
Constraint Satisfaction Problems B:
Constraint Propagation, Structure

CS171, Summer Session I, 2018
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: R&N 6.1-6.4, except 6.3.3

You Should Know
• Node consistency, arc consistency, path consistency,
 K-consistency (6.2)

• Forward checking (6.3.2)

• Local search for CSPs

– Min-Conflict Heuristic (6.4)

• The structure of problems (6.5)

Minimum remaining values (MRV)
• A heuristic for selecting the next variable

– also called most constrained variable (MCV) heuristic

– choose the variable X with the fewest legal values

– will immediately detect failure if X has no legal values

– (Related to forward checking, later)

3

Idea: reduce the branching factor now
Smallest domain size = fewest # of children = least branching

Detailed MRV example

Initially, all regions have |Di|=3
Choose one randomly, e.g.*, WA
 & pick value, e.g., red

(Better: tie-break with degree…)

* e.g. = exempli gratia = for example

WA=red

Do forward checking (next topic)
NT & SA cannot be red

Now NT & SA have 2 possible values
 – pick one randomly

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

Q

NSW
V

T

Detailed MRV example

NT & SA have two possible values
Choose one randomly, e.g., NT,
 & pick value, e.g., green

(Better: tie-break with degree;
 select value by least constraining)

NT=green

Do forward checking (next topic)
SA & Q cannot be green

Now SA has only 1 possible value;
 Q has 2 values.

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

Q

NSW
V

T

Detailed MRV example

SA has only one possible value
Assign it

SA=blue

Do forward checking (next topic)
Now Q, NSW, V cannot be blue

Now Q has only 1 possible value;
 NSW, V have 2 values.

We will assign Q its only value and
solve the remainder with no search

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

Q

NSW
V

T

7

Degree heuristic
• Another heuristic for selecting the next variable

– also called most constraining variable heuristic

– Select variable involved in the most constraints on other
unassigned variables

– Useful as a tie-breaker among most constrained variables

Note: usually (and in picture above) we use the degree heuristic as a tie-
breaker for MRV; however, in homework & exams we may use it without
MRV to show how it works. Let’s see an example.

Ex: Degree heuristic (only)

• Select variable involved in largest # of constraints with other unassigned vars
• Initially: degree(SA) = 5 > degree(other vars); assign it a value, e.g., red

– No neighbor can be red; we remove the edges to assist in counting degree
• Now, degree(NT) = degree(Q) = degree(NSW) = 2; degree(WA) = degree(V) = 1

– Select one at random, e.g., NT; assign it a value, e.g., blue
• Now, degree(NSW)=2; degree(Q) = degree(V) = 1; degree(WA) = 0

– Select NSW; assign it a value, e.g., blue; solve remaining problem with no search

• Idea: reduce branching in the future
– The variable with the largest # of constraints will likely knock out the most values

from other variables, reducing the branching factor in the future

SA=red NT=blue NSW=blue

WA

NT

SA

Q

NSW

V
T

Ex: MRV + degree

• Initially, all variables have 3 values; tie-breaker degree => SA, e.g., assign red
– No neighbor can be red; we remove the edges to assist in counting degree

• Now, WA, NT, Q, NSW, V have 2 values each
– WA,V have degree 1; NT,Q,NSW all have degree 2
– Select one at random, e.g. NT; assign it a value, e.g., blue

• Now, WA and Q have only one possible value; degree(Q)=1 > degree(WA)=0
– We will solve the remaining problem with no search

• Idea: reduce branching in the future
– The variable with the largest # of constraints will likely knock out the most values

from other variables, reducing the branching factor in the future

SA=red NT=blue NSW=blue

WA

NT

SA

Q

NSW

V
T

Least Constraining Value
• Heuristic for selecting what value to try next
• Given a variable, choose the least constraining value:

– the one that rules out the fewest values in the remaining
variables

– Makes it more likely to find a solution early

10

Look-ahead: Constraint propagation
• Intuition:

