
Propositional Logic B: 
Inference, Reasoning, Proof 

CS171, Fall Quarter, 2018 
Introduction to Artificial Intelligence 

Prof. Richard Lathrop 
 
 Read Beforehand:  R&N 7.1-7.5 (optional: 7.6-7.8) 



You will be expected to know 
• Basic definitions 

– Inference, derive, sound, complete 

• Conjunctive Normal Form (CNF) 
– Convert a Boolean formula to CNF 

• Do a short resolution proof 

• Horn Clauses 

• Do a short forward-chaining proof 

• Do a short backward-chaining proof 

• Model checking with backtracking search 

• Model checking with local search 

 



Review: Inference in Formal Symbol Systems 
Ontology, Representation, Inference 

• Formal Symbol Systems 
– Symbols correspond to things/ideas in the world 
– Pattern matching & rewrite corresponds to inference 

 
• Ontology: What exists in the world? 

– What must be represented? 
• Representation: Syntax vs. Semantics 

– What’s Said vs. What’s Meant 
• Inference: Schema vs. Mechanism 

– Proof Steps vs. Search Strategy 

 



Ontology: 
What kind of things exist in the world? 
What do we need to describe and reason about? 

Reasoning 

Representation 
------------------- 
A Formal 
Symbol System 

Inference 
--------------------- 
Formal Pattern 
Matching 

Syntax 
--------- 
What is 
said 

Semantics 
------------- 
What it 
means 

Schema 
------------- 
Rules of 
Inference 

Execution 
------------- 
Search 
Strategy 

Preceding lecture This lecture 

Review 



Review 
• Definitions: 

– Syntax, Semantics, Sentences, Propositions, Entails, Follows, 
Derives, Inference, Sound, Complete, Model, Satisfiable, Valid (or 
Tautology), etc. 

• Syntactic Transformations: 
– E.g., (A ⇒ B) ⇔ (¬A ∨ B) 

• Semantic Transformations: 
– E.g., (KB |= α) ≡ (|= (KB ⇒ α) ) 

• Truth Tables 
– Negation, Conjunction, Disjunction, Implication, 

Equivalence (Biconditional) 
– Inference by Model Enumeration 



Review: Schematic perspective 

If KB is true in the real world, 
then any sentence α entailed by KB 
is also true in the  real world.  

For example:  If I tell you (1) Sue is Mary’s sister, and (2) Sue is Amy’s mother, then it 
necessarily follows in the world that Mary is Amy’s aunt, even though I told you 
nothing at all about aunts.  This sort of reasoning pattern is what we hope to capture. 



So --- how do we keep it from 
“Just making things up.” ? 

“Einstein Simplified: 
Cartoons on Science” 
by Sydney Harris, 1992, 
Rutgers University Press 

How can we make correct inferences? 
How can we avoid incorrect inferences? 

Is this inference correct? 
 
How do you know? 
How can you tell? 



So --- how do we keep it from 
“Just making things up.” ? 

• All men are people; 
   Half of all people are women; 
   Therefore, half of all men are women. 
 
• Penguins are black and white; 
   Some old TV shows are black and white; 
   Therefore, some penguins are old TV shows. 

Is this inference correct? 
 
How do you know? 
How can you tell? 



Schematic perspective 

If KB is true in the real world, 
then any sentence α derived from KB 
       by a sound inference procedure 
is also true in the  real world.  

Sentences Sentence 
Derives 

Inference 



Logical inference 
• The notion of entailment can be used for logic inference. 

– Model checking (see wumpus example): 
 enumerate all possible models and check whether α  is true. 

 
• KB |-i α means KB derives a sentence α using inference procedure i 

 
• Sound (or truth preserving): 
 The algorithm only derives entailed sentences. 

– Otherwise it just makes things up. 
i is sound iff whenever KB |-i α it is also true that KB|= α 

– E.g., model-checking is sound 
Refusing to infer any sentence is Sound; so, Sound is weak alone. 

• Complete: 
 The algorithm can derive every entailed sentence. 
  i is complete iff whenever KB |= α it is also true that KB|-i α 
 Deriving every sentence is Complete; so, Complete is weak alone. 
 
       

 



Proof methods 
• Proof methods divide into (roughly) two kinds: 

 

Application of inference rules: 
Legitimate (sound) generation of new sentences from old. 
– Resolution --- KB is in Conjunctive Normal Form (CNF) 
– Forward & Backward chaining  

 
 

Model checking: 
Searching through truth assignments. 
– Improved backtracking: Davis-Putnam-Logemann-Loveland (DPLL) 
– Heuristic search in model space: Walksat. 



