
First-Order Logic A: 
Syntax 

CS171, Fall Quarter, 2018 
Introduction to Artificial Intelligence 

Prof. Richard Lathrop 
 

Read Beforehand: R&N 8, 9.1-9.2, 9.5.1-9.5.5 



Common Sense Reasoning 
Example, adapted from Lenat 

You are told:  John drove to the grocery store and bought a pound of noodles, a pound of ground 
beef, and two pounds of tomatoes. 
 

• Is John 3 years old? 
• Is John a child? 
• What will John do with the purchases? 
• Did John have any money? 
• Does John have less money after going to the store? 
• Did John buy at least two tomatoes? 
• Were the tomatoes made in the supermarket? 
• Did John buy any meat? 
• Is John a vegetarian? 
• Will the tomatoes fit in John’s car? 

 
• Can Propositional Logic support these inferences? 



Outline for First-Order Logic 
(FOL, also called FOPC) 

• Propositional Logic is Useful --- but Limited Expressive Power 
 

• First Order Predicate Calculus (FOPC), or First Order Logic (FOL). 
– FOPC has expanded expressive power, though still limited. 

 

• New Ontology 
– The world consists of OBJECTS. 
– OBJECTS have PROPERTIES, RELATIONS, and FUNCTIONS. 

• New Syntax 
– Constants, Predicates, Functions, Properties, Quantifiers. 

• New Semantics 
– Meaning of new syntax. 

 
• Unification and Inference in FOL 
• Knowledge engineering in FOL 



FOL Syntax: 
You will be expected to know 

• FOPC syntax  
– Syntax: Sentences, predicate symbols, function symbols, 

constant symbols, variables, quantifiers 
• De Morgan’s rules for quantifiers 

– connections between ∀ and ∃ 

• Nested quantifiers 
– Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)”  
– ∀ x ∃ y Likes(x, y) --- “Everybody likes somebody.” 
– ∃ x ∀ y Likes(x, y) --- “Somebody likes everybody.” 

• Translate simple English sentences to FOPC and back 
– ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.” 
– ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.” 

 



Pros and cons of propositional logic 
 Propositional logic is declarative 

- Knowledge and inference are separate 
 

 Propositional logic allows partial/disjunctive/negated information 
– unlike most programming languages and databases 

 
 Propositional logic is compositional: 

– meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2 
 

 Meaning in propositional logic is context-independent 
– unlike natural language, where meaning depends on context 

 
 Propositional logic has limited expressive power 

– E.g., cannot say “Pits cause breezes in adjacent squares.“ 
• except by writing one sentence for each square 

– Needs to refer to objects in the world, 
– Needs to express general rules 

 



First-Order Logic (FOL), also called 
First-Order Predicate Calculus (FOPC) 

• Propositional logic assumes the world contains facts. 
     
• First-order logic (like natural language) assumes the world contains 
 

– Objects: people, houses, numbers, colors, baseball games, wars, … 
– Functions: father of, best friend, one more than, plus, … 

• Function arguments are objects; function returns an object 
– Objects generally correspond to English NOUNS 

 
– Predicates/Relations/Properties: red, round, prime, brother of, bigger 

than, part of, comes between, … 
• Predicate arguments are objects; predicate returns a truth value 

– Predicates generally correspond to English VERBS 
• First argument is generally the subject, the second the object 
• Hit(Bill, Ball) usually means “Bill hit the ball.” 
• Likes(Bill, IceCream) usually means “Bill likes IceCream.” 
• Verb(Noun1, Noun2) usually means “Noun1 verb noun2.” 

 



Aside: First-Order Logic (FOL) vs. 
Second-Order Logic 

• First Order Logic (FOL) allows variables and general rules 
– “First order” because quantified variables represent objects. 
– “Predicate Calculus” because it quantifies over predicates on objects. 

• E.g., “Integral Calculus” quantifies over functions on numbers. 
• Aside: Second Order logic 

– “Second order” because quantified variables can also represent 
predicates and functions. 

• E.g., can define “Transitive Relation,” which is beyond FOPC. 
 

• Aside: In FOL we can state that a relationship is transitive 
– E.g., BrotherOf is a transitive relationship 
– ∀ x, y, z BrotherOf(x,y) ∧ BrotherOf(y,z) => BrotherOf(x,z)  

• Aside: In Second Order logic we can define “Transitive” 
– ∀ P, x, y, z Transitive(P)  ( P(x,y) ∧ P(y,z) => P(x,z) ) 
– Then we can state directly, Transitive(BrotherOf) 

 
 

 



Syntax of FOL: Basic elements 
• Constants KingJohn, 2, UCI,...  