– Some domains have values that are inconsistent with
the values in some other domains

– Propagate constraints to remove inconsistent values
– Thereby reduce future branching factors

• Forward checking
– Check each unassigned neighbor in constraint graph

• Arc consistency (AC-3 in R&N)
– Full arc-consistency everywhere until quiescence
– Can run as a preprocessor

• Remove obvious inconsistencies
– Can run after each step of backtracking search

• Maintaining Arc Consistency (MAC)
11

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

13

14

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

Assign {WA = red}
Effect on other variables (neighbors of WA):

• NT can no longer be red
• SA can no longer be red

Red

Not red

Not red

15

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Assign {Q = green}
Effect on other variables (neighbors of Q):

• NT can no longer be green
• SA can no longer be green
• NSW can no longer be green

Red

Not red
Not green

Green

Not red
Not green

Not green

(We already have failure, but FC
is too simple to detect it now)

16

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Forward checking has detected that this partial assignment is inconsistent
with any complete assignment

Assign {V = blue}
Effect on other variables (neighbors of V):

• NSW can no longer be blue
• SA can no longer be blue (no values possible!)

Red

Not red
Not green

Green

Not red
Not green
Not blue

Not green

Not blue
Blue

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Backtracking search with forward checking
Bookkeeping is tricky & complicated

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair

1

3

2

4

X3 X2 X4 X1

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

• (Please note: As always in computer science, there are many different ways to implement

anything. The book-keeping method shown here was chosen because it is easy to present and
understand visually. It is not necessarily the most efficient way to implement the book-keeping in
a computer. Your job as an algorithm designer is to think long and hard about your problem, then
devise an efficient implementation.)

• One possibly more efficient equivalent alternative (of many):
– Deleted:

• { (X2:1,2) (X3:1,3) (X4:1,4) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

• X2 Level:
– Deleted:

• { (X3,2) (X3,4) (X4,3) }

• (Please note: Of course, we could have failed as soon as we deleted { (X3,2) (X3,4) }.

There was no need to continue to delete (X4,3), because we already had established
that the domain of X3 was null, and so we already knew that this branch was futile and
we were going to fail anyway. The book-keeping method shown here was chosen
because it is easy to present and understand visually. It is not necessarily the most
efficient way to implement the book-keeping in a computer. Your job as an algorithm
designer is to think long and hard about your problem, then devise an efficient
implementation.)

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2, , }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

• X2 Level:
– FAIL at X2=3.
– Restore:

• { (X3,2) (X3,4) (X4,3) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

• X2 Level:
– Deleted:

• { (X3,4) (X4,2) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

• X2 Level:

– Deleted:
• { (X3,4) (X4,2) }

• X3 Level:

– Deleted:
• { (X4,3) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , ,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

• X2 Level:
– Deleted:

• { (X3,4) (X4,2) }

• X3 Level:
– Fail at X3=2.
– Restore:

• { (X4,3) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , ,3,4}

Red = value is assigned to variable
X = value led to failure

X

X

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

• X2 Level:
– Fail at X2=4.
– Restore:

• { (X3,4) (X4,2) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Red = value is assigned to
variable
X = value led to failure

X X

Ex: 4-Queens Problem
• X1 Level:

– Fail at X1=1.
– Restore:

• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) }

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Red = value is assigned to variable
X = value led to failure

X
1

3

2

4

X3 X2 X4 X1

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) }

• X2 Level:
– Deleted:

• { (X3,3) (X4,4) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

Ex: 4-Queens Problem
• X1 Level:

– Deleted:
• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) }

• X2 Level:
– Deleted:

• { (X3,3) (X4,4) }

• X3 Level:

– Deleted:
• { (X4,1) }

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

1

3

2

4

X3 X2 X4 X1

Ex: 4-Queens Problem

X1
{1,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Red = value is assigned to variable
Blue = most recent variable/value pair
X = value led to failure

X

Norvig’s basic Sudoku strategies
• Norvig gives "two important strategies“ for

Sudoku:

– (1) If a square has only one possible value, then

eliminate that value from the square's peers.
– (2) If a unit has only one possible place for a value,

then put the value there.

