
Final Review

CS171, Summer Session I, 2018
Introduction to Artificial Intelligence

Prof. Richard Lathrop

 Read Beforehand: R&N All Assigned Reading

CS-171 Final Review
• Local Search

• (4.1-4.2, 4.6; Optional 4.3-4.5)
• Constraint Satisfaction Problems

• (6.1-6.4, except 6.3.3)
• Machine Learning

• (18.1-18.12; 20.2.2)
• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or old CS-171 test will
appear on the Final Exam (and all other tests)

Local search algorithms
• In many optimization problems, the path to the goal is

irrelevant; the goal state itself is the solution
– Local search: widely used for very big problems
– Returns good but not optimal solutions
– Usually very slow, but can yield good solutions if you wait

• State space = set of "complete" configurations
• Find a complete configuration satisfying constraints

– Examples: n-Queens, VLSI layout, airline flight schedules

• Local search algorithms
– Keep a single "current" state, or small set of states
– Iteratively try to improve it / them
– Very memory efficient

• keeps only one or a few states
• You control how much memory you use

Random restart wrapper

• We’ll use stochastic local search methods
– Return different solution for each trial & initial state

• Almost every trial hits difficulties (see sequel)
– Most trials will not yield a good result (sad!)

• Using many random restarts improves your chances
– Many “shots at goal” may finally get a good one

• Restart a random initial state, many times
– Report the best result found across many trials

Random restart wrapper
best_found ← RandomState() // initialize to something

// now do repeated local search
loop do
 if (tired of doing it)
 then return best_found
 else
 result ← LocalSearch(RandomState())
 if (Cost(result) < Cost(best_found))
 // keep best result found so far

 then best_found ← result

Typically, “tired of doing it” means that some resource limit has been
exceeded, e.g., number of iterations, wall clock time, CPU time, etc.
It may also mean that result improvements are small and infrequent,
e.g., less than 0.1% result improvement in the last week of run time.

You, as algorithm
designer, write
the functions
named in red.

Tabu search wrapper

• Add recently visited states to a tabu-list
– Temporarily excluded from being visited again
– Forces solver away from explored regions
– Less likely to get stuck in local minima (hope, in principle)

• Implemented as a hash table + FIFO queue

– Unit time cost per step; constant memory cost
– You control how much memory is used

• RandomRestart(TabuSearch (LocalSearch()))

Tabu search wrapper (inside random restart!)

best_found ← current_state ← RandomState() // initialize
loop do // now do local search
 if (tired of doing it) then return best_found else
 neighbor ← MakeNeighbor(current_state)
 if (neighbor is in hash_table) then discard neighbor

 else push neighbor onto fifo, pop oldest_state
 remove oldest_state from hash_table, insert neighbor

 current_state ← neighbor;
 if (Cost(current_state) < Cost(best_found))
 then best_found ← current_state

 FIFO QUEUE Oldest
State

New
State

 HASH TABLE
State

Present?

Local search algorithms

• Hill-climbing search
– Gradient descent in continuous state spaces
– Can use, e.g., Newton’s method to find roots

• Simulated annealing search
• Local beam search
• Genetic algorithms
• Linear Programming (for specialized problems)

Local Search Difficulties

• Problems: depending on state, can get stuck in local maxima
– Many other problems also endanger your success!!

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Local Search Difficulties

• Ridge problem: Every neighbor appears to be downhill
– But the search space has an uphill!! (worse in high dimensions)

Ridge:
Fold a piece of
paper and hold
it tilted up at an
unfavorable
angle to every
possible search
space step.
Every step
leads downhill;
but the ridge
leads uphill.

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Hill-climbing search

“…like trying to find the top of Mount Everest in a thick fog while
suffering from amnesia”

Equivalently: “if COST[neighbor] ≥ COST[current] then …”

Equivalently:
“…a lowest-cost successor…”

You must shift effortlessly between maximizing value and minimizing cost

Simulated annealing (Physics!)

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

•

Improvement: Track the
BestResultFoundSoFar.
Here, this slide follows
Fig. 4.5 of the textbook,
which is simplified.

