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Read Beforehand: R&N 6.1-6.4, except 6.3.3 



You Should Know 
• Node consistency, arc consistency, path consistency, 
 K-consistency (6.2) 

 
• Forward checking (6.3.2) 

 
• Local search for CSPs 

– Min-Conflict Heuristic (6.4) 
 

• The structure of problems (6.5) 



Minimum remaining values (MRV) 
• A heuristic for selecting the next variable 

– also called most constrained variable (MCV) heuristic 
 
 
 
 

– choose the variable X with the fewest legal values 
 

– will immediately detect failure if X has no legal values 
 

– (Related to forward checking, later) 
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Idea: reduce the branching factor now 
Smallest domain size = fewest # of children = least branching 



Detailed MRV example 

Initially, all regions have |Di|=3 
Choose one randomly, e.g.*, WA 
   & pick value, e.g., red 
 

(Better: tie-break with degree…) 
 
 
* e.g. = exempli gratia = for example 

WA=red 

Do forward checking (next topic) 
NT & SA cannot be red 
 
Now NT & SA have 2 possible values 
    – pick one randomly 
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Detailed MRV example 

NT & SA have two possible values 
Choose one randomly, e.g., NT, 
   & pick value, e.g., green 
 

(Better: tie-break with degree; 
  select value by least constraining) 

NT=green 

Do forward checking (next topic) 
SA & Q cannot be green 
 
Now SA has only 1 possible value; 
   Q has 2 values. 
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Detailed MRV example 

SA has only one possible value 
Assign it 

SA=blue 

Do forward checking (next topic) 
Now Q, NSW, V cannot be blue 
 
Now Q has only 1 possible value; 
   NSW, V have 2 values. 
 
We will assign Q its only value and 
solve the remainder with no search 
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Degree heuristic 
• Another heuristic for selecting the next variable 

– also called most constraining variable heuristic 
 
 
 
 

– Select variable involved in the most constraints on other 
unassigned variables 

 

– Useful as a tie-breaker among most constrained variables 

 
Note: usually (and in picture above) we use the degree heuristic as a tie-
breaker for MRV; however, in homework & exams we may use it without 
MRV to show how it works.  Let’s see an example. 



Ex: Degree heuristic (only) 
 
 
 
 

 
 
 

• Select variable involved in largest # of constraints with other unassigned vars 
• Initially: degree(SA) = 5 > degree(other vars); assign it a value, e.g., red 

– No neighbor can be red; we remove the edges to assist in counting degree 
• Now, degree(NT) = degree(Q) = degree(NSW) = 2; degree(WA) = degree(V) = 1 

– Select one at random, e.g., NT; assign it a value, e.g., blue 
• Now, degree(NSW)=2; degree(Q) = degree(V) = 1; degree(WA) = 0 

– Select NSW; assign it a value, e.g., blue; solve remaining problem with no search 

• Idea: reduce branching in the future 
– The variable with the largest # of constraints will likely knock out the most values 

from other variables, reducing the branching factor in the future 

SA=red NT=blue NSW=blue 
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Ex: MRV + degree 
 
 
 
 

 
 
 

• Initially, all variables have 3 values; tie-breaker degree => SA, e.g., assign red 
– No neighbor can be red; we remove the edges to assist in counting degree 

• Now, WA, NT, Q, NSW, V have 2 values each 
– WA,V have degree 1; NT,Q,NSW all have degree 2  
– Select one at random, e.g. NT; assign it a value, e.g., blue 

• Now, WA and Q have only one possible value; degree(Q)=1 > degree(WA)=0 
– We will solve the remaining problem with no search  

• Idea: reduce branching in the future 
– The variable with the largest # of constraints will likely knock out the most values 

from other variables, reducing the branching factor in the future 

SA=red NT=blue NSW=blue 
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Least Constraining Value 
• Heuristic for selecting what value to try next 
• Given a variable, choose the least constraining value: 

– the one that rules out the fewest values in the remaining 
variables 
 
 
 
 
 
 

– Makes it more likely to find a solution early 
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Look-ahead: Constraint propagation 
• Intuition:  

– Some domains have values that are inconsistent with 
the values in some other domains 

– Propagate constraints to remove inconsistent values 
– Thereby reduce future branching factors 

• Forward checking  
– Check each unassigned neighbor in constraint graph 

• Arc consistency (AC-3 in R&N) 
– Full arc-consistency everywhere until quiescence 
– Can run as a preprocessor 

• Remove obvious inconsistencies 
– Can run after each step of backtracking search 

• Maintaining Arc Consistency (MAC) 
11 



Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

13 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

Assign {WA = red} 
Effect on other variables (neighbors of WA): 

• NT can no longer be red 
• SA can no longer be red 

Red 

Not red 

Not red 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Assign {Q = green} 
Effect on other variables (neighbors of Q): 

• NT can no longer be green 
• SA can no longer be green 
• NSW can no longer be green 

Red 

Not red 
Not green 

Green 

Not red 
Not green 

Not green 

(We already have failure, but FC 
is too simple to detect it now) 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Forward checking has detected that this partial assignment is inconsistent 
with any complete assignment 

Assign {V = blue} 
Effect on other variables (neighbors of V): 

• NSW can no longer be blue 
• SA can no longer be blue   (no values possible!) 