 
• Predicates Brother, >,... 

 
• Functions Sqrt, LeftLegOf,... 

 
• Variables x, y, a, b,... 

 
• Quantifiers   ∀, ∃   

 
• Connectives ¬, ∧, ∨, ⇒, ⇔ (standard) 

 
• Equality = (but causes difficulties….) 



Syntax of FOL: Basic syntax elements are symbols 

• Constant Symbols (correspond to English nouns) 
– Stand for objects in the world. 

• E.g., KingJohn, 2, UCI, ...  
 
• Predicate Symbols (correspond to English verbs) 

– Stand for relations (maps a tuple of objects to a truth-value) 
• E.g., Brother(Richard, John), greater_than(3,2), ... 

– P(x, y) is usually read as “x is P of y.” 
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.” 

 
• Function Symbols (correspond to English nouns) 

– Stand for functions (maps a tuple of objects to an object) 
• E.g., Sqrt(3), LeftLegOf(John), ... 

 
• Model (world) = set of domain objects, relations, functions 
• Interpretation maps symbols onto the model (world) 

– Very many interpretations are possible for each KB and world! 
– The KB is to rule out those inconsistent with our knowledge. 



Syntax of FOL: Terms 
• Term = logical expression that refers to an object 

 
• There are two kinds of terms: 

 
– Constant Symbols stand for (or name) objects: 

• E.g., KingJohn, 2, UCI, Wumpus, ...  
 

– Function Symbols map tuples of objects to an object: 
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x) 
• This is nothing but a complicated kind of name 

– No “subroutine” call, no “return value” 
 



Syntax of FOL: Atomic Sentences 
• Atomic Sentences state facts (logical truth values). 

– An atomic sentence is a Predicate symbol, optionally followed by a 
parenthesized list of any argument terms 

• E.g., Married( Father(Richard), Mother(John) ) 
– An atomic sentence asserts that some relationship (some 

predicate) holds among the objects that are its arguments. 
 

• An Atomic Sentence is true in a given model if the relation 
referred to by the predicate symbol holds among the 
objects (terms) referred to by the arguments. 



Syntax of FOL: Atomic Sentences 
 

• Atomic sentences in logic state facts that are true or false. 
 

• Properties and m-ary relations do just that: 
     LargerThan(2, 3) is false. 
     BrotherOf(Mary, Pete) is false. 
  Married(Father(Richard), Mother(John)) could be true or false. 
 Properties and m-ary relations are Predicates that are true or false. 
 

• Note: Functions refer to objects, do not state facts, and form no sentence:  
– Brother(Pete) refers to John (his brother) and is neither true nor false. 
– Plus(2, 3) refers to the number 5 and is neither true nor false. 

• BrotherOf( Pete, Brother(Pete) ) is True.   

Binary relation 
is a truth value. 

Function refers to John, an object in the 
world, i.e., John is Pete’s brother. 
(Works well iff John is Pete’s only brother.) 



Syntax of FOL: 
Connectives & Complex Sentences 

• Complex Sentences are formed in the same way, using 
the same logical connectives, as in propositional logic 

 
• The Logical Connectives: 

– ⇔   biconditional 
– ⇒   implication 
– ∧   and 
– ∨   or 
– ¬   negation 

 
• Semantics for these logical connectives are the same as 

we already know from propositional logic. 



Examples 
• Brother(Richard, John) ∧ Brother(John, Richard) 

 
 

• King(Richard) ∨ King(John) 
 
 

• King(John)  => ¬ King(Richard) 
 
 

• LessThan(Plus(1,2) ,4) ∧ GreaterThan(1,2) 
 
 

 
 

         
  

 
 
 

  
 
 
 
 
 
 

 



Syntax of FOL: Variables 

• Variables range over objects in the world. 
 

• A variable is like a term because it represents an object. 
 

• A variable may be used wherever a term may be used. 
– Variables may be arguments to functions and predicates. 

 
• (A term with NO variables is called a ground term.) 

 
• (A variable not bound by a quantifier is called free.) 

– All variables we will use are bound by a quantifier. 
 