Examples of Sound Inference Patterns 
Classical Syllogism (due to Aristotle) 
 All Ps are Qs  All Men are Mortal 
 X is a P   Socrates is a Man 
 Therefore, X is a Q Therefore, Socrates is Mortal 
 
Implication (Modus Ponens) 
 P implies Q  Smoke implies Fire 
 P   Smoke 
 Therefore, Q  Therefore, Fire 
 
Contrapositive (Modus Tollens) 
 P implies Q  Smoke implies Fire 
 Not Q   Not Fire 
 Therefore, Not P  Therefore, not Smoke 
 
Law of the Excluded Middle (due to Aristotle) 
 A Or B   Alice is a Democrat or a Republican 
 Not A   Alice is not a Democrat 
 Therefore, B  Therefore, Alice is a Republican 

Why is this different from: 
All men are people 
Half of people are women 
So half of men are women 



Inference by Resolution 

• KB is represented in CNF 
– KB = AND of all the sentences in KB 
– KB sentence = clause = OR of literals 
– Literal = propositional symbol or its negation 

 
• Find two clauses in KB, one of which contains a literal and the 

other its negation 
– Cancel the literal and its negation 
– Bundle everything else into a new clause 
– Add the new clause to KB 
– Repeat 



Conjunctive Normal Form (CNF) 

• Boolean formulae are central to CS 
– Boolean logic is the way our discipline works 

• Two canonical Boolean formulae representations: 
– CNF = Conjunctive Normal Form 

• A conjunct of disjuncts = (AND (OR …) (OR …) ) 
• “…” = a list of literals (= a variable or its negation) 
• CNF is used by Resolution Theorem Proving 

– DNF = Disjunctive Normal Form 
• A disjunct of conjuncts = (OR (AND …) (AND …) ) 
• DNF is used by Decision Trees in Machine Learning 

• Can convert any Boolean formula to CNF or DNF 

Clause 

Term 



Conjunctive Normal Form (CNF) 

We first rewrite                  into conjunctive normal form (CNF).   

We’d like to prove: 

KB α∧ ¬

A “conjunction of disjunctions” 

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D) 

Clause Clause 

literals 

• Any KB can be converted into CNF. 
• In fact, any KB can be converted into CNF-3 using clauses with at most 3 literals. 

KB  |=  α 
(This is equivalent to KB ∧ ¬ α is unsatisfiable.) 



Review:  Equivalence & Implication 

• Equivalence is a conjoined double implication 
 
– (X ⇔ Y)  =  [(X ⇒ Y) ∧ (Y ⇒ X)] 

 
• Implication is (NOT antecedent OR consequent) 

 
– (X ⇒ Y)  =  (¬X ∨ Y) 



Review:  de Morgan's rules 

• How to bring ¬ inside parentheses 
– (1) Negate everything inside the parentheses 
– (2) Change operators to “the other operator” 

 

• ¬(X ∧ Y ∧ … ∧ Z)  =  (¬X ∨ ¬Y ∨ … ∨ ¬Z) 
 

• ¬(X ∨ Y ∨ … ∨ Z)  =  (¬X ∧ ¬Y ∧ … ∧ ¬Z) 
 



Review:  Boolean Distributive Laws 

• Both of these laws are valid: 
 

• AND distributes over OR 
– X ∧ (Y ∨ Z)  =  (X ∧ Y) ∨ (X ∧ Z) 
– (W ∨ X) ∧ (Y ∨ Z)  =  (W ∧ Y) ∨ (X ∧ Y) ∨ (W ∧ Z) ∨ (X ∧ Z) 

 

• OR distributes over AND 
– X ∨ (Y ∧ Z)  =  (X ∨ Y) ∧ (X ∨ Z) 
– (W ∧ X) ∨ (Y ∧ Z)  =  (W ∨ Y) ∧ (X ∨ Y) ∧ (W ∨ Z) ∧ (X ∨ Z) 

 



Example: Conversion to CNF 
Example: B1,1  ⇔ (P1,2 ∨ P2,1) 
 
1. Eliminate ⇔ by replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α). 

= (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) 
 

2. Eliminate ⇒ by replacing α ⇒ β with ¬α∨ β and simplify. 
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) 

 