Red 

Not red 
Not green 

Green 

Not red 
Not green 
Not blue 

Not green 
 
 

Not blue 
Blue 



Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Backtracking search with forward checking 
Bookkeeping is tricky & complicated 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 

 
• (Please note: As always in computer science, there are many different ways to implement 

anything.  The book-keeping method shown here was chosen because it is easy to present and 
understand visually.  It is not necessarily the most efficient way to implement the book-keeping in 
a computer.  Your job as an algorithm designer is to think long and hard about your problem, then 
devise an efficient implementation.) 
 

• One possibly more efficient equivalent alternative (of many): 
– Deleted: 

• { (X2:1,2) (X3:1,3) (X4:1,4) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 



1 

3 

2 

4 

X3 X2 X4 X1 

Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 

 

• X2 Level: 
– Deleted: 

• { (X3,2) (X3,4) (X4,3) } 

 
• (Please note: Of course, we could have failed as soon as we deleted { (X3,2) (X3,4) }. 

There was no need to continue to delete (X4,3), because we already had established 
that the domain of X3 was null, and so we already knew that this branch was futile and 
we were going to fail anyway. The book-keeping method shown here was chosen 
because it is easy to present and understand visually.  It is not necessarily the most 
efficient way to implement the book-keeping in a computer.  Your job as an algorithm 
designer is to think long and hard about your problem, then devise an efficient 
implementation.) 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,  ,  , } 

X4 
{  ,2,  ,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 

 

• X2 Level: 
– FAIL at X2=3. 
– Restore: 

• { (X3,2) (X3,4) (X4,3) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 

 

• X2 Level: 
– Deleted: 

• { (X3,4) (X4,2) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,  } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,  } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,  } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 

 
• X2 Level: 

– Deleted: 
• { (X3,4) (X4,2) } 

 
• X3 Level: 

– Deleted: 
• { (X4,3) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,  } 

X4 
{  ,  ,  ,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 

 

• X2 Level: 
– Deleted: 

• { (X3,4) (X4,2) } 
 

• X3 Level: 
– Fail at X3=2. 
– Restore: 

• { (X4,3) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,  } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to variable 
X = value led to failure 

X 

X 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 

 

• X2 Level: 
– Fail at X2=4. 
– Restore: 

• { (X3,4) (X4,2) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Red = value is assigned to 
variable 
X = value led to failure 

X X 



Ex: 4-Queens Problem 
• X1 Level: 

– Fail at X1=1. 
– Restore: 

• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 



Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Red = value is assigned to variable 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) } 

 

• X2 Level: 
– Deleted: 

• { (X3,3) (X4,4) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{1,  ,3,  } 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{1,  ,3,  } 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{1,  ,3,  } 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 



Ex: 4-Queens Problem 
• X1 Level: 

– Deleted: 
• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) } 

 

• X2 Level: 
– Deleted: 

• { (X3,3) (X4,4) } 

 
• X3 Level: 

– Deleted: 
• { (X4,1) } 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 
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Ex: 4-Queens Problem 

X1 
{1,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
Blue = most recent variable/value pair 
X = value led to failure 

X 



Norvig’s basic Sudoku strategies 
• Norvig gives "two important strategies“ for 

Sudoku: 
 
– (1) If a square has only one possible value, then 

eliminate that value from the square's peers. 
– (2) If a unit has only one possible place for a value, 

then put the value there.  
 

• Norvig’s first strategy is Forward Checking. 
 



Norvig’s second Sudoku strategy 

1 2 3 4 

A 4 

B 4 

C 4 

D 

Must be 4! 
Forward checking 
won’t derive this. 

After FC: 
 
• DD1 = {1,2,3,4} 

 
• DOthers = {1,2,3} 

 
Yet D1 must be 4! 



