean to a test vector x’ (using Euclidean 
distance) 

– Predict the corresponding class 
 

• In the 2-class case, the decision boundary is defined by the 
locus of the hyperplane that is halfway between the 2 means 
and is orthogonal to the line connecting them 
 

• This is a very simple-minded classifier – easy to think of cases 
where it will not work very well 

 



Minimum Distance Classifier 
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Another Example: Nearest Neighbor Classifier 

• The nearest-neighbor classifier 
– Given a test point x’, compute the distance between x’ and each 

input data point  
– Find the closest neighbor in the training data 
– Assign x’ the class label of this neighbor 
– (sort of generalizes minimum distance classifier to exemplars) 

 
• If Euclidean distance is used as the distance measure (the 

most common choice), the nearest neighbor classifier results 
in piecewise linear decision boundaries 
 

• Many extensions 
– e.g., kNN, vote based on k-nearest neighbors 
– k can be chosen by cross-validation 
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Overall Boundary = Piecewise Linear 

1 

1 

1 

2 

2 

2 

Feature 1 

Feature 2 

? 

Decision Region  
for Class 1 

Decision Region  
for Class 2 
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Linear Classifiers 

• Linear classifier  single linear decision boundary 
   (for 2-class case)  
 

• We can always represent a linear decision boundary by a linear equation: 
           w1 x1 + w2 x2 + … + wd xd    =  Σ wj xj  =  wt x = 0 
 
• In d dimensions, this defines a (d-1) dimensional hyperplane 

– d=3, we get a plane;  d=2, we get a line 
 

• For prediction we simply see if Σ wj xj > 0   
 

• The wi are the weights (parameters) 
– Learning consists of searching in the d-dimensional weight space for the set of weights 

(the linear boundary) that minimizes an error measure 
– A threshold can be introduced by a “dummy” feature that is always one; it weight 

corresponds to (the negative of) the threshold 
 
 

• Note that a minimum distance classifier is a special (restricted) case of a linear 
classifier 
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The Perceptron Classifier  (pages 729-731 in text) 

Input 
Attributes 
(Features) 

Weights 
For Input 
Attributes 

Bias or 
Threshold 

Transfer 
Function Output 
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The Perceptron Classifier  (pages 729-731 in text) 

• The perceptron classifier is just another name for a linear 
classifier for 2-class data, i.e., 

       output(x) = sign( Σ wj xj ) 
 

• Loosely motivated by a simple model of how neurons fire 
 

• For mathematical convenience, class labels are +1 for one 
class and -1 for the other 
 

• Two major types of algorithms for training perceptrons 
– Objective function = classification accuracy (“error correcting”) 
– Objective function = squared error (use gradient descent) 

 
– Gradient descent is generally faster and more efficient. 
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Two different types of perceptron output 

o(f) 

f 

x-axis below is f(x) = f  = weighted sum of inputs 
y-axis is the perceptron output 

σ(f) 

Thresholded output, 
 takes values +1 or -1 
 
  

Sigmoid output, takes 
real values between -1 and +1 
 
The sigmoid is in effect an approximation 
to the threshold function above,  but 
has a gradient that we can use for learning  

f 
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Support Vector Machines (SVM): “Modern perceptrons” 
(section 18.9, R&N) 

• A modern linear separator classifier 
– Essentially, a perceptron with a few extra wrinkles 

 
• Constructs a “maximum margin separator” 

– A linear decision boundary with the largest possible distance from the 
decision boundary to the example points it separates 

– “Margin” = Distance from decision boundary to closest example 
– The “maximum margin” helps SVMs to generalize well 

 
• Can embed the data in a non-linear higher dimension space 

– Constructs a linear separating hyperplane in that space 
• This can be a non-linear boundary in the original space 

– Algorithmic advantages and simplicity of linear classifiers 
– Representational advantages of non-linear decision boundaries 

 
• Currently most popular “off-the shelf” supervised classifier. 
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Constructs a “maximum margin separator” 
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Can embed the data in a non-linear higher 
dimension space 
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Multi-Layer Perceptrons (Artificial Neural Networks)  
(sections 18.7.3-18.7.4 in textbook) 

• What if we took K perceptrons and trained them in parallel and 
then took a weighted sum of their sigmoidal outputs? 
– This is a multi-layer neural network with a single “hidden” layer (the 

outputs of the first set of perceptrons) 
– If we train them jointly in parallel, then intuitively different 

perceptrons could learn different parts of the solution 
• They define different local decision boundaries in the input space 

• What if we hooked them up into a general Directed Acyclic Graph? 
– Can create simple “neural circuits” (but no feedback; not fully general) 
– Often called neural networks with hidden units 

 
• How would we train such a model? 

– Backpropagation algorithm = clever way to do gradient descent 
– Bad news: many local minima and many parameters 

•  training is hard and slow 
– Good news: can learn general non-linear decision boundaries 
– Generated much excitement in AI in the late 1980’s and 1990’s 
– New current excitement with very large “deep learning” networks 
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Multi-Layer Perceptrons (Artificial Neural Networks)  
(sections 18.7.3-18.7.4 in textbook) 



Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.) 

X1 X2 X3 

C 

Xn 

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about 
computing the probability of a class from input attributes of an example. 
 
Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally 
equivalent expression that involves only P(C) and P(X1,…Xn  | C). 
Then assume that feature values are conditionally independent given class, 
which allows us to turn P(X1,…Xn  | C) into Πi  P(Xi | C). 
 
We estimate P(C) easily from the frequency with which each class appears 
within our training data, and we estimate P(Xi | C) easily from the frequency 
with which each Xi appears in each class C within our training data. 



Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.) 

X1 X2 X3 

C 

Xn 

Bayes Rule:    P(C | X1,…Xn)  is proportional to P (C)  Πi  P(Xi | C) 
[note: denominator P(X1,…Xn)  is constant for all classes, may be ignored.] 
 
Features Xi are conditionally independent given the class variable C 

• choose the class value ci with the highest P(ci | x1,…, xn) 
• simple to implement, often works very well 
• e.g., spam email classification: X’s = counts of words in emails 

 
Conditional probabilities P(Xi | C) can easily be estimated from labeled date 

• Problem:  Need to avoid zeroes, e.g., from limited training data 
• Solutions: Pseudo-counts, beta[a,b] distribution, etc. 
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Naïve Bayes Model (2) 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with Xi value xik and class label cj)  
  /  #(Examples with class label cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α +   Σ  [ log P(Xi | C)  + log P (C) ] 
 
DANGER: Suppose ZERO examples with Xi value xik and class label cj ? 
An unseen example with Xi value xik will NEVER predict class label cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 
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Classifier Bias — Decision Tree or Linear Perceptron? 



Classifier Bias — Decision Tree or Linear Perceptron? 



Classifier Bias — Decision Tree or Linear Perceptron? 



Classifier Bias — Decision Tree or Linear Perceptron? 



Classifier Bias — Decision Tree or Linear Perceptron? 



CS-171 Final Review 

• Local Search 
• (4.1-4.2, 4.6; Optional 4.3-4.5) 

• Constraint Satisfaction Problems 
• (6.1-6.4, except 6.3.3) 

• Machine Learning 
• (18.1-18.12; 20.2.2) 

• Questions on any topic 
• Pre-mid-term material if time and class interest 
• Please review your quizzes, mid-term, & old tests 

• At least one question from a prior quiz or old CS-171 test will 
appear on the Final Exam (and all other tests) 
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