• Norvig’s first strategy is Forward Checking.

Norvig’s second Sudoku strategy

1 2 3 4

A 4

B 4

C 4

D

Must be 4!
Forward checking
won’t derive this.

After FC:

• DD1 = {1,2,3,4}

• DOthers = {1,2,3}

Yet D1 must be 4!

Norvig’s second Sudoku strategy
1 2 3 4

A 4

B 4

C 4

D 4

Allocate an array Counter[N]

For each Unit in {rows, cols, blocks*}

Zero Counter
For I from 1 to N

For each Value in DUnit[I]
Increment Counter[Value]

For I from 1 to N
If (Counter[I] = 1) then

Find the one domain in Unit
that has I for a possible value,
and set that cell to I

(Can also be
done with FC, by
using auxiliary
variables for
book-keeping)

* Norvig calls these boxes

• Forward checking
– Solving CSPs with combination of heuristics plus forward checking is more

efficient than either approach alone.
– Propagates information from most recent assigned to unassigned variables
– But, doesn't provide early detection for all failures:
– NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints locally
– Can detect failure earlier
– But, takes more computation – is it worth the extra effort?

Constraint propagation

58

Arc consistency (AC-3) algorithm
• An Arc X → Y is consistent iff for every value x of X

there is some value y of Y that is consistent with x
• Put all arcs X → Y on a queue

– Each undirected constraint graph arc is two directed arcs
– Undirected X Y becomes directed X → Y and Y → X
– X → Y and Y → X both go on queue, separately

• Pop one arc X → Y and remove any inconsistent
values from X

• If any change in X, put all arcs Z → X back on queue,
where Z is any neighbor of X that is not equal to Y

• Continue until queue is empty

60

Arc consistency (AC-3)
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff (iff = if and only if)
 for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– SA → NSW is consistent because
 SA = blue and NSW = red satisfies all constraints on SA and NSW

61

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– NSW → SA consistent if
 NSW = red and SA = blue
 NSW = blue and SA = ???

=> NSW = blue can be pruned
No current domain value for SA is consistent

If X loses a value,
neighbors of X need to
be rechecked

62

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note: directed!)

• Enforce arc consistency:

– arc can be made consistent by removing blue from NSW

• Continue to propagate constraints:
– Check V → NSW : not consistent for V = red; remove red from V

63

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note: directed!)

• Continue to propagate constraints
• SA → NT not consistent:

– And cannot be made consistent! Failure!

• Arc consistency detects failure earlier than FC
– But requires more computation: is it worth the effort?

Ex: Arc Consistency in Sudoku

64

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

2 3
4 6

•Variables: 81 cells

•Domains =
{1,2,3,4,5,6,7,8,9}

•Constraints:
•27 all-diff

Ex: Arc Consistency in Sudoku
(Forward Checking yields the same result)

65

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

2 3
4 6 2

•Variables: 81 cells

•Domains =
{1,2,3,4,5,6,7,8,9}

•Constraints:
•27 all-diff

Arc consistency checking
• Can be run as a preprocessor, or after each assignment

– As preprocessor before search: Removes obvious inconsistencies
– After each assignment: Reduces search cost but increases step cost

• AC is run repeatedly until no inconsistency remains

– Like Forward Checking, but exhaustive until quiescence

• Trade-off
– Requires overhead to do; but usually better than direct search
– In effect, it can successfully eliminate large (and inconsistent) parts of the state

space more effectively than can direct search alone

• Need a systematic method for arc-checking
– If X loses a value, neighbors of X need to be rechecked:

 i.e., incoming arcs can become inconsistent again (outgoing arcs stay consistent).

