Games \& Adversarial Search B: Alpha-Beta Pruning and MCTS

CS171, Fall Quarter, 2018
Introduction to Artificial Intelligence
Prof. Richard Lathrop

Read Beforehand: R\&N 5.3; Optional: 5.5+

Alpha-Beta pruning

- Exploit the "fact" of an adversary
- $\quad \underline{B a d}=$ not better than we already know we can get elsewhere
- If a position is provably bad
- It's NO USE expending search effort to find out just how bad it is
- If the adversary can force a bad position
- It's NO USE searching to find the good positions the adversary won't let you achieve anyway
- Contrast normal search:
- ANY node might be a winner, so ALL nodes must be considered.
- A* avoids this through heuristics that transmit your knowledge.
- Alpha-Beta pruning avoids this through exploiting the adversary.

Pruning with Alpha/Beta

Figure 4.17 Two-ply minimax applied to the opening move of tic-tac-toe.

Alpha-Beta Example

Initially, possibilities are unknown: range ($\alpha=-\infty, \beta=+\infty$) Do a depth-first search to the first leaf.

Alpha-Beta Example

See the first leaf, after MIN's move: MIN updates β

Alpha-Beta Example

See remaining leaves; value is known
Pass outcome to caller; MAX updates α

Alpha-Beta Example

Continue depth-first search to next leaf.
Pass α, β to descendants

Alpha-Beta Example

Observe leaf value; MIN's level; MIN updates β
Prune - play will never reach the other nodes!

Alpha-Beta Example

Pass outcome to caller \& update caller:

Alpha-Beta Example

Continue depth-first exploration...
No pruning here; value is not resolved until final leaf.

Alpha-Beta Example

Pass outcome to caller \& update caller. Value at the root is resolved.

General alpha-beta pruning

- Consider a node n in the tree:
- If player has a better choice at
- Parent node of n
- Or, any choice further up!
- Then n is never reached in play

Player

Opponent
..
..

Player

Opponent

- So:
- When that much is known about n, it can be pruned

Recursive $\alpha-\beta$ pruning (expands on Fig. 5.7)

```
Alpha-Beta-Search(state)
    alpha = -infty, beta = +infty, act = None
    for each a in Actions(state) do
        val = Min-Value( Result(state, a), alpha, beta )
        if ( val > alpha ) then alpha = val, act = a
    return act
MaxValue(state, al, be)
    if (Cutoff(state)) then return Eval(state)
    val = -infty
    for each a in Actions(state) do
        val = max(val, MinValue( Result(state, a), al, be )
        if ( val }\geq\mathrm{ be ) then return val
        al = max( al, val )
    return val
MinValue(state, al, be)
    if (Cutoff(state)) then return Eval(state)
    val = +infty
    for each a in Actions(state) do
        val = min( val, MaxValue( Result(state, a), al, be )
        if ( val \leq al) then return val
        be = min(be, val )
    return be
```


Effectiveness of $\alpha-\beta$ Search

- Worst-Case
- Branches are ordered so that no pruning takes place. In this case alpha-beta gives no improvement over exhaustive search
- Best-Case
- Each player's best move is the left-most alternative (i.e., evaluated first)
- In practice, performance is closer to best rather than worst-case
- In practice often get $O\left(b^{(d / 2)}\right)$ rather than $O\left(b^{d}\right)$
- This is the same as having a branching factor of sqrt(b),
- since $(s q r t(b))^{d}=b^{(d / 2)}($ i.e., we have effectively gone from b to square root of b)
- In chess go from $b \sim 35$ to $b^{\sim} 6$
- permiting much deeper search in the same amount of time

lterative deepening

- In real games, there is usually a time limit T to make a move
- How do we take this into account?
- Minimax cannot use "partial" results with any confidence, unless the full tree has been searched
- Conservative: set small depth limit to guarantee finding a move in time < T
- But, we may finish early - could do more search!
- Added benefit with Alpha-Beta Pruning:
- Remember node values found at the previous depth limit
- Sort current nodes so that each player's best move is left-most child
- Likely to yield good Alpha-Beta Pruning => better, faster search
- Only a heuristic: node values will change with the deeper search
- Usually works well in practice

Comments on alpha-beta pruning

- Pruning does not affect final results
- Entire subtrees can be pruned
- Good move ordering improves pruning
- Order nodes so player's best moves are checked first
- Repeated states are still possible
- Store them in memory = transposition table

Iterative deepening reordering

Which leaves can be pruned?

