First-Order Logic A: Syntax

CS171, Fall Quarter, 2018 Introduction to Artificial Intelligence Prof. Richard Lathrop

Read Beforehand: R\&N 8, 9.1-9.2, 9.5.1-9.5.5

Common Sense Reasoning

Example, adapted from Lenat
You are told: John drove to the grocery store and bought a pound of noodles, a pound of ground beef, and two pounds of tomatoes.

- Is John 3 years old?
- Is John a child?
- What will John do with the purchases?
- Did John have any money?
- Does John have less money after going to the store?
- Did John buy at least two tomatoes?
- Were the tomatoes made in the supermarket?
- Did John buy any meat?
- Is John a vegetarian?
- Will the tomatoes fit in John's car?
- Can Propositional Logic support these inferences?

Outline for First-Order Logic (FOL, also called FOPC)

- Propositional Logic is Useful --- but Limited Expressive Power
- First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
- FOPC has expanded expressive power, though still limited.
- New Ontology
- The world consists of OBJECTS.
- OBJECTS have PROPERTIES, RELATIONS, and FUNCTIONS.
- New Syntax
- Constants, Predicates, Functions, Properties, Quantifiers.
- New Semantics
- Meaning of new syntax.
- Unification and Inference in FOL
- Knowledge engineering in FOL

FOL Syntax:

You will be expected to know

- FOPC syntax
- Syntax: Sentences, predicate symbols, function symbols, constant symbols, variables, quantifiers
- De Morgan's rules for quantifiers
- connections between \forall and \exists
- Nested quantifiers
- Difference between " $\forall x \exists y P(x, y)$ " and " $\exists x \forall y P(x, y)$ "
- $\forall x \exists y$ Likes(x, y) --- "Everybody likes somebody."
$-\exists x \forall y \operatorname{Likes}(x, y)$--- "Somebody likes everybody."
- Translate simple English sentences to FOPC and back
$-\forall x \exists \mathrm{y}$ Likes $(\mathrm{x}, \mathrm{y}) \Leftrightarrow$ "Everyone has someone that they like."
$-\exists \mathrm{x} \forall \mathrm{y}$ Likes $(\mathrm{x}, \mathrm{y}) \Leftrightarrow$ "There is someone who likes every person."

Pros and cons of propositional logic

() Propositional logic is declarative

- Knowledge and inference are separate
© Propositional logic allows partial/disjunctive/negated information
- unlike most programming languages and databases
() Propositional logic is compositional:
- meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$Meaning in propositional logic is context-independent
- unlike natural language, where meaning depends on context
© Propositional logic has limited expressive power
- E.g., cannot say "Pits cause breezes in adjacent squares."
- except by writing one sentence for each square
- Needs to refer to objects in the world,
- Needs to express general rules

First-Order Logic (FOL), also called First-Order Predicate Calculus (FOPC)

- Propositional logic assumes the world contains facts.
- First-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Functions: father of, best friend, one more than, plus, ...
- Function arguments are objects; function returns an object
- Objects generally correspond to English NOUNS
- Predicates/Relations/Properties: red, round, prime, brother of, bigger than, part of, comes between, ...
- Predicate arguments are objects; predicate returns a truth value
- Predicates generally correspond to English VERBS
- First argument is generally the subject, the second the object
- Hit(Bill, Ball) usually means "Bill hit the ball."
- Likes(Bill, IceCream) usually means "Bill likes IceCream."
- Verb(Noun1, Noun2) usually means "Noun1 verb noun2."

Aside: First-Order Logic (FOL) vs. Second-Order Logic

- First Order Logic (FOL) allows variables and general rules
- "First order" because quantified variables represent objects.
- "Predicate Calculus" because it quantifies over predicates on objects.
- E.g., "Integral Calculus" quantifies over functions on numbers.
- Aside: Second Order logic
- "Second order" because quantified variables can also represent predicates and functions.
- E.g., can define "Transitive Relation," which is beyond FOPC.
- Aside: In FOL we can state that a relationship is transitive
- E.g., BrotherOf is a transitive relationship
- $\forall x, y, z$ BrotherOf $(x, y) \wedge \operatorname{BrotherOf}(y, z)=>\operatorname{BrotherOf}(x, z)$
- Aside: In Second Order logic we can define "Transitive"
$-\forall P, x, y, z$ Transitive $(P) \Leftrightarrow(P(x, y) \wedge P(y, z)=>P(x, z))$
- Then we can state directly, Transitive(BrotherOf)

Syntax of FOL: Basic elements

- Constants KingJohn, 2, UCI,...
- Predicates Brother, $>, \ldots$
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b, \ldots
- Quantifiers \forall, \exists
- Connectives $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$ (standard)
- Equality = (but causes difficulties....)