Arc consistency algorithm (AC-3)
function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains
 inputs: csp, a binary CSP with variables {X1, X2, …, Xn}
 local variables: queue, a queue of arcs, initially all the arcs in csp
 /* initial queue must contain both (Xi, Xj) and (Xj, Xi) */
 while queue is not empty do
 (Xi, Xj) ← REMOVE-FIRST(queue)
 if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
 if size of Di = 0 then return false
 for each Xk in NEIGHBORS[Xi] − {Xj} do
 add (Xk, Xi) to queue if not already there
 return true

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff we delete a
 value from the domain of Xi
 removed ← false
 for each x in DOMAIN[Xi] do
 if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj
 then delete x from DOMAIN[Xi]; removed ← true
 return removed

(from Mackworth, 1977)

Complexity of AC-3
• A binary CSP has at most n2 arcs

• Each arc can be inserted in the queue d times (worst case)
– (X, Y): only d values of X to delete

• Consistency of an arc can be checked in O(d2) time

• Complexity is O(n2 d3)

• Although substantially more expensive than Forward Checking,
Arc Consistency is usually worthwhile.

K-consistency
• Arc consistency does not detect all inconsistencies:

– Partial assignment {WA=red, NSW=red} is inconsistent.

• Stronger forms of propagation can be defined using the notion of k-consistency.

• A CSP is k-consistent if for any set of k-1 variables and for any consistent
assignment to those variables, a consistent value can always be assigned to any
kth variable.
– E.g. 1-consistency = node-consistency
– E.g. 2-consistency = arc-consistency
– E.g. 3-consistency = path-consistency

• Strongly k-consistent:

– k-consistent for all values {k, k-1, …2, 1}

Trade-offs
• Running stronger consistency checks…

– Takes more time
– But will reduce branching factor and detect more inconsistent partial

assignments

– No “free lunch”
• In worst case n-consistency takes exponential time

• “Typically” in practice:
– Often helpful to enforce 2-Consistency (Arc Consistency)
– Sometimes helpful to enforce 3-Consistency
– Higher levels may take more time to enforce than they save.

• Before search: (reducing the search space)
– Arc-consistency, path-consistency, i-consistency
– Variable ordering (fixed)

• During search:
– Look-ahead schemes:

• Value ordering/pruning (choose a least restricting value),
• Variable ordering (choose the most constraining variable)
• Constraint propagation (take decision implications forward)

– Look-back schemes:
• Backjumping
• Constraint recording
• Dependency-directed backtracking

71

Improving backtracking

Further improvements
• Checking special constraints

– Checking Alldiff(…) constraint
• E.g. {WA=red, NSW=red}

– Checking Atmost(…) constraint
• Bounds propagation for larger value domains

• Intelligent backtracking
– Standard form is chronological backtracking, i.e., try different value for

preceding variable.
– More intelligent: backtrack to conflict set.

• Set of variables that caused the failure or set of previously assigned
variables that are connected to X by constraints.

• Backjumping moves back to most recent element of the conflict set.
• Forward checking can be used to determine conflict set.

Local search: min-conflicts heuristic
• Use complete-state representation

– Initial state = all variables assigned values
– Successor states = change 1 (or more) values

• For CSPs

– allow states with unsatisfied constraints (unlike backtracking)
– operators reassign variable values
– hill-climbing with n-queens is an example

• Variable selection: randomly select any conflicted variable
• Value selection: min-conflicts heuristic

– Select new value that results in a minimum number of conflicts with
the other variables

Local search: min-conflicts heuristic
function MIN-CONFLICTS(csp, max_steps) return solution or failure
 inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

 current ← a (random) initial complete assignment for csp
 for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen, conflicted variable from

 VARIABLES[csp]
 value ← the value v for var that minimize

CONFLICTS(var,v,current,csp)
 set var = value in current
 return failure

Number of conflicts
• Solving 4-queens with local search

 1 2 3 4

Q
Q

Q
Q

(5 conflicts)