Probability(accept worse successor)
•Decreases as temperature T decreases
•Increases as |Δ E| decreases
•Sometimes, step size also decreases with T

Tem
perature

e ∆E / T
Temperature T

High Low

|∆E |
High Medium Low

Low High Medium

(accept very bad moves early on; later, mainly accept “not very much worse”)

Your “random restart
wrapper” starts here.

A
Value=42

B
Value=41

C
Value=45

D
Value=44

E
Value=48

F
Value=47

G
Value=51

Va
lu

e

You want to get
here. HOW??

This is an illustrative cartoon…

Arbitrary (Fictitious) Search Space Coordinate

Goal: “ratchet up” a bumpy slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

C
Value=45

∆E(CB)=-4
∆E(CD)=-1

P(CB) ≈.018
P(CD)≈.37

B
Value=41
∆E(BA)=1
∆E(BC)=4
P(BA)=1
P(BC)=1

A
Value=42

∆E(AB)=-1
P(AB) ≈.37

D
Value=44
∆E(DC)=1
∆E(DE)=4
P(DC)=1
P(DE)=1

E
Value=48

∆E(ED)=-4
∆E(EF)=-1

P(ED) ≈.018
P(EF)≈.37

F
Value=47
∆E(FE)=1
∆E(FG)=4
P(FE)=1
P(FG)=1

G
Value=51

∆E(GF)=-4
P(GF) ≈.018

x -1 -4

ex ≈.37 ≈.018

From A you will accept a move to B with P(AB) ≈.37.
From B you are equally likely to go to A or to C.
From C you are ≈20X more likely to go to D than to B.
From D you are equally likely to go to C or to E.
From E you are ≈20X more likely to go to F than to D.
From F you are equally likely to go to E or to G.
Remember best point you ever found (G or neighbor?). This is an illustrative cartoon…

Your “random
restart wrapper”
starts here.

Goal: “ratchet up” a jagged slope

Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are
generated

• If any one is a goal state, stop; else select the k best
successors from the complete list and repeat.

• Concentrates search effort in areas believed to be fruitful
– May lose diversity as search progresses, resulting in wasted effort

a1 b1 k1 … Create k random initial states

… Generate their children

a2 b2 k2 … Select the k best children

… Repeat indefinitely…

Is it better than simply running k searches?
Maybe…??

Local beam search

Genetic algorithms (Darwin!!)
• A state = a string over a finite alphabet (an individual)

– A successor state is generated by combining two parent states

• Start with k randomly generated states (a population)

• Fitness function (= our heuristic objective function).

– Higher fitness values for better states.

• Select individuals for next generation based on fitness
– P(individual in next gen.) = individual fitness/total population fitness

• Crossover fit parents to yield next generation (offspring)

• Mutate the offspring randomly with some low probability

Genetic algorithms

• Fitness function (value): number of non-attacking pairs of

queens (min = 0, max = 8 × 7/2 = 28)
• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29%; etc.

• Fitness function: #non-attacking queen pairs

– min = 0, max = 8 × 7/2 = 28

• Σ_i fitness_i = 24+23+20+11 = 78
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31%
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc

fitness =
#non-attacking
queens

probability of being
in next generation =
fitness/(Σ_i fitness_i)

How to convert a
fitness value into a
probability of being in
the next generation.

CS-171 Final Review
• Local Search

• (4.1-4.2, 4.6; Optional 4.3-4.5)
• Constraint Satisfaction Problems

• (6.1-6.4, except 6.3.3)
• Machine Learning

• (18.1-18.12; 20.2.2)
• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or old CS-171 test will
appear on the Final Exam (and all other tests)

Review Constraint Satisfaction
R&N 6.1-6.4 (except 6.3.3)

• What is a CSP?

• Backtracking search for CSPs
• Choose a variable, then choose an order for values
• Minimum Remaining Values (MRV), Degree

Heuristic (DH), Least Constraining Value (LCV)

• Constraint propagation
• Forward Checking (FC), Arc Consistency (AC-3)

• Local search for CSPs

• Min-conflicts heuristic

Constraint Satisfaction Problems
• What is a CSP?