None!

because the most favorable nodes are explored last...

MAX

MIN

Iterative deepening reordering

Different exploration order: now which leaves can be pruned?

Lots!

because the most favorable nodes are explored first!

Iterative deepening reordering

Order with no pruning; use iterative deepening approach. Assume node score is the average of leaf values below.

Iterative deepening reordering

Order with no pruning; use iterative deepening approach. Assume node score is the average of leaf values below.

For L=2,
switch the order of these nodes!

MAX

MIN

Iterative deepening reordering

Order with no pruning; use iterative deepening approach. Assume node score is the average of leaf values below.

For L=2,
switch the order of these nodes!

MAX

MIN

Iterative deepening reordering

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below.

Iterative deepening reordering

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below.

Iterative deepening reordering

Order with no pruning; use iterative deepening approach. Assume node score is the average of leaf values below.

Longer Alpha-Beta Example

Branch nodes are labelel A..K for easy discussion

α, β, initial values $\longrightarrow \alpha=-\infty$

Longer Alpha-Beta Example

Note that cut-off occurs at different depths...

Longer Alpha-Beta Example

We also are running MiniMax search and recording node values within the triangles, without explicit comment.

Longer Alpha-Beta Example

Longer Alpha-Beta Example

Longer Alpha-Beta Example

 kid=A

Longer Alpha-Beta Example

current α, β,

 passed to kid F $\downarrow$$\downarrow$
$\alpha=-\infty$
$\beta=6$
kid=F

Longer Alpha-Beta Example

Longer Alpha-Beta Example

Longer Alpha-Beta Example

return node value, MIN updates β, no change to β

\forall| $\alpha=-\infty$ |
| :--- |
| $\beta=6$ |

Longer Alpha-Beta Example

see next leaf,
MIN updates β, no change to β

Longer Alpha-Beta Example

 return node value, $\longrightarrow \alpha=6$ MAX updates α

Longer Alpha-Beta Example

Longer Alpha-Beta Example

 return node value, $\longrightarrow \alpha=6$ MAX updates $\alpha, \quad \beta=+\infty$ no change to α

Longer Alpha-Beta Example

current α, β, passed to kid=C
$\alpha=6$
——s
$\alpha=6$
$\beta=+\infty$ kid=c
$\alpha=6$
$\beta=+\infty$

Longer Alpha-Beta Example

see first leaf,
MIN updates β
$\alpha=6$
$\beta=9$

Longer Alpha-Beta Example

Longer Alpha-Beta Example

 return node value, $\longrightarrow \alpha=6$ MAX updates $\alpha, \quad \beta=+\infty$ no change to α

Longer Alpha-Beta Example

current α, β, passed to kid=D
$\alpha=6$
$\alpha=6$
$\beta=+\infty$
kid=D

Longer Alpha-Beta Example

see first leaf,
MIN updates β
$\alpha=6$
$\beta=6$

Longer Alpha-Beta Example

Alpha-Beta Example \#2

return node value, $\alpha=6$

 MAX updates $\alpha, \quad \beta=+\infty$

Alpha-Beta Example \#2

MAX moves to A,

Nondeterministic games

- Ex: Backgammon
- Roll dice to determine how far to move (random)
- Player selects which checkers to move (strategy)

Nondeterministic games

- Chance (random effects) due to dice, card shuffle, ...
- Chance nodes: expectation (weighted average) of successors
- Simplified example: coin flips 3