Syntax of FOL: Basic syntax elements are symbols

- Constant Symbols (correspond to English nouns)
- Stand for objects in the world.
- E.g., KingJohn, 2, UCI, ...
- Predicate Symbols (correspond to English verbs)
- Stand for relations (maps a tuple of objects to a truth-value)
- E.g., Brother(Richard, John), greater_than(3,2), ...
$-P(x, y)$ is usually read as " x is P of y. ."
- E.g., Mother(Ann, Sue) is usually "Ann is Mother of Sue."
- Function Symbols (correspond to English nouns)
- Stand for functions (maps a tuple of objects to an object)
- E.g., Sqrt(3), LeftLegOf(John), ...
- Model (world) = set of domain objects, relations, functions
- Interpretation maps symbols onto the model (world)
- Very many interpretations are possible for each KB and world!
- The KB is to rule out those inconsistent with our knowledge.

Syntax of FOL: Terms

- Term = logical expression that refers to an object
- There are two kinds of terms:
- Constant Symbols stand for (or name) objects:
- E.g., KingJohn, 2, UCI, Wumpus, ...
- Function Symbols map tuples of objects to an object:
- E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
- This is nothing but a complicated kind of name
- No "subroutine" call, no "return value"

Syntax of FOL: Atomic Sentences

- Atomic Sentences state facts (logical truth values).
- An atomic sentence is a Predicate symbol, optionally followed by a parenthesized list of any argument terms
- E.g., Married(Father(Richard), Mother(John))
- An atomic sentence asserts that some relationship (some predicate) holds among the objects that are its arguments.
- An Atomic Sentence is true in a given model if the relation referred to by the predicate symbol holds among the objects (terms) referred to by the arguments.

Syntax of FOL: Atomic Sentences

- Atomic sentences in logic state facts that are true or false.
- Properties and m-ary relations do just that:

LargerThan $(2,3)$ is false.
BrotherOf(Mary, Pete) is false.
Married(Father(Richard), Mother(John)) could be true or false.
Properties and m-ary relations are Predicates that are true or false.

- Note: Functions refer to objects, do not state facts, and form no sentence:
- Brother(Pete) refers to John (his brother) and is neither true nor false.
- Plus(2,3) refers to the number 5 and is neither true nor false.
- BrotherOf(Pete, Brother(Pete)) is True.

Binary relation is a truth value.

Function refers to John, an object in the world, i.e., John is Pete's brother. (Works well iff John is Pete's only brother.)

Syntax of FOL:

Connectives \& Complex Sentences

- Complex Sentences are formed in the same way, using the same logical connectives, as in propositional logic
- The Logical Connectives:
$-\Leftrightarrow$ biconditional
$-\Rightarrow$ implication
- \wedge and
- V Or
- \neg negation
- Semantics for these logical connectives are the same as we already know from propositional logic.

Examples

- Brother(Richard, John) \wedge Brother(John, Richard)
- King(Richard) $\vee \operatorname{King}(J o h n)$
- King(John) $=>\neg$ King(Richard)
- LessThan(Plus(1,2) ,4) \wedge GreaterThan(1,2)

Syntax of FOL: Variables

- Variables range over objects in the world.
- A variable is like a term because it represents an object.
- A variable may be used wherever a term may be used.
- Variables may be arguments to functions and predicates.
- (A term with NO variables is called a ground term.)
- (A variable not bound by a quantifier is called free.)
- All variables we will use are bound by a quantifier.