– Finite set of variables, X1, X2, …, Xn
– Nonempty domain of possible values for each: D1, ..., Dn
– Finite set of constraints, C1, ..., Cm

• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2

– Each constraint Ci is a pair: Ci = (scope, relation)
• Scope = tuple of variables that participate in the constraint
• Relation = list of allowed combinations of variables
 May be an explicit list of allowed combinations
 May be an abstract relation allowing membership testing & listing

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain-specific expertise required)

CSPs --- what is a solution?

• A state is an assignment of values to some variables.
– Complete assignment

• = every variable has a value.
– Partial assignment

• = some variables have no values.
– Consistent assignment

• = assignment does not violate any constraints

• A solution is a complete and consistent assignment.

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints: Adjacent regions must have

different colors, e.g., WA ≠ NT.

(WA)

(NT)

(SA)

(Q)

(NSW)
(V)
(T)

Example: Map coloring solution
All variables assigned, all constraints satisfied.

(WA)

(NT)

(SA)

(Q)

(NSW)

(V)

(T)

Example: Map Coloring
• Constraint graph

– Vertices: variables
– Edges: constraints
 (connect involved variables)

• Graphical model
– Abstracts the problem to a canonical form
– Can reason about problem through graph connectivity
– Ex: Tasmania can be solved independently (more later)

• Binary CSP
– Constraints involve at most two variables
– Sometimes called “pairwise”

Backtracking search
• Similar to depth-first search

– At each level, pick a single variable to expand
– Iterate over the domain values of that variable

• Generate children one at a time,
– One child per value
– Backtrack when no legal values left

• Uninformed algorithm

– Poor general performance

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

Minimum remaining values
(MRV)

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves

– e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial
variable

• Heuristic Rule: select variable that is involved in the largest number of constraints on
other unassigned variables.

• Degree heuristic can be useful as a tie breaker.

• In what order should a variable’s values be tried?

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

Least constraining value for
value-ordering

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Look-ahead: Constraint propagation
• Intuition:

– Some domains have values that are inconsistent with
the values in some other domains

– Propagate constraints to remove inconsistent values
– Thereby reduce future branching factors

• Forward checking
– Check each unassigned neighbor in constraint graph

• Arc consistency (AC-3 in R&N)
– Full arc-consistency everywhere until quiescence
– Can run as a preprocessor

• Remove obvious inconsistencies
– Can run after each step of backtracking search

• Maintaining Arc Consistency (MAC)
34

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

35

36

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

Assign {WA = red}
Effect on other variables (neighbors of WA):

• NT can no longer be red
• SA can no longer be red

Red

Not red

Not red

37

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Assign {Q = green}
Effect on other variables (neighbors of Q):

• NT can no longer be green
• SA can no longer be green
• NSW can no longer be green

Red

Not red
Not green

Green

Not red
Not green

Not green

(We already have failure, but FC
is too simple to detect it now)

38

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Forward checking has detected that this partial assignment is inconsistent
with any complete assignment

Assign {V = blue}
Effect on other variables (neighbors of V):

• NSW can no longer be blue
• SA can no longer be blue (no values possible!)

Red

Not red
Not green

Green

Not red
Not green
Not blue

Not green

Not blue
Blue

Arc consistency (AC-3) algorithm
• An Arc X → Y is consistent iff for every value x of X

there is some value y of Y that is consistent with x
• Put all arcs X → Y on a queue

– Each undirected constraint graph arc is two directed arcs
– Undirected X Y becomes directed X → Y and Y → X
– X → Y and Y → X both go on queue, separately

• Pop one arc X → Y and remove any inconsistent
values from X

• If any change in X, put all arcs Z → X back on queue,
where Z is any neighbor of X that is not equal to Y

• Continue until queue is empty

40

Arc consistency (AC-3)
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff (iff = if and only if)
 for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– SA → NSW is consistent because
 SA = blue and NSW = red satisfies all constraints on SA and NSW

41

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– NSW → SA consistent if
 NSW = red and SA = blue
 NSW = blue and SA = ???

=> NSW = blue can be pruned
No current domain value for SA is consistent

If X loses a value,
neighbors of X need to
be rechecked

42

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note: directed!)