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

MIN

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

MIN

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

MAX

Chance

Pruning in nondeterministic games

- Can still apply a form of alpha-beta pruning

Partially observable games

- R\&N Chapter 5.6 - "The fog of war"
- Background: R\&N, Chapter 4.3-4
- Searching with Nondeterministic Actions/Partial Observations
- Search through Belief States (see Fig. 4.14)
- Agent's current belief about which states it might be in, given the sequence of actions \& percepts to that point
- Actions(b) = ?? Union? Intersection?
- Tricky: an action legal in one state may be illegal in another
- Is an illegal action a NO-OP? or the end of the world?
- Transition Model:
- Result(b,a) $=\left\{s^{\prime}: s^{\prime}=\operatorname{Result}(s, a)\right.$ and s is a state in $\left.b\right\}$
- Goaltest(b) = every state in b is a goal state

Belief States for Unobservable Vacuum World

Partially observable games

- R\&N Chapter 5.6
- Player's current node is a belief state
- Player's move (action) generates child belief state
- Opponent's move is replaced by Percepts(s)
- Each possible percept leads to the belief state that is consistent with that percept
- Strategy = a move for every possible percept sequence
- Minimax returns the worst state in the belief state
- Many more complications and possibilities!!
- Opponent may select a move that is not optimal, but instead minimizes the information transmitted, or confuses the opponent
- May not be reasonable to consider ALL moves; open P-QR3??
- See R\&N, Chapter 5.6, for more info

The State of Play

- Checkers:
- Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.
- Chess:
- Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997.
- Othello:
- human champions refuse to compete against computers: they are too good.
- Go:
- AlphaGo recently (3/2016) beat $9^{\text {th }}$ dan Lee Sedol
- $b>300$ (!); full game tree has > $10^{\wedge} 760$ leaf nodes (!!)
- See (e.g.) http://www.cs.ualberta.ca/~games/ for more info

High branching factors

- What can we do when the search tree is too large?
- Example: Go ($b=50$ to $300+$ moves per state)
- Heuristic state evaluation (score a partial game)
- Where does this heuristic come from?
- Hand designed
- Machine learning on historical game patterns
- Monte Carlo methods - play random games

Monte Carlo heuristic scoring

- Idea: play out the game randomly, and use the results as a score
- Easy to generate \& score lots of random games
- May use 1000s of games for a node
- The basis of Monte Carlo tree search algorithms...

Monte Carlo Tree Search

- Should we explore the whole (top of) the tree?
- Some moves are obviously not good...
- Should spend time exploring / scoring promising ones
- This is a multi-armed bandit (MAB) problem:
- Want to spend our time on good moves
- Which moves have high payout?
- Hard to tell - random...
- Explore vs. exploit tradeoff

Visualizing MCTS

- At each level of the tree, keep track of
- Number of times we' ve explored a path
- Number of times we won
- Follow winning (from max/min perspective) strategies more often, but also explore others

MCTS

MAB strategy

Default / random strategy

Terminal state

Score consists of
(1) $\%$ wins
(2) \# times tried
(3) \# of steps total

UCT:

$$
s(n)=\bar{X}_{n} \pm \sqrt{\frac{\log n}{t(n)}}
$$

MCTS

MAB strategy

Default / random strategy

MCTS

MAB strategy

Default / random strategy

Score consists of (1) $\%$ wins
(2) \# times tried
(3) \# of steps total

UCT:

$$
s(n)=\bar{X}_{n} \pm \sqrt{\frac{\log n}{t(n)}}
$$

Terminal state

Summary

- Game playing is best modeled as a search problem
- Game trees represent alternate computer/opponent moves
- Evaluation functions estimate the quality of a given board configuration for the Max player.
- Minimax is a procedure which chooses moves by assuming that the opponent will always choose the move which is best for them
- Alpha-Beta is a procedure which can prune large parts of the search tree and allow search to go deeper
- For many well-known games, computer algorithms based on heuristic search match or out-perform human world experts.