Syntax of FOL: Logical Quantifiers

- There are two Logical Quantifiers:
- Universal: $\forall x P(x)$ means "For all $x, P(x)$."
- The "upside-down A" reminds you of "ALL."
- Some texts put a comma after the variable: $\forall \mathrm{x}, \mathrm{P}(\mathrm{x})$
- Existential: $\exists \mathrm{xP}(\mathrm{x})$ means "There exists x such that, $\mathrm{P}(\mathrm{x})$."
- The "backward E" reminds you of "EXISTS."
- Some texts put a comma after the variable: $\exists \mathrm{x}, \mathrm{P}(\mathrm{x})$
- You can ALWAYS convert one quantifier to the other.
$-\forall x P(x) \equiv \neg \exists x \neg P(x)$
$-\exists \mathrm{xP}(\mathrm{x}) \equiv \neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- RULES: $\forall \equiv \neg \exists \neg$ and $\exists \equiv \neg \forall \neg$
- RULES: To move negation "in" across a quantifier,

Change the quantifier to "the other quantifier" and negate the predicate on "the other side."
$-\neg \forall \mathrm{xP}(\mathrm{x}) \equiv \neg \neg \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
$-\neg \exists \mathrm{xP}(\mathrm{x}) \equiv \neg \neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$

Universal Quantification \forall

- $\forall \mathrm{x}$ means "for all x it is true that..."
- Allows us to make statements about all objects that have certain properties
- Can now state general rules:
$\forall \mathrm{x}$ King $(\mathrm{x})=>$ Person $(\mathrm{x}) \quad$ "All kings are persons."
$\forall x$ Person $(\mathrm{x})=>$ HasHead(x) "Every person has a head."
$\forall \mathrm{i}$ Integer($(\mathrm{i})=>\operatorname{Integer}($ plus $(\mathrm{i}, 1)$) "I $\mathrm{f} i$ is an integer then $\mathrm{i}+1$ is an integer."
- Note: $\forall \mathrm{x} \operatorname{King}(\mathrm{x}) \wedge$ Person(x) is not correct!

This would imply that all objects x are Kings and are People (!)
$\forall x \operatorname{King}(x)=>$ Person(x$)$ is the correct way to say this

- Note that $=>$ is the natural connective to use with \forall.

Universal Quantification \forall

- Universal quantification is conceptually equivalent to:
- Conjunction of all sentences obtained by substitution of an object for the quantified variable.
- Not a sentence in the logic --- all logic sentences must be finite.
- Example: All Cats are Mammals.
$-\forall x \operatorname{Cat}(x) \Rightarrow$ Mammal(x)
- Conjunction of all sentences obtained by substitution of an object for the quantified variable:

```
Cat(Spot) = Mammal(Spot) ^
Cat(Rebecca) }=>\mathrm{ Mammal(Rebecca) ^
Cat(LAX) = Mammal(LAX) ^
Cat(Shayama) }=>\mathrm{ Mammal(Shayama) ^
Cat(France) }=>\mathrm{ Mammal(France) ^
Cat(Felix) = Mammal(Felix) ^
```


Existential Quantification \exists

- $\exists \mathrm{x}$ means "there exists an x such that...."
- There is in the world at least one such object x
- Allows us to make statements about some object without naming it, or even knowing what that object is:
$\exists \mathrm{x}$ King(x) "Some object is a king."
$\exists \mathrm{x}$ Lives_in(John, Castle(x)) "John lives in somebody’s castle."
$\exists \mathrm{i} \operatorname{Integer}(\mathrm{i}) \wedge$ Greater (i, O) "Some integer is greater than zero."
- Note: $\exists \mathrm{i}$ Integer $(\mathrm{i}) \Rightarrow$ Greater $(\mathrm{i}, 0)$ is not correct!

It is vacuously true if anything in the world were not an integer (!)
$\exists \mathrm{i} \operatorname{Integer}(\mathrm{i}) \wedge$ Greater $(\mathrm{i}, 0)$ is the correct way to say this

- Note that \wedge is the natural connective to use with \exists.

Existential Quantification \exists

- Existential quantification is conceptually equivalent to:
- Disjunction of all sentences obtained by substitution of an object for the quantified variable.
- Not a sentence in the logic --- all logic sentences must be finite.
- Spot has a sister who is a cat.
- $\exists x \operatorname{Sister}(x, \operatorname{Spot}) \wedge \operatorname{Cat}(x)$
- Disjunction of all sentences obtained by substitution of an object for the quantified variable:

Sister(Spot, Spot) ^Cat(Spot) \vee
Sister(Rebecca, Spot) ^Cat(Rebecca) \vee
Sister (LAX, Spot) ^Cat (LAX) \vee
Sister(Shayama, Spot) ^Cat(Shayama) v
Sister(France, Spot) ^Cat(France) v
Sister(Felix, Spot) ^Cat(Felix) \vee

Combining Quantifiers --- Order (Scope)

The order of "unlike" quantifiers is important.
Like nested variable scopes in a programming language.
Like nested ANDs and ORs in a logical sentence.
$\forall x \exists y \operatorname{Loves}(x, y)$