3. Move ¬ inwards using de Morgan's rules and simplify. 
   ¬(α ∨ β) ≡ (¬α ∧ ¬β), ¬(α ∧ β) ≡ (¬α ∨ ¬β) 

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) 
 

4. Apply distributive law (∧ over ∨) and simplify. 
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 



Example: Conversion to CNF 
Example: B1,1  ⇔ (P1,2 ∨ P2,1) 
 
From the previous slide we had: 

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 
 
5. KB is the conjunction of all of its sentences (all are true), 
 so write each clause (disjunct) as a sentence in KB: 
 
     KB = 
 … 

(¬B1,1 ∨ P1,2 ∨ P2,1)  
(¬P1,2 ∨ B1,1)  
(¬P2,1 ∨ B1,1) 
… 
 

Often, Won’t Write “∨” or “∧” 
(we know they are there) 

(¬B1,1     P1,2    P2,1)  
(¬P1,2    B1,1)  
(¬P2,1   B1,1) 

(same) 



Inference by Resolution 

• KB is represented in CNF 
– KB = AND of all the sentences in KB 
– KB sentence = clause = OR of literals 
– Literal = propositional symbol or its negation 

 
• Find two clauses in KB, one of which contains a literal and the 

other its negation 
– Cancel the literal and its negation 
– Bundle everything else into a new clause 
– Add the new clause to KB 
– Repeat 



Resolution = Efficient Implication 

(OR    A  B  C  D) 
(OR  ¬A  E  F  G) 
----------------------------- 
(OR  B  C  D  E  F  G) 

(NOT (OR  B  C  D))  =>  A 
A  =>  (OR  E  F  G) 
---------------------------------------------------- 
(NOT (OR  B  C  D))  => (OR  E  F  G) 
---------------------------------------------------- 
(OR  B  C  D  E  F  G) 

->Same -> 
->Same -> 

Recall that (A => B) = ( (NOT A) OR B) 
and so: 
             (Y OR X) = ( (NOT X) => Y) 
 ( (NOT Y) OR Z) = (Y => Z) 
which yields: 
 ( (Y OR X) AND ( (NOT Y) OR Z) ) |= ( (NOT X) => Z) = (X OR Z)   

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation). 



Resolution Examples 
 

• Resolution: inference rule for CNF: sound and complete! * 
( )
( )

( )

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.” 

( )
( )

( )

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true 
then D or E must be true, hence since A is either true or  
false, B or C or D or E must be true.”  

( )
( )

( )

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡ Simplification 
is done always. 

* Resolution is “refutation complete” 
in that it can prove the truth of any 
entailed sentence by refutation. 
* You can start two resolution proofs 
in parallel, one for the sentence and 
one for its negation, and see which 
branch returns a correct proof. 

“If A or B is true, and 
not A or B is true, 
then B must be true.”  



More Resolution Examples 
•  (P Q ¬R S) with (P ¬Q W X) yields (P ¬R S W X) 

– Order of literals within clauses does not matter. 
• (P Q ¬R S) with (¬P) yields (Q ¬R S) 
•  (¬R) with (R) yields ( ) or FALSE 
•  (P Q ¬R S) with (P R ¬S W X) yields (P Q ¬R R W X) or (P Q S ¬S W X) or TRUE 
• (P ¬Q R ¬S) with (P ¬Q R ¬S) yields None possible 
•  (P ¬Q ¬S W) with (P R ¬S X) yields None possible 
•  ( (¬ A) (¬ B) (¬ C) (¬ D) ) with ( (¬ C) D) yields ( (¬ A) (¬ B) (¬ C ) ) 
•  ( (¬ A) (¬ B) (¬ C ) ) with ( (¬ A) C) yields ( (¬ A) (¬ B) ) 
•  ( (¬ A) (¬ B) ) with (B) yields (¬ A) 
•  (A C) with (A (¬ C) ) yields (A) 
•  (¬ A) with (A) yields ( ) or FALSE 



Only Resolve ONE Literal Pair! 
If more than one pair, result always = TRUE. 

Useless!! Always simplifies to TRUE!! 

No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR  C  D  F  G) 
No!  This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR   B ¬B C  D  F  G) 
Yes! (but = TRUE) 

No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C  ) 
----------------------------- 
(OR  D) 
No!  This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C   ) 
----------------------------- 
(OR   A ¬A B ¬B  D) 
Yes! (but = TRUE) 

(Resolution theorem provers routinely pre-scan the two clauses for two 
complementary literals, and if they are found won’t resolve those clauses.) 