Syntax of FOL: Logical Quantifiers 
• There are two Logical Quantifiers: 

– Universal: ∀ x P(x)   means “For all x, P(x).” 
• The “upside-down A” reminds you of “ALL.” 
• Some texts put a comma after the variable: ∀ x, P(x) 

– Existential: ∃ x P(x)   means “There exists x such that, P(x).” 
• The “backward E” reminds you of “EXISTS.” 
• Some texts put a comma after the variable: ∃ x, P(x) 

 
• You can ALWAYS convert one quantifier to the other. 

– ∀ x P(x) ≡ ¬∃ x ¬P(x) 
– ∃ x P(x) ≡ ¬∀ x ¬P(x) 
– RULES: ∀ ≡ ¬∃¬  and  ∃ ≡ ¬∀¬ 

 
• RULES: To move negation “in” across a quantifier, 

Change the quantifier to “the other quantifier” 
and negate the predicate on “the other side.” 

– ¬∀ x P(x) ≡ ¬ ¬∃ x ¬P(x) ≡ ∃ x ¬P(x) 
– ¬∃ x P(x) ≡ ¬ ¬∀ x ¬P(x) ≡ ∀ x ¬P(x) 

 
 
 



Universal Quantification ∀ 
• ∀ x means “for all x it is true that…” 

 
• Allows us to make statements about all objects that have 

certain properties 
 

• Can now state general rules: 
 
∀ x  King(x) => Person(x)   “All kings are persons.” 
∀ x  Person(x) => HasHead(x)   “Every person has a head.” 
∀ i  Integer(i) => Integer(plus(i,1))   “If i is an integer then i+1 is an integer.” 
 

• Note:  ∀ x  King(x) ∧ Person(x)   is not correct!   
 
This would imply that all objects x are Kings and are People (!) 
 
∀ x  King(x) => Person(x) is the correct way to say this 
 

• Note that => is the natural connective to use with ∀ . 
 
 
 

 
 



Universal Quantification ∀ 
• Universal quantification is conceptually equivalent to: 

– Conjunction of all sentences obtained by substitution of an object 
for the quantified variable. 

– Not a sentence in the logic --- all logic sentences must be finite. 

 
• Example:  All Cats are Mammals. 

– ∀x Cat(x) ⇒ Mammal(x) 
 

• Conjunction of all sentences obtained by substitution of an 
object for the quantified variable: 

  Cat(Spot) ⇒ Mammal(Spot) ∧ 
  Cat(Rebecca) ⇒ Mammal(Rebecca) ∧ 
  Cat(LAX) ⇒ Mammal(LAX) ∧ 
  Cat(Shayama) ⇒ Mammal(Shayama) ∧ 
  Cat(France) ⇒ Mammal(France) ∧ 
  Cat(Felix) ⇒ Mammal(Felix) ∧ 
  … 
 



Existential Quantification ∃ 
• ∃ x means “there exists an x such that….”  

– There is in the world at least one such object x 
 

• Allows us to make statements about some object without 
naming it, or even knowing what that object is: 
 

∃ x   King(x)   “Some object is a king.” 
∃ x   Lives_in(John, Castle(x))   “John lives in somebody’s castle.” 
∃ i    Integer(i) ∧ Greater(i,0)   “Some integer is greater than zero.” 
                 
 

• Note:  ∃ i    Integer(i) ⇒ Greater(i,0)   is not correct!   
 
It is vacuously true if anything in the world were not an integer (!) 
 
∃ i    Integer(i) ∧ Greater(i,0) is the correct way to say this 
 

• Note that ∧ is the natural connective to use with ∃ . 
 
 
 

 
    



Existential Quantification ∃ 
• Existential quantification is conceptually equivalent to: 

– Disjunction of all sentences obtained by substitution of an object 
for the quantified variable. 

– Not a sentence in the logic --- all logic sentences must be finite. 

 
• Spot has a sister who is a cat. 

– ∃x Sister(x, Spot) ∧ Cat(x) 
 

• Disjunction of all sentences obtained by substitution of an 
object for the quantified variable: 

  Sister(Spot, Spot) ∧ Cat(Spot) ∨ 
  Sister(Rebecca, Spot) ∧ Cat(Rebecca) ∨ 
  Sister(LAX, Spot) ∧ Cat(LAX) ∨ 
  Sister(Shayama, Spot) ∧ Cat(Shayama) ∨ 
  Sister(France, Spot) ∧ Cat(France) ∨ 
  Sister(Felix, Spot) ∧ Cat(Felix) ∨ 
  … 



Combining Quantifiers --- Order (Scope) 
The order of “unlike” quantifiers is important. 
 Like nested variable scopes in a programming language. 
 Like nested ANDs and ORs in a logical sentence. 
 