• Enforce arc consistency:

– arc can be made consistent by removing blue from NSW

• Continue to propagate constraints:
– Check V → NSW : not consistent for V = red; remove red from V

43

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note: directed!)

• Continue to propagate constraints
• SA → NT not consistent:

– And cannot be made consistent! Failure!

• Arc consistency detects failure earlier than FC
– But requires more computation: is it worth the effort?

Local search: min-conflicts heuristic
• Use complete-state representation

– Initial state = all variables assigned values
– Successor states = change 1 (or more) values

• For CSPs

– allow states with unsatisfied constraints (unlike backtracking)
– operators reassign variable values
– hill-climbing with n-queens is an example

• Variable selection: randomly select any conflicted variable
• Value selection: min-conflicts heuristic

– Select new value that results in a minimum number of conflicts with
the other variables

Local search: min-conflicts heuristic
function MIN-CONFLICTS(csp, max_steps) return solution or failure
 inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

 current ← a (random) initial complete assignment for csp
 for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen, conflicted variable from

 VARIABLES[csp]
 value ← the value v for var that minimize

CONFLICTS(var,v,current,csp)
 set var = value in current
 return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

Summary
• CSPs

– special kind of problem: states defined by values of a fixed set of variables,
goal test defined by constraints on variable values

• Backtracking = depth-first search, one variable assigned per node

• Heuristics: variable order & value selection heuristics help a lot

• Constraint propagation
– does additional work to constrain values and detect inconsistencies
– Works effectively when combined with heuristics

• Iterative min-conflicts is often effective in practice.

• Graph structure of CSPs determines problem complexity
– e.g., tree structured CSPs can be solved in linear time.

CS-171 Final Review
• Local Search

• (4.1-4.2, 4.6; Optional 4.3-4.5)
• Constraint Satisfaction Problems

• (6.1-6.4, except 6.3.3)
• Machine Learning

• (18.1-18.12; 20.2.2)
• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or old CS-171 test will
appear on the Final Exam (and all other tests)

Importance of representation
• Definition of “state” can be very important

• A good representation
– Reveals important features
– Hides irrelevant detail
– Exposes useful constraints
– Makes frequent operations easy to do
– Supports local inferences from local features

• Called “soda straw” principle, or “locality” principle
• Inference from features “through a soda straw”

– Rapidly or efficiently computable
• It’s nice to be fast

} Most important

Terminology

• Attributes
– Also known as features, variables, independent

variables, covariates

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised

classification, …

• Error function
– Also known as objective function, loss function, …

51

Inductive or Supervised learning
• Let x = input vector of attributes (feature vectors)

• Let f(x) = target label

– The implicit mapping from x to f(x) is unknown to us
– We only have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f(x)

• Our hypothesis function is h(x, θ)
• h(x, θ) ≈ f(x) for all training data points x
• θ are the parameters of our predictor function h

• Examples:

– h(x, θ) = sign(θ1x1 + θ 2x2+ θ 3) (perceptron)
– h(x, θ) = θ0 + θ1x1 + θ2x2 (regression)
– ℎ𝑘(𝑥) = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ ¬𝑥4)

52

Empirical Error Functions
• E(h) = Σx distance[h(x, θ) , f(x)]
Sum is over all training pairs in the training data D

Examples:
distance = squared error if h and f are real-valued

(regression)
distance = delta-function if h and f are categorical

(classification)

In learning, we get to choose

 1. what class of functions h(..) we want to learn
 – potentially a huge space! (“hypothesis space”)

 2. what error function/distance we want to use
 - should be chosen to reflect real “loss” in problem
 - but often chosen for mathematical/algorithmic
 convenience

Decision Tree Representations
•Decision trees are fully expressive

–Can represent any Boolean function (in DNF)
–Every path in the tree could represent 1 row in the truth table
–Might yield an exponentially large tree

•Truth table is of size 2d, where d is the number of attributes

A xor B = (¬ A ∧ B) ∨ (A ∧ ¬ B) in DNF

54

Pseudocode for Decision tree learning

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

• Patrons? is a better choice

– How can we quantify this?
– One approach would be to use the classification error E directly (greedily)