•  The resolution algorithm tries to prove: 
 
 

•  Generate all new sentences from KB and the (negated) query. 
•  One of two things can happen: 

 
1. We find                         which is unsatisfiable. I.e.* we can entail the query. 

 
2. We find no contradiction: there is a model that satisfies the sentence 
                        (non-trivial) and hence we cannot entail the query. 
 
 
* I.e. = id est = that is 

Resolution Algorithm 

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬

P P∧ ¬

KB α∧ ¬



Resolution example 
Stated in English 

• “Laws of Physics” in the Wumpus World: 
– “A breeze in B11 is equivalent to a pit in P12 or a 

pit in P21.” 
 

• Particular facts about a specific instance: 
– “There is no breeze in B11.” 

 

• Goal or query sentence: 
– “Is it true that P12 does not have a pit?” 



Resolution example 
Stated in Propositional Logic 

• “Laws of Physics” in the Wumpus World: 
– “A breeze in B11 is equivalent to a pit in P12 or a 

pit in P21.” 
 (B1,1 ⇔ (P1,2∨ P2,1)) 

• Particular facts about a specific instance: 
– “There is no breeze in B11.” 
 (¬ B1,1) 

• Goal or query sentence: 
– “Is it true that P12 does not have a pit?” 
 (¬P1,2) 

We converted this sentence to CNF in 
the CNF example we worked above. 



Resolution example 
Resulting Knowledge Base stated in CNF 

• “Laws of Physics” in the Wumpus World: 
 (¬B1,1     P1,2    P2,1)  
 (¬P1,2    B1,1)  
 (¬P2,1   B1,1) 
 

• Particular facts about a specific instance: 
 (¬ B1,1) 
 

• Negated goal or query sentence: 
 (P1,2) 



Resolution example 
A Resolution proof ending in ( ) 

• Knowledge Base at start of proof: 
 (¬B1,1     P1,2    P2,1) 
 (¬P1,2    B1,1) 
 (¬P2,1   B1,1) 
 (¬ B1,1) 
 (P1,2) 

 A resolution proof ending in ( ): 
• Resolve (¬P1,2    B1,1) and (¬ B1,1) to give (¬P1,2 ) 
• Resolve (¬P1,2 ) and (P1,2) to give ( ) 

 
• Consequently, the goal or query sentence is entailed by KB. 
• Of course, there are many other proofs, which are OK iff correct. 



Resolution example 
Graphical view of the proof 

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1  

• α = ¬P1,2 
KB α∧ ¬

False in 
all worlds 

True! 

¬P2,1 

A sentence in KB is not “used up” when it is used in a 
resolution step. It is true, remains true, and is still in KB. 

¬P1,2 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if 
it is not mythical, then it is a mortal mammal. If the unicorn is 
either immortal or a mammal, then it is horned. The unicorn is 
magical if it is horned. 
 Prove that the unicorn is both magical and horned. 
 
Problem 7.2, R&N page 280. (Adapted from Barwise and 

Etchemendy, 1993.) 

Note for non-native-English speakers:  immortal = not mortal 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 
 

• First, Ontology: What do we need to describe and reason about? 
 
• Use these propositional variables (“immortal” = “not mortal”): 
 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 
 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 
 
• Second, translate to Propositional Logic, then to CNF: 
• Propositional logic (prefix form, aka Polish notation): 

– (=> Y (NOT R) ) ; same as ( Y => (NOT R) ) in infix form 

• CNF (clausal form) ; recall (A => B) = ( (NOT A) OR B) 
– ( (NOT Y) (NOT R) ) Prefix form is often a better representation for a 

parser, since it looks at the first element of the list 
and dispatches to a handler for that operator token. 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 
 
• Second, translate to Propositional Logic, then to CNF: 
• Propositional logic (prefix form): 

– (=> (NOT Y) (AND R M) ) ;same as ( (NOT Y) => (R AND M) ) in infix form 

• CNF (clausal form) 
– (M Y) 
– (R Y) 

If you ever have to do this “for real” you will likely 
invent a new domain language that allows you to 
state important properties of the domain --- then 
parse that into propositional logic, and then CNF. 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 
 
• Second, translate to Propositional Logic, then to CNF: 
• Propositional logic (prefix form): 

– (=> (OR (NOT R) M) H) ; same as ( (Not R) OR M) => H in infix form 

• CNF (clausal form) 
– (H (NOT M) ) 
– (H R) 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 
 
• Second, translate to Propositional Logic, then to CNF: 
• Propositional logic (prefix form) 