∀ x ∃ y  Loves(x,y)     

– For everyone (“all x”) there is someone (“exists y”) whom they love. 
– There might be a different y for each x (y is inside the scope of x) 

∃ y ∀ x  Loves(x,y) 
– There is someone (“exists y”) whom everyone loves (“all x”). 
– Every x loves the same y (x is inside the scope of y) 

Clearer with parentheses:  ∃ y ( ∀ x    Loves(x,y) ) 
 
The order of “like” quantifiers does not matter. 
 Like nested ANDs and ANDs in a logical sentence 
  ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y) 
  ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y) 



Connections between Quantifiers 
• Asserting that all x have property P is the same as asserting 

that does not exist any x that does not have the property P 
 

    ∀ x  Likes(x, CS-171 class)      ¬ ∃ x  ¬ Likes(x, CS-171 class) 
 
• Asserting that there exists an x with property P is the same 

as asserting that not all x do not have the property P 
 

  ∃ x  Likes(x, IceCream)      ¬ ∀ x  ¬ Likes(x, IceCream)  
 
In effect: 
  - ∀ is a conjunction over the universe of objects 
  - ∃ is a disjunction over the universe of objects 
         Thus, DeMorgan’s rules can be applied 



De Morgan’s Law for Quantifiers 

( )
( )
( )
( )

x P x P
x P x P

x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

( )
( )

( )
( )

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule 

AND/OR Rule is simple: if you bring a negation inside a disjunction or a 
conjunction, always switch between them (¬ OR  AND ¬ ;  ¬ AND  OR ¬). 

QUANTIFIER Rule is similar: if you bring a negation inside a universal or 
existential, always switch between them (¬ ∃ ∀ ¬ ; ¬ ∀  ∃ ¬). 



De Morgan’s Law for Quantifiers 
De Morgan’s Rule Generalized De Morgan’s Rule 

AND/OR Rule is simple: if you bring a negation inside a disjunction or a 
conjunction, always switch between them (¬ OR  AND ¬ ;  ¬ AND  OR ¬). 

QUANTIFIER Rule is similar: if you bring a negation inside a universal or 
existential, always switch between them (¬ ∃ ∀ ¬ ; ¬ ∀  ∃ ¬). 

P ∧ Q ≡ ¬ (¬ P ∨ ¬ Q)  ∀ x P(x) ≡ ¬ ∃ x ¬ P(x) 
P ∨ Q ≡ ¬ (¬ P ∧ ¬ Q)  ∃ x P(x) ≡ ¬ ∀ x ¬ P(x) 
 
¬ (P ∧ Q) ≡ (¬ P ∨ ¬ Q)  ¬ ∀ x P(x) ≡ ∃ x ¬ P(x) 
¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q)  ¬ ∃ x P(x) ≡ ∀ x ¬ P(x) 



Aside:  More syntactic sugar --- uniqueness 

• ∃! x is “syntactic sugar” for “There exists a unique x” 
– “There exists one and only one x” 
– “There exists exactly one x” 
– Sometimes ∃! is written as ∃1 

 
• For example, ∃! x PresidentOfTheUSA(x) 

– “There is exactly one PresidentOfTheUSA.” 

 
• This is just syntactic sugar: 

– ∃! x P(x) is the same as ∃ x P(x) ∧ (∀ y P(y) => (x = y) ) 
– “Syntactic sugar” = a convenient syntax abbreviation/extension 



Equality 
• term1 = term2 is true under a given interpretation 
 if and only if term1 and term2 refer to the same object 

 

• E.g., definition of Sibling in terms of Parent, using = is: 
 

∀x,y Sibling(x,y) ⇔ 
   [¬(x = y) ∧ 
 ∃ m,f  ¬ (m = f) ∧ Parent(m,x) ∧ Parent(f,x) 
            ∧ Parent(m,y) ∧  Parent(f,y)] 
 

• Equality can make reasoning much more difficult! 
– (See R&N, section 9.5.5, page 353) 
– You may not know when two objects are equal. 

• E.g., Ancients did not know (MorningStar = EveningStar = Venus) 
– You may have to prove x = y before proceeding 

• E.g., a resolution prover may not know 2+1 is the same as 1+2 or 4−1 



Syntactic Ambiguity 
• FOPC provides many ways to represent the same thing. 
• E.g., “Ball-5 is red.” 

– HasColor(Ball-5, Red) 
• Ball-5 and Red are objects related by HasColor. 