• Empirically it is found that this works poorly
– Much better is to use information gain (next slides)
– Other metrics are also used, e.g., Gini impurity, variance reduction

– Often very similar results to information gain in practice

• “Entropy” is a measure of randomness
 = amount of disorder

Entropy and Information

https://www.youtube.com/watch?v=ZsY4WcQOrfk

Low
Entropy

High
Entropy

Presenter
Presentation Notes
Entropy is a quantity that measures randomness or uncertainty in an outcome. It is a fundamental idea to information theory , communications, and data compression, since it encapsulates how difficult it is to communicate a piece of information, which depends on how random it is (a function of the probabilities).For example, suppose I want to communicate a very long string of random coin tosses. Any sequence of n outcomes is equally likely, and there are 2^n of them, so the best I can do is to represent it as a sequence of n bits.But, suppose I want to tell you about my last year’s worth of lottery entries. Almost certainly, I lost every day – I can assign this a single bit sequence (“0”). There is some small chance I will have won, and I will need to send more bits to tell you when; an even smaller chance I will have won twice, etc. By using longer strings for unlikely sequences and shorter ones for likely outcomes, on average I will have to communicate far fewer bits.The second sequence takes fewer bits because it is less random – we can create a representation that exploits the fact that we know that losing is the most likely outcome.

Entropy, H(p), with only 2 outcomes

Consider 2 class problem:
 p = probability of class #1,
 1 – p = probability of class #2

In binary case:
 H(p) = − p log p − (1−p) log (1−p)

H(p)

0.5 1 0

1

p

high entropy,
high disorder,
high uncertainty

Low entropy, low disorder, low uncertainty

Entropy and Information
• Entropy H(X) = E[log 1/P(X)] = ∑ x∈X P(x) log 1/P(x)
 = −∑ x∈X P(x) log P(x)

– Log base two, units of entropy are “bits”
– If only two outcomes: H(p) = − p log(p) − (1−p) log(1−p)

• Examples:

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 +
 .25 log 4 + .25 log 4
 = log 4 = 2 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4
 = 0.8133 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1
 = 0 bits

Max entropy for 4 outcomes Min entropy

Presenter
Presentation Notes
If one outcome has probability one, and the others probability zero, we get 1 log 1 = 0 bits of entropy – there is no uncertainty or randomness about the outcome. In general, equally probable (uniform) probabilities result in the maximum possible entropy for a given set of outcomes, while the minimum entropy is zero.

Information Gain

• H(P) = current entropy of class distribution P at a particular node,
 before further partitioning the data

• H(P | A) = conditional entropy given attribute A
 = weighted average entropy of conditional class distribution,
 after partitioning the data according to the values in A

• Gain(A) = H(P) – H(P | A)

– Sometimes written IG(A) = InformationGain(A)

• Simple rule in decision tree learning
– At each internal node, split on the node with the largest

information gain [or equivalently, with smallest H(P|A)]

• Note that by definition, conditional entropy can’t be greater than
the entropy, so Information Gain must be non-negative

60

Choosing an attribute

IG(Patrons) = 0.541 bits IG(Type) = 0 bits

61

Overfitting and Underfitting

X

Y

62

A Complex Model

X

Y

Y = high-order polynomial in X

63

A Much Simpler Model

X

Y

Y = a X + b + noise

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

Overfitting Underfitting

Too-Simple Models Too-Complex Models

65

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

66

 The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– randomly partition our full data set into k disjoint subsets (each

roughly of size n/k, n = total number of training data points)
•for i = 1:10 (here k = 10)

–train on 90% of data,
–Acc(i) = accuracy on other 10%

•end

•Cross-Validation-Accuracy = 1/k Σi Acc(i)
– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n

67

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation
Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

68

Classification in Euclidean Space

• A classifier is a partition of the space x into disjoint decision
regions
– Each region has a label attached
– Regions with the same label need not be contiguous
– For a new test point, find what decision region it is in, and predict

the corresponding label

• Decision boundaries = boundaries between decision regions
– The “dual representation” of decision regions

• We can characterize a classifier by the equations for its

decision boundaries

• Learning a classifier searching for the decision boundaries
that optimize our objective function