– (=> H G) ; same as H => G in infix form 

• CNF (clausal form) 
– ( (NOT H) G) 

 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 

 
• Current KB (in CNF clausal form) = 

 
( (NOT Y) (NOT R) ) (M Y)  (R Y)  (H (NOT M) ) 
(H R)   ( (NOT H) G) 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 

 

• Third, negated goal to Propositional Logic, then to CNF: 
• Goal sentence in propositional logic (prefix form) 

– (AND H G) ; same as H AND G in infix form 

• Negated goal sentence in propositional logic (prefix form) 
– (NOT (AND H G) ) = (OR (NOT H) (NOT G) ) 

• CNF (clausal form) 
– ( (NOT G) (NOT H) ) 

 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

 Y = unicorn is mYthical  R = unicorn is moRtal  
 M = unicorn is a maMmal  H = unicorn is Horned 
 G = unicorn is maGical 

 
• Current KB + negated goal (in CNF clausal form) = 

 
( (NOT Y) (NOT R) ) (M Y)  (R Y)  (H (NOT M) ) 
(H R)   ( (NOT H) G) ( (NOT G) (NOT H) ) 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 
( (NOT Y) (NOT R) ) (M Y)  (R Y)  (H (NOT M) ) 
(H R)   ( (NOT H) G) ( (NOT G) (NOT H) ) 
 

• Fourth, produce a resolution proof ending in ( ): 
• Resolve (¬H ¬G) and (¬H G) to give (¬H) 
• Resolve (¬Y ¬R) and (Y M) to give (¬R M) 
• Resolve (¬R M) and (R H) to give (M H) 
• Resolve (M H) and (¬M H) to give (H) 
• Resolve (¬H) and (H) to give ( ) 

 
• Of course, there are many other proofs, which are OK iff correct. 



Detailed Resolution Proof Example 
Graph view of proof 

 ( ¬ Y ¬ R ) ( Y R ) ( Y M ) ( R H ) ( ¬ M H ) ( ¬ H G ) (¬ G ¬ H ) 
 

( ¬ H ) ( ¬R M ) 

( H ) 

( H M ) 

(  ) 



Detailed Resolution Proof Example 
Graph view of a different proof 

• ( ¬ Y ¬ R ) ( Y R ) ( Y M ) ( R H ) ( ¬ M H ) ( ¬ H G ) (¬ G ¬ H ) 
 

( ¬ H ) 

( ¬ M ) 

( Y ) 

( ¬ R ) 

( H ) 

(  ) 



Horn Clauses 

• Resolution can be exponential in space and time. 
 
• If we can reduce all clauses to “Horn clauses” inference is linear in space and time 

A clause with at most 1 positive literal. 
e.g.  
• Every Horn clause can be rewritten as an implication with 
  a conjunction of positive literals in the premises and at most 
  a single positive literal as a conclusion. 
  e.g.                      ≡ 
• 1 positive literal and ≥ 1 negative literal: definite clause (e.g., above) 
• 0 positive literals: integrity constraint or goal clause 
   e.g.                                               states that (A ∧ B) must be false 
• 0 negative literals: fact 
    e.g., (A) ≡ (True ⇒ A) states that A must be true. 
• Forward Chaining and Backward chaining are sound and complete 
  with Horn clauses and run linear in space and time. 

A B C∨ ¬ ∨ ¬

B C A∧ ⇒

( ) ( )A B A B False¬ ∨ ¬ ≡ ∧ ⇒

A B C∨ ¬ ∨ ¬



Forward chaining (FC) 
• Idea: fire any rule whose premises are satisfied in the KB, add its 

conclusion to the KB, until Query is found. 
 

• This proves that KB ⇒ Query is true in all possible worlds (i.e. trivial), 
      and hence it proves entailment. 

• Forward chaining is sound and complete for Horn KB 

AND gate 

OR gate 



Forward chaining example 

“AND” gate 

“OR” Gate 

Numbers at each AND node 
indicate the number of  
outstanding preconditions yet 
to be satisfied before all of that 
AND node input preconditions 
have been satisfied. It is an 
efficient book-keeping 
mechanism for determining 
when an AND node is satisfied. 
The AND node is satisfied 
when its number of 
outstanding preconditions yet 
to be satisfied is zero. 
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Backward chaining (BC) 

Idea: work backwards from the query q 
• check if q is known already, or 
• prove by BC all premises of some rule concluding q 
• Hence BC maintains a stack of sub-goals that need to be proved 

to get to q. 
 