- For everyone ("all x ") there is someone ("exists y ") whom they love.
- There might be a different y for each x (y is inside the scope of x)
$\exists \mathrm{y} \forall \mathrm{x} \operatorname{Loves}(\mathrm{x}, \mathrm{y})$
- There is someone ("exists y ") whom everyone loves ("all x ").
- Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: $\exists \mathrm{y}(\forall \mathrm{x} \quad \operatorname{Loves}(\mathrm{x}, \mathrm{y}))$
The order of "like" quantifiers does not matter.
Like nested ANDs and ANDs in a logical sentence

$$
\begin{aligned}
& \forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y) \\
& \exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)
\end{aligned}
$$

Connections between Quantifiers

- Asserting that all x have property P is the same as asserting that does not exist any x that does not have the property P
$\forall x$ Likes($\mathrm{x}, \mathrm{CS}-171$ class) $\Leftrightarrow \quad \neg \exists \mathrm{x} \neg$ Likes($\mathrm{x}, \mathrm{CS}-171$ class)
- Asserting that there exists an x with property P is the same as asserting that not all x do not have the property P
$\exists \mathrm{x}$ Likes $(\mathrm{x}$, IceCream) $\Leftrightarrow \quad \neg \forall \mathrm{x} \neg$ Likes $(\mathrm{x}$, IceCream $)$
In effect:
- \forall is a conjunction over the universe of objects
- \exists is a disjunction over the universe of objects

Thus, DeMorgan's rules can be applied

De Morgan's Law for Quantifiers

De Morgan's Rule

$$
\begin{aligned}
& P \wedge Q \equiv \neg(\neg P \vee \neg Q) \\
& P \vee Q \equiv \neg(\neg P \wedge \neg Q) \\
& \neg(P \wedge Q) \equiv \neg P \vee \neg Q \\
& \neg(P \vee Q) \equiv \neg P \wedge \neg Q
\end{aligned}
$$

Generalized De Morgan's Rule

$$
\begin{aligned}
& \forall x P \equiv \neg \exists x(\neg P) \\
& \exists x P \equiv \neg \forall x(\neg P) \\
& \neg \forall x P \equiv \exists x(\neg P) \\
& \neg \exists x P \equiv \forall x(\neg P)
\end{aligned}
$$

AND/OR Rule is simple: if you bring a negation inside a disjunction or a conjunction, always switch between them $(\neg \mathrm{OR} \rightarrow$ AND $\neg ; \neg$ AND \rightarrow OR $\neg)$.

QUANTIFIER Rule is similar: if you bring a negation inside a universal or existential, always switch between them ($\neg \exists \rightarrow \forall \neg ; \neg \forall \rightarrow \exists \neg)$.

De Morgan's Law for Quantifiers

De Morgan's Rule

$$
\begin{aligned}
& \mathrm{P} \wedge \mathrm{Q} \equiv \neg(\neg \mathrm{P} \vee \neg \mathrm{Q}) \\
& \mathrm{P} \vee \mathrm{Q} \equiv \neg(\neg \mathrm{P} \wedge \neg \mathrm{Q}) \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \equiv(\neg \mathrm{P} \vee \neg \mathrm{Q}) \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \equiv(\neg \mathrm{P} \wedge \neg \mathrm{Q})
\end{aligned}
$$

Generalized De Morgan's Rule

$$
\begin{aligned}
& \forall \mathrm{xP}(\mathrm{x}) \equiv \neg \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \exists \mathrm{xP}(\mathrm{x}) \equiv \neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

AND/OR Rule is simple: if you bring a negation inside a disjunction or a conjunction, always switch between them (\neg OR \rightarrow AND $\neg ; \neg$ AND \rightarrow OR \neg).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or existential, always switch between them $(\neg \exists \rightarrow \forall \neg ; \neg \forall \rightarrow \exists \neg)$.