69

Decision Tree Example

t1 t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3
Note: tree boundaries are
linear and axis-parallel

A Simple Classifier: Minimum Distance Classifier

• Training
– Separate training vectors by class
– Compute the mean for each class, µk, k = 1,… m

• Prediction

– Compute the closest mean to a test vector x’ (using Euclidean
distance)

– Predict the corresponding class

• In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means
and is orthogonal to the line connecting them

• This is a very simple-minded classifier – easy to think of cases
where it will not work very well

Minimum Distance Classifier

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

72

Another Example: Nearest Neighbor Classifier

• The nearest-neighbor classifier
– Given a test point x’, compute the distance between x’ and each

input data point
– Find the closest neighbor in the training data
– Assign x’ the class label of this neighbor
– (sort of generalizes minimum distance classifier to exemplars)

• If Euclidean distance is used as the distance measure (the

most common choice), the nearest neighbor classifier results
in piecewise linear decision boundaries

• Many extensions
– e.g., kNN, vote based on k-nearest neighbors
– k can be chosen by cross-validation

73

Overall Boundary = Piecewise Linear

1

1

1

2

2

2

Feature 1

Feature 2

?

Decision Region
for Class 1

Decision Region
for Class 2

74

76

77

Linear Classifiers

• Linear classifier single linear decision boundary
 (for 2-class case)

• We can always represent a linear decision boundary by a linear equation:
 w1 x1 + w2 x2 + … + wd xd = Σ wj xj = wt x = 0

• In d dimensions, this defines a (d-1) dimensional hyperplane

– d=3, we get a plane; d=2, we get a line

• For prediction we simply see if Σ wj xj > 0

• The wi are the weights (parameters)
– Learning consists of searching in the d-dimensional weight space for the set of weights

(the linear boundary) that minimizes an error measure
– A threshold can be introduced by a “dummy” feature that is always one; it weight

corresponds to (the negative of) the threshold

• Note that a minimum distance classifier is a special (restricted) case of a linear
classifier

78

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Minimum Error
Decision Boundary

79

The Perceptron Classifier (pages 729-731 in text)

Input
Attributes
(Features)

Weights
For Input
Attributes

Bias or
Threshold

Transfer
Function Output

80

The Perceptron Classifier (pages 729-731 in text)

• The perceptron classifier is just another name for a linear
classifier for 2-class data, i.e.,

 output(x) = sign(Σ wj xj)

• Loosely motivated by a simple model of how neurons fire

• For mathematical convenience, class labels are +1 for one
class and -1 for the other

• Two major types of algorithms for training perceptrons
– Objective function = classification accuracy (“error correcting”)
– Objective function = squared error (use gradient descent)

– Gradient descent is generally faster and more efficient.

81

Two different types of perceptron output

o(f)

f

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

σ(f)

Thresholded output,
 takes values +1 or -1

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above, but
has a gradient that we can use for learning

f

83

Support Vector Machines (SVM): “Modern perceptrons”
(section 18.9, R&N)

• A modern linear separator classifier
– Essentially, a perceptron with a few extra wrinkles

• Constructs a “maximum margin separator”

– A linear decision boundary with the largest possible distance from the
decision boundary to the example points it separates

– “Margin” = Distance from decision boundary to closest example
– The “maximum margin” helps SVMs to generalize well

• Can embed the data in a non-linear higher dimension space

– Constructs a linear separating hyperplane in that space
• This can be a non-linear boundary in the original space

– Algorithmic advantages and simplicity of linear classifiers
– Representational advantages of non-linear decision boundaries

• Currently most popular “off-the shelf” supervised classifier.

84

Constructs a “maximum margin separator”

85

Can embed the data in a non-linear higher
dimension space

86

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

• What if we took K perceptrons and trained them in parallel and
then took a weighted sum of their sigmoidal outputs?
– This is a multi-layer neural network with a single “hidden” layer (the

outputs of the first set of perceptrons)
– If we train them jointly in parallel, then intuitively different

perceptrons could learn different parts of the solution
• They define different local decision boundaries in the input space

• What if we hooked them up into a general Directed Acyclic Graph?
– Can create simple “neural circuits” (but no feedback; not fully general)
– Often called neural networks with hidden units

• How would we train such a model?