Avoid loops: check if new sub-goal is already on the goal stack 
 
Avoid repeated work: check if new sub-goal 

1. has already been proved true, or 
2. has already failed 



Backward chaining example 
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Backward chaining example 

we need P to prove 
L and L to prove P. 



Backward chaining example 

As soon as you can move 
forward, do so.  



Backward chaining example 
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Backward chaining example 



Forward vs. backward chaining 
• FC is data-driven, automatic, unconscious processing, 

– e.g., object recognition, routine decisions 
 

• May do lots of work that is irrelevant to the goal  
 

• BC is goal-driven, appropriate for problem-solving, 
– e.g., Where are my keys? How do I get into a PhD program? 

 

• Complexity of BC can be much less than linear in size of KB 



Model Checking 

Two families of efficient algorithms: 
 
• Complete backtracking search algorithms: 

– E.g., DPLL  algorithm 

 
• Incomplete local search algorithms 

– E.g., WalkSAT algorithm 



The DPLL algorithm 
Determine if an input propositional logic sentence (in CNF) is 
satisfiable. This is just backtracking search for a CSP. 

 

Improvements: 
1. Early termination 

A clause is true if any literal is true. 
A sentence is false if any clause is false. 

 
2. Pure symbol heuristic 

Pure symbol: always appears with the same "sign" in all clauses.  
e.g., In the three clauses (A ∨ ¬B), (¬B ∨  ¬C), (C ∨ A), A and B are pure, C is impure.  
Make a pure symbol literal true. (if there is a model for S, then making a pure symbol 

true is also a model). 
 

3      Unit clause heuristic 
Unit clause: only one literal in the clause 
The only literal in a unit clause must be true. 
 
Note: literals can become a pure symbol or a  
unit clause when other literals obtain truth values.  e.g.                               

( ) ( )A True A B
A pure

∨ ∧ ¬ ∨
=



The WalkSAT algorithm 
• Incomplete, local search algorithm 

 
• Evaluation function: The min-conflict heuristic of minimizing 

the number of unsatisfied clauses 
 

• Balance between greediness and randomness 



Hard satisfiability problems 

• Consider random 3-CNF sentences. e.g., 
 (¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨  ¬B ∨ 

E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C) 
 

m = number of clauses (5)  
n = number of symbols (5) 

 

– Hard problems seem to cluster near m/n = 4.3 
(critical point) 



Hard satisfiability problems 



Hard satisfiability problems 

• Median runtime for 100 satisfiable random 3-CNF 
sentences, n = 50 



Hardness of CSPs 
• x1 … xn discrete, domain size d:  O( dn ) configurations 

 

• “SAT”:  Boolean satisfiability:  d=2 
– The first known NP-complete problem 

 

• “3-SAT” 
– Conjunctive normal form (CNF) 
– At most 3 variables in each clause: 

 
– Still NP-complete 

 
 

• How hard are “typical” problems?  
 

 

CNF clause: rule out one configuration  



Hardness of random CSPs 
• Random 3-SAT problems: 

– n variables, p clauses in CNF: 
– Choose any 3 variables, signs uniformly at random 
– What’s the probability there is no solution to the CSP? 

 

– Phase transition at  (p/n) ¼ 4.25 
– “Hard” instances fall in a very narrow regime around this point! 
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Common Sense Reasoning 
Example, adapted from Lenat 

You are told:  John drove to the grocery store and bought a pound of noodles, 
a pound of ground beef, and two pounds of tomatoes. 
 

• Is John 3 years old? 
• Is John a child? 
• What will John do with the purchases? 
• Did John have any money? 
• Does John have less money after going to the store? 
• Did John buy at least two tomatoes? 
• Were the tomatoes made in the supermarket? 
• Did John buy any meat? 
• Is John a vegetarian? 
• Will the tomatoes fit in John’s car? 

 
• Can Propositional Logic support these inferences? 



Summary 
• Logical agents apply inference to a knowledge base to derive new 

information and make decisions 
 

• Basic concepts of logic: 
– syntax: formal structure of sentences 
– semantics: truth of sentences wrt models 
– entailment: necessary truth of one sentence given another 
– inference: deriving sentences from other sentences 
– soundness: derivations produce only entailed sentences 
– completeness: derivations can produce all entailed sentences 

 
• Resolution is complete for propositional logic. 

Forward and backward chaining are linear-time, complete for Horn clauses 
 

• Propositional logic lacks expressive power 
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