– Red(Ball-5) 
• Red is a unary predicate applied to the Ball-5 object. 

– HasProperty(Ball-5, Color, Red) 
• Ball-5, Color, and Red are objects related by HasProperty. 

– ColorOf(Ball-5) = Red 
• Ball-5 and Red are objects, and ColorOf() is a function. 

– HasColor(Ball-5(), Red()) 
• Ball-5() and Red() are functions of zero arguments that both return an 

object, which objects are related by HasColor. 
– … 

• This can GREATLY confuse a pattern-matching reasoner. 
– Especially if multiple people collaborate to build the KB, and they 

all have different representational conventions. 
 
 



Syntactic Ambiguity --- Partial Solution 
• FOL can be TOO expressive, can offer TOO MANY choices 

 
• Likely confusion, especially for teams of Knowledge 

Engineers 
 

• Different team members can make different 
representation choices 
– E.g., represent “Ball43 is Red.” as: 

• a predicate (= verb)?  E.g., “Red(Ball43)” ? 
• an object (= noun)?  E.g., “Red = Color(Ball43))” ? 
• a property (= adjective)?  E.g., “HasProperty(Ball43, Red)” ? 

 

• PARTIAL SOLUTION: 
– An upon-agreed ontology that settles these questions 
– Ontology = what exists in the world & how it is represented 
– The Knowledge Engineering teams agrees upon an ontology 

BEFORE they begin encoding knowledge 













More fun with sentences 

•  “All persons are mortal.”  
•    [Use: Person(x), Mortal (x) ] 

 
 



More fun with sentences 
•  “All persons are mortal.”  
   [Use: Person(x), Mortal (x) ] 

 
•  ∀x Person(x) ⇒ Mortal(x) 

 
• Equivalent Forms: 
•  ∀x ¬Person(x) ˅ Mortal(x) 

 
• Common Mistakes: 
•  ∀x Person(x) ∧ Mortal(x) 

 
 



More fun with sentences 

• “Fifi has a sister who is a cat.” 
•    [Use: Sister(Fifi, x), Cat(x) ] 
•   



More fun with sentences 

• “Fifi has a sister who is a cat.” 
•    [Use: Sister(Fifi, x), Cat(x) ] 

 
•  ∃x Sister(Fifi, x) ∧ Cat(x)  

 
• Common Mistakes: 
•  ∃x Sister(Fifi, x) ⇒ Cat(x)  

 



More fun with sentences 

• “For every food, there is a person who eats 
that food.” 

  [Use: Food(x), Person(y), Eats(y, x) ] 
  
  



More fun with sentences 
• “For every food, there is a person who eats that food.” 
  [Use: Food(x), Person(y), Eats(y, x) ] 

 
•  ∀x ∃y Food(x) ⇒ [ Person(y) ∧ Eats(y, x) ]  

 
• Equivalent Forms: 
•  ∀x Food(x) ⇒ ∃y [ Person(y) ∧ Eats(y, x) ]  
•  ∀x ∃y ¬Food(x) ˅ [ Person(y) ∧ Eats(y, x) ]  
•  ∀x ∃y [ ¬Food(x) ˅  Person(y) ] ∧ [¬ Food(x) ˅  Eats(y, x) ]  
•  ∀x ∃y [ Food(x) ⇒ Person(y) ] ∧ [ Food(x) ⇒ Eats(y, x) ] 

 
• Common Mistakes: 
•  ∀x ∃y [ Food(x) ∧ Person(y) ] ⇒ Eats(y, x)  
•  ∀x ∃y Food(x) ∧ Person(y) ∧ Eats(y, x)  
 

 



More fun with sentences 

• “Every person eats every food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 



More fun with sentences 
• “Every person eats every food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 
  
•  ∀x ∀y [ Person(x) ∧ Food(y) ] ⇒ Eats(x, y)  

 
• Equivalent Forms: 
•  ∀x ∀y ¬Person(x) ˅ ¬Food(y) ˅ Eats(x, y)   
•  ∀x ∀y Person(x) ⇒ [ Food(y) ⇒ Eats(x, y) ]   
•  ∀x ∀y Person(x) ⇒ [ ¬Food(y) ˅ Eats(x, y) ]  
•  ∀x ∀y ¬Person(x) ˅ [ Food(y) ⇒ Eats(x, y) ] 

 
• Common Mistakes: 
•  ∀x ∀y Person(x) ⇒ [Food(y) ∧ Eats(x, y) ] 
•  ∀x ∀y Person(x) ∧ Food(y) ∧ Eats(x, y) 