Norvig’s second Sudoku strategy 
1 2 3 4 

A 4 

B 4 

C 4 

D 4 

Allocate an array Counter[N] 
 
For each Unit in {rows, cols, blocks*} 

Zero Counter 
For I from 1 to N 

For each Value in DUnit[I] 
Increment Counter[Value] 

For I from 1 to N 
If (Counter[I] = 1) then 

Find the one domain in Unit 
that has I for a possible value, 
and set that cell to I 

(Can also be 
done with FC, by 
using auxiliary 
variables for 
book-keeping) 

* Norvig calls these boxes 



• Forward checking  
– Solving CSPs with combination of heuristics plus forward checking is more 

efficient than either approach alone. 
– Propagates information from most recent assigned to unassigned variables 
– But, doesn't provide early detection for all failures: 
– NT and SA cannot both be blue! 

 
 
 
 
 
 
 

• Constraint propagation repeatedly enforces constraints locally 
– Can detect failure earlier 
– But, takes more computation – is it worth the extra effort? 

Constraint propagation 

58 



Arc consistency (AC-3) algorithm 
• An Arc X → Y is consistent iff   for every value x of X 

there is some value y of Y that is consistent with x 
• Put all arcs X → Y on a queue 

– Each undirected constraint graph arc is two directed arcs 
– Undirected X Y becomes directed X → Y  and Y → X  
– X → Y  and Y → X both go on queue, separately 

• Pop one arc X → Y and remove any inconsistent 
values from X 

• If any change in X, put all arcs Z → X back on queue, 
where Z is any neighbor of X that is not equal to Y 

• Continue until queue is empty 
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Arc consistency (AC-3) 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff (iff = if and only if) 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– SA →  NSW is consistent because 
 SA = blue and NSW = red satisfies all constraints on SA and NSW 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– NSW → SA consistent if  
 NSW = red  and  SA = blue 
 NSW = blue and SA = ??? 

 
 

=>  NSW = blue can be pruned 
No current domain value for SA is consistent 

If X loses a value, 
neighbors of X need to 
be rechecked 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 

 
• Enforce arc consistency:  

– arc can be made consistent by removing blue from NSW 

• Continue to propagate constraints: 
– Check V → NSW : not consistent for V = red; remove red from V 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 

 
 

• Continue to propagate constraints 
• SA  →   NT not consistent:  

– And cannot be made consistent!  Failure! 

• Arc consistency detects failure earlier than FC 
– But requires more computation: is it worth the effort? 



Ex: Arc Consistency in Sudoku 

64 

Each row, column and major block must be all different 

“Well posed” if it has unique solution: 27 constraints 

2 3 
4 6   

•Variables: 81 cells 
 

•Domains = 
{1,2,3,4,5,6,7,8,9} 
 

•Constraints:  
•27 all-diff 



Ex: Arc Consistency in Sudoku 
(Forward Checking yields the same result) 

65 

Each row, column and major block must be all different 

“Well posed” if it has unique solution: 27 constraints 

2 3 
4 6 2  

•Variables: 81 cells 
 

•Domains = 
{1,2,3,4,5,6,7,8,9} 
 

•Constraints:  
•27 all-diff 



Arc consistency checking 
• Can be run as a preprocessor, or after each assignment   

– As preprocessor before search: Removes obvious inconsistencies 
– After each assignment: Reduces search cost but increases step cost 

 
• AC is run repeatedly until no inconsistency remains 

– Like Forward Checking, but exhaustive until quiescence 
 

• Trade-off 
– Requires overhead to do; but usually better than direct search 
– In effect, it can successfully eliminate large (and inconsistent) parts of the state 

space more effectively than can direct search alone 
 

• Need a systematic method for arc-checking  
– If X loses a value, neighbors of X need to be rechecked: 

       i.e., incoming arcs can become inconsistent again (outgoing arcs stay consistent). 
 



Arc consistency algorithm (AC-3) 
function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains 
 inputs: csp, a binary CSP with variables {X1, X2, …, Xn}  
 local variables: queue, a queue of arcs, initially all the arcs in csp 
  /*  initial queue must contain both (Xi, Xj) and (Xj, Xi)  */ 
 while queue is not empty do 
  (Xi, Xj) ← REMOVE-FIRST(queue) 
  if REMOVE-INCONSISTENT-VALUES(Xi, Xj)  then 
   if size of Di = 0 then return false 
   for each Xk in NEIGHBORS[Xi] − {Xj} do 
    add (Xk, Xi) to queue if not already there 
 return true 
 
function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff we delete a 
   value from the domain of Xi 
 removed ←  false 
 for each x in DOMAIN[Xi] do 
  if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj 
  then delete x from DOMAIN[Xi]; removed ←  true 
 return removed 
 
(from Mackworth, 1977) 



Complexity of AC-3 
• A binary CSP has at most n2 arcs 

 

• Each arc can be inserted in the queue d times (worst case) 
– (X, Y): only d values of X to delete 

 

• Consistency of an arc can be checked in O(d2) time  
 

• Complexity is O(n2 d3) 
 

• Although substantially more expensive than Forward Checking, 
Arc Consistency is usually worthwhile. 



