
First-Order Logic A:
Syntax

CS171, Fall Quarter, 2018
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: R&N 8, 9.1-9.2, 9.5.1-9.5.5

Common Sense Reasoning
Example, adapted from Lenat

You are told: John drove to the grocery store and bought a pound of noodles, a pound of ground
beef, and two pounds of tomatoes.

• Is John 3 years old?
• Is John a child?
• What will John do with the purchases?
• Did John have any money?
• Does John have less money after going to the store?
• Did John buy at least two tomatoes?
• Were the tomatoes made in the supermarket?
• Did John buy any meat?
• Is John a vegetarian?
• Will the tomatoes fit in John’s car?

• Can Propositional Logic support these inferences?

Outline for First-Order Logic
(FOL, also called FOPC)

• Propositional Logic is Useful --- but Limited Expressive Power

• First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
– FOPC has expanded expressive power, though still limited.

• New Ontology
– The world consists of OBJECTS.
– OBJECTS have PROPERTIES, RELATIONS, and FUNCTIONS.

• New Syntax
– Constants, Predicates, Functions, Properties, Quantifiers.

• New Semantics
– Meaning of new syntax.

• Unification and Inference in FOL
• Knowledge engineering in FOL

FOL Syntax:
You will be expected to know

• FOPC syntax
– Syntax: Sentences, predicate symbols, function symbols,

constant symbols, variables, quantifiers
• De Morgan’s rules for quantifiers

– connections between ∀ and ∃

• Nested quantifiers
– Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)”
– ∀ x ∃ y Likes(x, y) --- “Everybody likes somebody.”
– ∃ x ∀ y Likes(x, y) --- “Somebody likes everybody.”

• Translate simple English sentences to FOPC and back
– ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.”
– ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.”

Pros and cons of propositional logic
 Propositional logic is declarative

- Knowledge and inference are separate

 Propositional logic allows partial/disjunctive/negated information
– unlike most programming languages and databases

 Propositional logic is compositional:

– meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

 Meaning in propositional logic is context-independent
– unlike natural language, where meaning depends on context

 Propositional logic has limited expressive power

– E.g., cannot say “Pits cause breezes in adjacent squares.“
• except by writing one sentence for each square

– Needs to refer to objects in the world,
– Needs to express general rules

First-Order Logic (FOL), also called
First-Order Predicate Calculus (FOPC)

• Propositional logic assumes the world contains facts.

• First-order logic (like natural language) assumes the world contains

– Objects: people, houses, numbers, colors, baseball games, wars, …
– Functions: father of, best friend, one more than, plus, …

• Function arguments are objects; function returns an object
– Objects generally correspond to English NOUNS

– Predicates/Relations/Properties: red, round, prime, brother of, bigger

than, part of, comes between, …
• Predicate arguments are objects; predicate returns a truth value

– Predicates generally correspond to English VERBS
• First argument is generally the subject, the second the object
• Hit(Bill, Ball) usually means “Bill hit the ball.”
• Likes(Bill, IceCream) usually means “Bill likes IceCream.”
• Verb(Noun1, Noun2) usually means “Noun1 verb noun2.”

Aside: First-Order Logic (FOL) vs.
Second-Order Logic

• First Order Logic (FOL) allows variables and general rules
– “First order” because quantified variables represent objects.
– “Predicate Calculus” because it quantifies over predicates on objects.

• E.g., “Integral Calculus” quantifies over functions on numbers.
• Aside: Second Order logic

– “Second order” because quantified variables can also represent
predicates and functions.

• E.g., can define “Transitive Relation,” which is beyond FOPC.

• Aside: In FOL we can state that a relationship is transitive
– E.g., BrotherOf is a transitive relationship
– ∀ x, y, z BrotherOf(x,y) ∧ BrotherOf(y,z) => BrotherOf(x,z)

• Aside: In Second Order logic we can define “Transitive”
– ∀ P, x, y, z Transitive(P)  (P(x,y) ∧ P(y,z) => P(x,z))
– Then we can state directly, Transitive(BrotherOf)

Syntax of FOL: Basic elements
• Constants KingJohn, 2, UCI,...

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Quantifiers ∀, ∃

• Connectives ¬, ∧, ∨, ⇒, ⇔ (standard)

• Equality = (but causes difficulties….)