– Backpropagation algorithm = clever way to do gradient descent
– Bad news: many local minima and many parameters

• training is hard and slow
– Good news: can learn general non-linear decision boundaries
– Generated much excitement in AI in the late 1980’s and 1990’s
– New current excitement with very large “deep learning” networks

87

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally
equivalent expression that involves only P(C) and P(X1,…Xn | C).
Then assume that feature values are conditionally independent given class,
which allows us to turn P(X1,…Xn | C) into Πi P(Xi | C).

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(Xi | C) easily from the frequency
with which each Xi appears in each class C within our training data.

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Bayes Rule: P(C | X1,…Xn) is proportional to P (C) Πi P(Xi | C)
[note: denominator P(X1,…Xn) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C

• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date

• Problem: Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.

90

Naïve Bayes Model (2)

 P(C | X1,…Xn) = α Π P(Xi | C) P (C)

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) ≈ #(Examples with class label cj) / #(Examples)

P(Xi = xik | C = cj)
 ≈ #(Examples with Xi value xik and class label cj)
 / #(Examples with class label cj)

Usually easiest to work with logs
 log [P(C | X1,…Xn)]
 = log α + Σ [log P(Xi | C) + log P (C)]

DANGER: Suppose ZERO examples with Xi value xik and class label cj ?
An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

91

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

CS-171 Final Review

• Local Search
• (4.1-4.2, 4.6; Optional 4.3-4.5)

• Constraint Satisfaction Problems
• (6.1-6.4, except 6.3.3)

• Machine Learning
• (18.1-18.12; 20.2.2)

• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or old CS-171 test will
appear on the Final Exam (and all other tests)

	Final Review
	CS-171 Final Review
	Local search algorithms
	Random restart wrapper
	Random restart wrapper
	Tabu search wrapper
	Tabu search wrapper (inside random restart!)
	Local search algorithms
	Local Search Difficulties
	Local Search Difficulties
	Hill-climbing search
	Simulated annealing (Physics!)
	Probability(accept worse successor)
	Goal: “ratchet up” a bumpy slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Slide Number 15
	Local beam search
	Local beam search
	Genetic algorithms (Darwin!!)
	Genetic algorithms
	Slide Number 20
	CS-171 Final Review
	Review Constraint Satisfaction�R&N 6.1-6.4 (except 6.3.3)
	Constraint Satisfaction Problems
	CSPs --- what is a solution?
	CSP example: map coloring
	Example: Map coloring solution
	Example: Map Coloring
	Backtracking search
	Backtracking search (Figure 6.5)
	Minimum remaining values (MRV)
	Degree heuristic for the initial variable
	Backtracking search (Figure 6.5)
	Least constraining value for value-ordering
	Look-ahead: Constraint propagation
	Forward checking
	Forward checking
	Forward checking
	Forward checking
	Arc consistency (AC-3) algorithm
	Arc consistency (AC-3)
	Arc consistency
	Arc consistency
	Arc consistency
	Local search: min-conflicts heuristic
	Local search: min-conflicts heuristic
	Min-conflicts example 1
	Summary
	CS-171 Final Review
	Importance of representation
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Decision Tree Representations
	Pseudocode for Decision tree learning
	Slide Number 55
	Entropy and Information
	Slide Number 57
	Entropy and Information
	Information Gain
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Classification in Euclidean Space
	Decision Tree Example
	A Simple Classifier: Minimum Distance Classifier
	Minimum Distance Classifier
	Another Example: Nearest Neighbor Classifier
	Overall Boundary = Piecewise Linear
	Slide Number 74
	Slide Number 76
	Linear Classifiers
	Slide Number 78
	The Perceptron Classifier (pages 729-731 in text)
	The Perceptron Classifier (pages 729-731 in text)
	Two different types of perceptron output
	Support Vector Machines (SVM): “Modern perceptrons”�(section 18.9, R&N)
	Constructs a “maximum margin separator”
	Can embed the data in a non-linear higher dimension space
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	CS-171 Final Review