K-consistency 
• Arc consistency does not detect all inconsistencies: 

– Partial assignment {WA=red, NSW=red} is inconsistent. 
 

• Stronger forms of propagation can be defined using the notion of k-consistency. 
 

• A CSP is k-consistent if for any set of k-1 variables and for any consistent 
assignment to those variables, a consistent value can always be assigned to any 
kth variable. 
– E.g. 1-consistency = node-consistency 
– E.g. 2-consistency = arc-consistency 
– E.g. 3-consistency = path-consistency 

 
• Strongly k-consistent:  

– k-consistent for all values  {k, k-1, …2, 1} 



Trade-offs 
• Running stronger consistency checks… 

– Takes more time 
– But will reduce branching factor and detect more inconsistent partial 

assignments 
 

– No “free lunch”   
• In worst case n-consistency takes exponential time 

 

• “Typically” in practice: 
– Often helpful to enforce 2-Consistency (Arc Consistency) 
– Sometimes helpful to enforce 3-Consistency 
– Higher levels may take more time to enforce than they save. 



• Before search: (reducing the search space) 
– Arc-consistency, path-consistency, i-consistency 
– Variable ordering (fixed) 

• During search: 
– Look-ahead schemes:  

• Value ordering/pruning (choose a least restricting value),  
• Variable ordering (choose the most constraining variable) 
• Constraint propagation (take decision implications forward) 

– Look-back schemes: 
• Backjumping 
• Constraint recording 
• Dependency-directed backtracking 
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Improving backtracking 



Further improvements  
• Checking special constraints 

– Checking Alldiff(…) constraint  
• E.g. {WA=red, NSW=red} 

– Checking Atmost(…) constraint 
• Bounds propagation for larger value domains 

 

• Intelligent backtracking 
– Standard form is chronological backtracking, i.e., try different value for 

preceding variable. 
– More intelligent: backtrack to conflict set. 

• Set of variables that caused the failure or set of previously assigned 
variables that are connected to X by constraints. 

• Backjumping moves back to most recent element of the conflict set. 
• Forward checking can be used to determine conflict set. 



Local search: min-conflicts heuristic 
• Use complete-state representation 

– Initial state = all variables assigned values 
– Successor states = change 1 (or more) values 

 
• For CSPs 

– allow states with unsatisfied constraints (unlike backtracking) 
– operators reassign variable values 
– hill-climbing with n-queens is an example 

 

• Variable selection: randomly select any conflicted variable 
• Value selection: min-conflicts heuristic 

– Select new value that results in a minimum number of conflicts with 
the other variables 



Local search: min-conflicts heuristic 
function MIN-CONFLICTS(csp, max_steps) return solution or failure 
 inputs: csp, a constraint satisfaction problem 
  max_steps, the number of steps allowed before giving up  
 
 current ←   a (random) initial complete assignment for csp 
 for i = 1 to max_steps do 
  if current is a solution for csp then return current 
  var ←  a randomly chosen, conflicted variable from    

 VARIABLES[csp] 
  value  ←  the value v for var that minimize 

CONFLICTS(var,v,current,csp) 
  set var = value in current 
 return failure 

 



Number of conflicts 
• Solving 4-queens with local search 
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Note: here I check all neighbors 
& pick the best; typically in 
practice pick one at random  



Number of conflicts 
• Solving 4-queens with local search 
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Note: here I check all neighbors 
& pick the best; typically in 
practice pick one at random  



Local optima 
• Local search may get stuck at local optima 

– Locations where no neighboring value is better 
– Success depends on initialization quality & basins of attraction 

 

• Can use multiple initializations to improve: 
– Re-initialize randomly (“repeated” local search) 
– Re-initialize by perturbing last optimum (“iterated” local search)  

 

• Can also add sideways & random moves (e.g., WalkSAT) 

states 
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global maximum 

local maximum plateau of local optima 

(R&N Fig 7.18) 



Local optimum example 
• Solving 4-queens with local search 

 1      2      3      4 

Q 
Q 

Q 
Q 

(1 conflict) 

2 3 1 3 
Q 

Q 
Q 

Q 
1 3 3 3 

Q 
Q 

Q 
Q 
2 1 2 1 

Q 

Q 
Q 

Q 
3 2 4 1 

“Plateau” example:   
     no single move can decrease # of conflicts 



Median number of consistency checks over 5 runs to solve problem 
 
Parentheses -> no solution found 
 
USA: 4 coloring 
n-queens: n = 2 to 50 
Zebra: see exercise 6.7 (3rd ed.); exercise 5.13 (2nd ed.) 