Aside: More syntactic sugar --- uniqueness

- $\exists!x$ is "syntactic sugar" for "There exists a unique x "
- "There exists one and only one x"
- "There exists exactly one x"
- Sometimes \exists ! is written as \exists^{1}
- For example, \exists ! x PresidentOfTheUSA(x)
- "There is exactly one PresidentOfTheUSA."
- This is just syntactic sugar:
- \exists ! $x P(x)$ is the same as $\exists x P(x) \wedge(\forall y P(y)=>(x=y))$
- "Syntactic sugar" = a convenient syntax abbreviation/extension

Equality

- $\operatorname{term}_{1}=$ term $_{2}$ is true under a given interpretation if and only if term ${ }_{1}$ and term 2 refer to the same object
- E.g., definition of Sibling in terms of Parent, using $=$ is:

```
\(\forall x, y\) Sibling \((x, y) \Leftrightarrow\)
    \([\neg(x=y) \wedge\)
    \(\exists m, f \neg(m=f) \wedge \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x)\)
                                    \(\wedge\) Parent \((m, y) \wedge \operatorname{Parent}(f, y)]\)
```

- Equality can make reasoning much more difficult!
- (See R\&N, section 9.5.5, page 353)
- You may not know when two objects are equal.
- E.g., Ancients did not know (MorningStar = EveningStar = Venus)
- You may have to prove $x=y$ before proceeding
- E.g., a resolution prover may not know $2+1$ is the same as $1+2$ or $4-1$

Syntactic Ambiguity

- FOPC provides many ways to represent the same thing.
- E.g., "Ball-5 is red."
- HasColor(Ball-5, Red)
- Ball-5 and Red are objects related by HasColor.
- Red(Ball-5)
- Red is a unary predicate applied to the Ball-5 object.
- HasProperty(Ball-5, Color, Red)
- Ball-5, Color, and Red are objects related by HasProperty.
- ColorOf(Ball-5) = Red
- Ball-5 and Red are objects, and ColorOf() is a function.
- HasColor(Ball-5(), Red())
- Ball-5() and Red() are functions of zero arguments that both return an object, which objects are related by HasColor.
- This can GREATLY confuse a pattern-matching reasoner.
- Especially if multiple people collaborate to build the KB, and they all have different representational conventions.

Syntactic Ambiguity --- Partial Solution

- FOL can be TOO expressive, can offer TOO MANY choices
- Likely confusion, especially for teams of Knowledge Engineers
- Different team members can make different representation choices
- E.g., represent "Ball43 is Red." as:
- a predicate (= verb)? E.g., "Red(Ball43)" ?
- an object (= noun)? E.g., "Red = Color(Ball43))" ?
- a property (= adjective)? E.g., "HasProperty(Ball43, Red)" ?
- PARTIAL SOLUTION:
- An upon-agreed ontology that settles these questions
- Ontology = what exists in the world \& how it is represented
- The Knowledge Engineering teams agrees upon an ontology BEFORE they begin encoding knowledge

Brothers are siblings

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling
$\forall x, y \quad \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists p, p s \quad \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge$ Parent(ps,y)

More fun with sentences

- "All persons are mortal."
[Use: Person(x), Mortal (x)]

More fun with sentences

- "All persons are mortal."
[Use: Person(x), Mortal (x)]
$\forall x$ Person $(x) \Rightarrow \operatorname{Mortal}(x)$
- Equivalent Forms:
$\forall x \neg \operatorname{Person}(x) \vee$ Mortal(x)
- Common Mistakes:
- $\quad \forall x$ Person $(x) \wedge$ Mortal (x)

More fun with sentences

- "Fifi has a sister who is a cat."
[Use: Sister(Fifi, x), Cat(x)]

More fun with sentences

- "Fifi has a sister who is a cat."
[Use: Sister(Fifi, x), Cat(x)]
$\exists x \operatorname{Sister}($ Fifi, $x) \wedge \operatorname{Cat}(x)$
- Common Mistakes:

$$
\exists x \text { Sister }(\text { Fifi, } x) \Rightarrow \operatorname{Cat}(x)
$$

More fun with sentences

- "For every food, there is a person who eats that food."
[Use: Food(x), Person(y), Eats(y, x)]