4 4 5 4
Q

Q
Q

Q
2 4 4 5

Q
Q

Q
Q

4 3 5 3
Q

Q
Q

Q
3 5 5 5

Note: here I check all neighbors
& pick the best; typically in
practice pick one at random

Number of conflicts
• Solving 4-queens with local search

 1 2 3 4

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

(5 conflicts) (2 conflicts) (0 conflicts)

 3 3 2 1
Q

Q
Q

Q
2 4 4 5

Q
Q

Q
Q
2 2 2 0

Q

Q
Q

Q
2 2 3 1

Note: here I check all neighbors
& pick the best; typically in
practice pick one at random

Local optima
• Local search may get stuck at local optima

– Locations where no neighboring value is better
– Success depends on initialization quality & basins of attraction

• Can use multiple initializations to improve:
– Re-initialize randomly (“repeated” local search)
– Re-initialize by perturbing last optimum (“iterated” local search)

• Can also add sideways & random moves (e.g., WalkSAT)

states

ob
je

ct
iv

e

current state

global maximum

local maximum plateau of local optima

(R&N Fig 7.18)

Local optimum example
• Solving 4-queens with local search

 1 2 3 4

Q
Q

Q
Q

(1 conflict)

2 3 1 3
Q

Q
Q

Q
1 3 3 3

Q
Q

Q
Q
2 1 2 1

Q

Q
Q

Q
3 2 4 1

“Plateau” example:
 no single move can decrease # of conflicts

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring
n-queens: n = 2 to 50
Zebra: see exercise 6.7 (3rd ed.); exercise 5.13 (2nd ed.)

Comparison of CSP algorithms
Evaluate methods on a number of problems

Advantages of local search
• Local search can be particularly useful in an online setting

– Airline schedule example
• E.g., mechanical problems require than 1 plane is taken out of service
• Can locally search for another “close” solution in state-space
• Much better (and faster) in practice than finding an entirely new

schedule

• Runtime of min-conflicts is roughly independent of problem size.
– Can solve the millions-queen problem in roughly 50 steps.

– Why?
• n-queens is easy for local search because of the relatively high density

of solutions in state-space

Hardness of CSPs
• x1 … xn discrete, domain size d: O(dn) configurations

• “SAT”: Boolean satisfiability: d=2
– One of the first known NP-complete problems

• “3-SAT”
– Conjunctive normal form (CNF)
– At most 3 variables in each clause:

– Still NP-complete

• How hard are “typical” problems?

CNF clause: rule out one configuration

Hardness of random CSPs
• Random 3-SAT problems:

– n variables, p clauses in CNF:
– Choose any 3 variables, signs uniformly at random
– What’s the probability there is no solution to the CSP?

– Phase transition at (p/n) ¼ 4.25
– “Hard” instances fall in a very narrow regime around this point!

ratio (p/n)

av
g

tim
e

(s
ec

) minisat

easy, sat easy, unsat
ratio (p/n)

P
r[

un
sa

t]

satisfiable unsatisifable

Hardness of random CSPs
• Random 3-SAT problems:

– n variables, p clauses in CNF:
– Choose any 3 variables, signs uniformly at random
– What’s the probability there is no solution to the CSP?

– Phase transition at (p/n) ¼ 4.25
– “Hard” instances fall in a very narrow regime around this point!

lo
g

av
g

tim
e

(s
ec

)

ratio (p/n)

minisat

easy, sat easy, unsat
ratio (p/n)

P
r[

un
sa

t]

satisfiable unsatisifable

• R = [number of initially filled cells] / [total number of cells]
• Success Rate = P(random puzzle is solvable)
• [total number of cells] = 9x9 = 81
• [number of initially filled cells] = variable

0

1000

2000

3000

4000

0.00 0.10 0.20 0.30 0.40

Avg Time vs. R

Avg Time

0.00

0.50

1.00

0.00 0.10 0.20 0.30 0.40 0.50

Success Rate vs. R

Success Rate

R = [number of initially filled cells] / [total number of cells]