Comparison of CSP algorithms 
Evaluate methods on a number of problems 



Advantages of local search 
• Local search can be particularly useful in an online setting 

– Airline schedule example 
• E.g., mechanical problems require than 1 plane is taken out of service 
• Can locally search for another “close” solution in state-space 
• Much better (and faster) in practice than finding an entirely new 

schedule 
 

• Runtime of min-conflicts is roughly independent of problem size. 
– Can solve the millions-queen problem in roughly 50 steps. 

 

– Why? 
• n-queens is easy for local search because of the relatively high density 

of solutions in state-space 



Hardness of CSPs 
• x1 … xn discrete, domain size d:  O( dn ) configurations 

 

• “SAT”:  Boolean satisfiability:  d=2 
– One of the first known NP-complete problems 

 

• “3-SAT” 
– Conjunctive normal form (CNF) 
– At most 3 variables in each clause: 

 
– Still NP-complete 

 
 

• How hard are “typical” problems?  
 

 

CNF clause: rule out one configuration  



Hardness of random CSPs 
• Random 3-SAT problems: 

– n variables, p clauses in CNF: 
– Choose any 3 variables, signs uniformly at random 
– What’s the probability there is no solution to the CSP? 

 

– Phase transition at  (p/n) ¼ 4.25 
– “Hard” instances fall in a very narrow regime around this point! 
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Hardness of random CSPs 
• Random 3-SAT problems: 

– n variables, p clauses in CNF: 
– Choose any 3 variables, signs uniformly at random 
– What’s the probability there is no solution to the CSP? 

 

– Phase transition at  (p/n) ¼ 4.25 
– “Hard” instances fall in a very narrow regime around this point! 
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• R = [number of initially filled cells] / [total number of cells] 
• Success Rate = P(random puzzle is solvable) 
• [total number of cells] = 9x9 = 81 
• [number of initially filled cells] = variable 
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Avg Time vs. R 
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Success Rate vs. R 

Success Rate

R = [number of initially filled cells] / [total number of cells] 

R = [number of initially filled cells] / [total number of cells] 

Ex: Sudoku Backtracking search 
 + forward checking 



Graph structure and complexity 
• Disconnected subproblems 

– Configuration of one subproblem  
 cannot affect the other: independent! 
– Exploit: solve independently 

 
• Suppose each subproblem has c variables out of n 

– Worse case cost:  O( n/c  dc ) 
– Compare to  O( dn ), exponential in n 
– Ex:  n=80, c=20, d=2 ) 

• 280 = 4 billion years at 1 million nodes per second 
• 4 * 220 = 0.4 seconds at 1 million nodes per second 
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Tree-structured CSPs 
• Theorem: If a constraint graph has no cycles, then 
 the CSP can be solved in O(n d^2) time. 

– Compare to general CSP: worst case O(d^n)  
 

• Method: directed arc consistency     (= dynamic programming) 
– Select a root (e.g., A) & do arc consistency from leaves to root: 
– D → F: remove values for D not consistent with any value for F, etc.) 
– D → E, B → D, … etc 

 
 
 

– Select a value for A 
– There must be a value for B that is compatible; select it 
– There must be values for C, and for D, compatible with B’s; select them 
– There must be values for E, F compatible with D’s; select them. 
– You’ve found a consistent solution! 
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F 

E 
D 

C 
B 



Exploiting structure 
• How can we use efficiency of trees? 
• Cutset conditioning 

– Exploit easy-to-solve problems during search 
 
 
 
 
 

• Tree decomposition 
– Convert non-tree problems into (harder) trees 

 

Tree! SA=red 
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Change  
“variables” 

 
= color of pair  

of areas 

Now: 
“unary” WA-SA constraint 
“binary” (WA,SA) – (NT,SA) 
   require all 3 consistent 
   … 



Summary 
• CSPs  

–  special kind of problem: states defined by values of a fixed set of variables, 
goal test defined by constraints on variable values 

 

• Backtracking = depth-first search, one variable assigned per node 
 

• Heuristics: variable order & value selection heuristics help a lot 
 

• Constraint propagation  
– does additional work to constrain values and detect inconsistencies 
– Works effectively when combined with heuristics 

 

• Iterative min-conflicts is often effective in practice. 
 

• Graph structure of CSPs determines problem complexity 
– e.g., tree structured CSPs can be solved in linear time. 
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