More fun with sentences

- "For every food, there is a person who eats that food."
[Use: Food(x), Person(y), Eats(y, x)]
- $\quad \forall x \exists y \operatorname{Food}(x) \Rightarrow[\operatorname{Person}(y) \wedge \operatorname{Eats}(y, x)]$
- Equivalent Forms:
- $\quad \forall x \operatorname{Food}(x) \Rightarrow \exists y[\operatorname{Person}(y) \wedge \operatorname{Eats}(y, x)]$
- $\quad \forall x \exists y \neg \operatorname{Food}(x) \vee[\operatorname{Person}(y) \wedge \operatorname{Eats}(y, x)]$
- $\quad \forall x \exists y[\neg \operatorname{Food}(x) \vee \operatorname{Person}(y)] \wedge[\neg \operatorname{Food}(x) \vee \operatorname{Eats}(y, x)]$
- $\quad \forall x \exists y[\operatorname{Food}(x) \Rightarrow \operatorname{Person}(y)] \wedge[\operatorname{Food}(x) \Rightarrow \operatorname{Eats}(y, x)]$
- Common Mistakes:
- $\quad \forall x \exists y[\operatorname{Food}(x) \wedge \operatorname{Person}(y)] \Rightarrow \operatorname{Eats}(y, x)$
- $\quad \forall x \exists y \operatorname{Food}(x) \wedge \operatorname{Person}(y) \wedge \operatorname{Eats}(y, x)$

More fun with sentences

- "Every person eats every food."
[Use: Person (x), Food (y), Eats(x, y)]

More fun with sentences

- "Every person eats every food." [Use: Person (x), Food (y), Eats (x, y)]
- $\quad \forall x \forall y[\operatorname{Person}(x) \wedge \operatorname{Food}(y)] \Rightarrow \operatorname{Eats}(x, y)$
- Equivalent Forms:
- $\quad \forall x \forall y \neg \operatorname{Person}(x)^{\vee} \neg \operatorname{Food}(y){ }^{\vee} \operatorname{Eats}(x, y)$
- $\quad \forall x \forall y \operatorname{Person}(x) \Rightarrow[\operatorname{Food}(y) \Rightarrow \operatorname{Eats}(x, y)]$
- $\quad \forall x \forall y \operatorname{Person}(x) \Rightarrow\left[\neg \operatorname{Food}(y){ }^{\vee} \operatorname{Eats}(x, y)\right]$
- $\quad \forall x \forall y \neg \operatorname{Person}(x) \vee[\operatorname{Food}(y) \Rightarrow \operatorname{Eats}(x, y)]$
- Common Mistakes:
- $\quad \forall x \forall y$ Person $(x) \Rightarrow[\operatorname{Food}(y) \wedge \operatorname{Eats}(x, y)]$
- $\quad \forall x \forall y \operatorname{Person}(x) \wedge \operatorname{Food}(\mathrm{y}) \wedge \operatorname{Eats}(\mathrm{x}, \mathrm{y})$

More fun with sentences

- "All greedy kings are evil."
[Use: King(x), Greedy(x), Evil(x)]

More fun with sentences

- "All greedy kings are evil."
[Use: $\operatorname{King}(x)$, Greedy (x), Evil(x)]
$\forall x[\operatorname{Greedy}(x) \wedge \operatorname{King}(x)] \Rightarrow \operatorname{Evil}(x)$
- Equivalent Forms:
- $\quad \forall x \rightarrow \operatorname{Greedy}(x)^{\vee} \neg \operatorname{King}(x){ }^{\vee} \operatorname{Evil}(x)$
- $\quad \forall x \operatorname{Greedy}(\mathrm{x}) \Rightarrow[\operatorname{King}(\mathrm{x}) \Rightarrow \operatorname{Evil}(\mathrm{x})]$
- Common Mistakes:
- $\quad \forall x \operatorname{Greedy}(x) \wedge \operatorname{King}(x) \wedge \operatorname{Evil}(x)$

More fun with sentences

- "Everyone has a favorite food."
[Use: Person(x), Food(y), Favorite (y, x)]

More fun with sentences

- "Everyone has a favorite food."
[Use: Person(x), Food(y), Favorite(y, x)]
- Equivalent Forms:
- $\quad \forall x \exists y \operatorname{Person}(x) \Rightarrow[\operatorname{Food}(y) \wedge$ Favorite $(y, x)]$
- $\quad \forall x \operatorname{Person}(x) \Rightarrow \exists y[\operatorname{Food}(y) \wedge \operatorname{Favorite}(y, x)]$
$\forall x \exists y \neg \operatorname{Person}(x) \vee[\operatorname{Food}(y) \wedge$ Favorite $(y, x)]$
$\forall x \exists y[\neg \operatorname{Person}(x) \vee \operatorname{Food}(y)] \wedge[\neg \operatorname{Person}(x)$
\vee Favorite (y, x)]
$\forall x \exists y[\operatorname{Person}(x) \Rightarrow \operatorname{Food}(y)] \wedge[\operatorname{Person}(x) \Rightarrow \operatorname{Favorite}(y, x)]$
- Common Mistakes:
- $\quad \forall x \exists y[\operatorname{Person}(x) \wedge \operatorname{Food}(y)] \Rightarrow$ Favorite (y, x)
- $\quad \forall x \exists y \operatorname{Person}(x) \wedge$ Food $(y) \wedge$ Favorite (y, x)