 



More fun with sentences 

•  “All greedy kings are evil.” 
  [Use: King(x), Greedy(x), Evil(x) ] 



More fun with sentences 
•  “All greedy kings are evil.” 
  [Use: King(x), Greedy(x), Evil(x) ] 
  
•  ∀x [ Greedy(x) ∧ King(x) ] ⇒ Evil(x)  

 
• Equivalent Forms: 
•  ∀x ¬Greedy(x) ˅ ¬King(x) ˅ Evil(x)  
•  ∀x Greedy(x) ⇒ [ King(x) ⇒ Evil(x) ] 
 
• Common Mistakes: 
•  ∀x Greedy(x) ∧ King(x) ∧ Evil(x)  

 



More fun with sentences 

• “Everyone has a favorite food.” 
  [Use: Person(x), Food(y), Favorite(y, x) ] 



More fun with sentences 
• “Everyone has a favorite food.” 
  [Use: Person(x), Food(y), Favorite(y, x) ] 
 
• Equivalent Forms: 
•  ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x Person(x) ⇒ ∃y [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x ∃y ¬Person(x) ˅ [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x ∃y [ ¬Person(x) ˅ Food(y) ] ∧ [ ¬Person(x) 
           ˅ Favorite(y, x) ]  
•  ∀x ∃y [Person(x) ⇒ Food(y) ] ∧ [ Person(x) ⇒ Favorite(y, x) ] 
 
• Common Mistakes: 
•  ∀x ∃y [ Person(x) ∧ Food(y) ] ⇒ Favorite(y, x) 
•  ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x) 

 



More fun with sentences 

• “There is someone at UCI who is smart.”  
 [Use: Person(x), At(x, UCI), Smart(x) ] 

 



More fun with sentences 

• “There is someone at UCI who is smart.”  
 [Use: Person(x), At(x, UCI), Smart(x) ] 

 
•  ∃x Person(x) ∧ At(x, UCI) ∧ Smart(x) 

 
• Common Mistakes: 
•  ∃x [ Person(x) ∧ At(x, UCI) ] ⇒ Smart(x) 

 



More fun with sentences 

• “Everyone at UCI is smart.” 
   [Use: Person(x), At(x, UCI), Smart(x) ] 



More fun with sentences 
• “Everyone at UCI is smart.” 
   [Use: Person(x), At(x, UCI), Smart(x) ] 

 
•  ∀x [Person(x) ∧ At(x, UCI) ] ⇒ Smart(x)  

 
• Equivalent Forms: 
•  ∀x ¬[Person(x) ∧ At(x, UCI) ] ˅ Smart(x)  
•  ∀x ¬Person(x) ˅ ¬At(x, UCI) ˅ Smart(x) 
 
• Common Mistakes: 
•  ∀x Person(x) ∧ At(x, UCI) ∧ Smart(x)  
•  ∀x Person(x) ⇒ [At(x, UCI) ∧ Smart(x) ] 
•   

 



More fun with sentences 

• “Every person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 



More fun with sentences 
• “Every person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 
  
•  ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Eats(x, y) ]  
•   
• Equivalent Forms: 
•  ∀x Person(x) ⇒ ∃y [ Food(y) ∧ Eats(x, y) ]  
•  ∀x ∃y ¬Person(x) ˅ [ Food(y) ∧ Eats(x, y) ]  
•  ∀x ∃y [ ¬Person(x) ˅ Food(y) ] ∧ [ ¬Person(x) ˅ Eats(x, y) ]  

 
• Common Mistakes: 
•  ∀x ∃y [ Person(x) ∧ Food(y)  ] ⇒ Eats(x, y) 
•  ∀x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y) 
•   

 



More fun with sentences 

•  “Some person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 



More fun with sentences 

•  “Some person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 
•  ∃x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y) 

 
• Common Mistakes: 
•  ∃x ∃y [ Person(x) ∧ Food(y) ] ⇒ Eats(x, y) 



Summary 
• First-order logic: 

– Much more expressive than propositional logic 
– Allows objects and relations as semantic primitives 
– Universal and existential quantifiers 

 
• Syntax: constants, functions, predicates, equality, quantifiers 

 
• Nested quantifiers 

– Order of unlike quantifiers matters (the outer scopes the inner) 
• Like nested ANDs and ORs 

– Order of like quantifiers does not matter 
• like nested ANDS and ANDs 

 
• Translate simple English sentences to FOPC and back 
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