R = [number of initially filled cells] / [total number of cells]

Ex: Sudoku Backtracking search
 + forward checking

Graph structure and complexity
• Disconnected subproblems

– Configuration of one subproblem
 cannot affect the other: independent!
– Exploit: solve independently

• Suppose each subproblem has c variables out of n

– Worse case cost: O(n/c dc)
– Compare to O(dn), exponential in n
– Ex: n=80, c=20, d=2)

• 280 = 4 billion years at 1 million nodes per second
• 4 * 220 = 0.4 seconds at 1 million nodes per second

Q
WA

NT

SA
NSW

V

T

Tree-structured CSPs
• Theorem: If a constraint graph has no cycles, then
 the CSP can be solved in O(n d^2) time.

– Compare to general CSP: worst case O(d^n)

• Method: directed arc consistency (= dynamic programming)
– Select a root (e.g., A) & do arc consistency from leaves to root:
– D → F: remove values for D not consistent with any value for F, etc.)
– D → E, B → D, … etc

– Select a value for A
– There must be a value for B that is compatible; select it
– There must be values for C, and for D, compatible with B’s; select them
– There must be values for E, F compatible with D’s; select them.
– You’ve found a consistent solution!

A

F

E
D

C
B

Exploiting structure
• How can we use efficiency of trees?
• Cutset conditioning

– Exploit easy-to-solve problems during search

• Tree decomposition
– Convert non-tree problems into (harder) trees

Tree! SA=red

Q
WA

NT

SA
NSW

V

T

Q,SA
WA,SA

NT,SA

NSW,SA

V,SA

T

Change
“variables”

= color of pair

of areas

Now:
“unary” WA-SA constraint
“binary” (WA,SA) – (NT,SA)
 require all 3 consistent
 …

Summary
• CSPs

– special kind of problem: states defined by values of a fixed set of variables,
goal test defined by constraints on variable values

• Backtracking = depth-first search, one variable assigned per node

• Heuristics: variable order & value selection heuristics help a lot

• Constraint propagation
– does additional work to constrain values and detect inconsistencies
– Works effectively when combined with heuristics

• Iterative min-conflicts is often effective in practice.

• Graph structure of CSPs determines problem complexity
– e.g., tree structured CSPs can be solved in linear time.

	Constraint Satisfaction Problems B:�Constraint Propagation, Structure
	You Should Know
	Minimum remaining values (MRV)
	Detailed MRV example
	Detailed MRV example
	Detailed MRV example
	Degree heuristic
	Ex: Degree heuristic (only)
	Ex: MRV + degree
	Least Constraining Value
	Look-ahead: Constraint propagation
	Forward checking
	Forward checking
	Forward checking
	Forward checking
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Ex: 4-Queens Problem
	Norvig’s basic Sudoku strategies
	Norvig’s second Sudoku strategy
	Norvig’s second Sudoku strategy
	Constraint propagation
	Arc consistency (AC-3) algorithm
	Arc consistency (AC-3)
	Arc consistency
	Arc consistency
	Arc consistency
	Ex: Arc Consistency in Sudoku
	Ex: Arc Consistency in Sudoku�(Forward Checking yields the same result)
	Arc consistency checking
	Arc consistency algorithm (AC-3)
	Complexity of AC-3
	K-consistency
	Trade-offs
	Improving backtracking
	Further improvements
	Local search: min-conflicts heuristic
	Local search: min-conflicts heuristic
	Number of conflicts
	Number of conflicts
	Local optima
	Local optimum example
	Comparison of CSP algorithms
	Advantages of local search
	Hardness of CSPs
	Hardness of random CSPs
	Hardness of random CSPs
	Ex: Sudoku
	Graph structure and complexity
	Tree-structured CSPs
	Exploiting structure
	Summary