More fun with sentences

- "There is someone at UCI who is smart."
[Use: Person(x), At(x, UCI), Smart(x)]

More fun with sentences

- "There is someone at UCI who is smart."
[Use: Person(x), At(x, UCI), Smart(x)]
$\exists x \operatorname{Person}(x) \wedge \operatorname{At}(x, U C I) \wedge \operatorname{Smart}(x)$
- Common Mistakes:
- $\quad \exists x[\operatorname{Person}(x) \wedge \operatorname{At}(x$, UCI) $] \Rightarrow \operatorname{Smart}(x)$

More fun with sentences

- "Everyone at UCI is smart."
[Use: Person(x), At(x, UCI), Smart(x)]

More fun with sentences

- "Everyone at UCI is smart."
[Use: Person(x), At(x, UCI), Smart(x)]
- $\quad \forall x[\operatorname{Person}(x) \wedge \operatorname{At}(x, U C I)] \Rightarrow \operatorname{Smart}(x)$
- Equivalent Forms:
- $\quad \forall x \neg\left[\operatorname{Person}(x) \wedge \operatorname{At}(x, \text { UCI) }]^{\vee} \operatorname{Smart}(x)\right.$
- $\quad \forall x \neg \operatorname{Person}(x) \vee \neg A t(x, U C I) \vee \operatorname{Smart}(x)$
- Common Mistakes:
- $\quad \forall x \operatorname{Person}(x) \wedge \operatorname{At}(x, U C I) \wedge \operatorname{Smart}(x)$
- $\quad \forall x \operatorname{Person}(x) \Rightarrow[\operatorname{At}(x, U C I) \wedge \operatorname{Smart}(x)]$

More fun with sentences

- "Every person eats some food."
[Use: Person (x), Food (y), Eats(x, y)]

More fun with sentences

- "Every person eats some food."
[Use: Person (x), Food (y), Eats(x, y)]

$$
\forall x \exists y \operatorname{Person}(x) \Rightarrow[\operatorname{Food}(y) \wedge \operatorname{Eats}(x, y)]
$$

- Equivalent Forms:

$$
\begin{aligned}
& \forall x \text { Person }(x) \Rightarrow \exists y[\operatorname{Food}(y) \wedge \operatorname{Eats}(x, y)] \\
& \forall x \exists y \neg \operatorname{Person}(x) \vee[\operatorname{Food}(y) \wedge \operatorname{Eats}(x, y)] \\
& \forall x \exists y[\neg \operatorname{Person}(x) \vee \operatorname{Food}(y)] \wedge[\neg \operatorname{Person}(x) \vee \operatorname{Eats}(x, y)]
\end{aligned}
$$

- Common Mistakes:

$$
\begin{aligned}
& \forall x \exists y[\operatorname{Person}(x) \wedge \operatorname{Food}(y)] \Rightarrow \operatorname{Eats}(x, y) \\
& \forall x \exists y \operatorname{Person}(x) \wedge \operatorname{Food}(y) \wedge \operatorname{Eats}(x, y)
\end{aligned}
$$

More fun with sentences

- "Some person eats some food."
[Use: Person (x), Food (y), Eats(x, y)]

More fun with sentences

- "Some person eats some food."
[Use: Person (x), Food (y), Eats(x, y)]
$\exists x \exists y \operatorname{Person}(x) \wedge \operatorname{Food}(y) \wedge \operatorname{Eats}(x, y)$
- Common Mistakes:
- $\quad \exists x \exists y[\operatorname{Person}(x) \wedge \operatorname{Food}(y)] \Rightarrow \operatorname{Eats}(x, y)$

Summary

- First-order logic:
- Much more expressive than propositional logic
- Allows objects and relations as semantic primitives
- Universal and existential quantifiers
- Syntax: constants, functions, predicates, equality, quantifiers
- Nested quantifiers
- Order of unlike quantifiers matters (the outer scopes the inner)
- Like nested ANDs and ORs
- Order of like quantifiers does not matter
- like nested ANDS and ANDs
- Translate simple English sentences to FOPC and back