Syntax of FOL: Basic syntax elements are symbols

• Constant Symbols (correspond to English nouns)
– Stand for objects in the world.

• E.g., KingJohn, 2, UCI, ...

• Predicate Symbols (correspond to English verbs)

– Stand for relations (maps a tuple of objects to a truth-value)
• E.g., Brother(Richard, John), greater_than(3,2), ...

– P(x, y) is usually read as “x is P of y.”
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

• Function Symbols (correspond to English nouns)

– Stand for functions (maps a tuple of objects to an object)
• E.g., Sqrt(3), LeftLegOf(John), ...

• Model (world) = set of domain objects, relations, functions
• Interpretation maps symbols onto the model (world)

– Very many interpretations are possible for each KB and world!
– The KB is to rule out those inconsistent with our knowledge.

Syntax of FOL: Terms
• Term = logical expression that refers to an object

• There are two kinds of terms:

– Constant Symbols stand for (or name) objects:

• E.g., KingJohn, 2, UCI, Wumpus, ...

– Function Symbols map tuples of objects to an object:
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
• This is nothing but a complicated kind of name

– No “subroutine” call, no “return value”

Syntax of FOL: Atomic Sentences
• Atomic Sentences state facts (logical truth values).

– An atomic sentence is a Predicate symbol, optionally followed by a
parenthesized list of any argument terms

• E.g., Married(Father(Richard), Mother(John))
– An atomic sentence asserts that some relationship (some

predicate) holds among the objects that are its arguments.

• An Atomic Sentence is true in a given model if the relation
referred to by the predicate symbol holds among the
objects (terms) referred to by the arguments.

Syntax of FOL: Atomic Sentences

• Atomic sentences in logic state facts that are true or false.

• Properties and m-ary relations do just that:
 LargerThan(2, 3) is false.
 BrotherOf(Mary, Pete) is false.
 Married(Father(Richard), Mother(John)) could be true or false.
 Properties and m-ary relations are Predicates that are true or false.

• Note: Functions refer to objects, do not state facts, and form no sentence:
– Brother(Pete) refers to John (his brother) and is neither true nor false.
– Plus(2, 3) refers to the number 5 and is neither true nor false.

• BrotherOf(Pete, Brother(Pete)) is True.

Binary relation
is a truth value.

Function refers to John, an object in the
world, i.e., John is Pete’s brother.
(Works well iff John is Pete’s only brother.)

Syntax of FOL:
Connectives & Complex Sentences

• Complex Sentences are formed in the same way, using
the same logical connectives, as in propositional logic

• The Logical Connectives:

– ⇔ biconditional
– ⇒ implication
– ∧ and
– ∨ or
– ¬ negation

• Semantics for these logical connectives are the same as

we already know from propositional logic.

Examples
• Brother(Richard, John) ∧ Brother(John, Richard)

• King(Richard) ∨ King(John)

• King(John) => ¬ King(Richard)

• LessThan(Plus(1,2) ,4) ∧ GreaterThan(1,2)

Syntax of FOL: Variables

• Variables range over objects in the world.

• A variable is like a term because it represents an object.

• A variable may be used wherever a term may be used.
– Variables may be arguments to functions and predicates.

• (A term with NO variables is called a ground term.)

• (A variable not bound by a quantifier is called free.)

– All variables we will use are bound by a quantifier.

Syntax of FOL: Logical Quantifiers
• There are two Logical Quantifiers:

– Universal: ∀ x P(x) means “For all x, P(x).”
• The “upside-down A” reminds you of “ALL.”
• Some texts put a comma after the variable: ∀ x, P(x)

– Existential: ∃ x P(x) means “There exists x such that, P(x).”
• The “backward E” reminds you of “EXISTS.”
• Some texts put a comma after the variable: ∃ x, P(x)

• You can ALWAYS convert one quantifier to the other.

– ∀ x P(x) ≡ ¬∃ x ¬P(x)
– ∃ x P(x) ≡ ¬∀ x ¬P(x)
– RULES: ∀ ≡ ¬∃¬ and ∃ ≡ ¬∀¬

• RULES: To move negation “in” across a quantifier,

Change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

– ¬∀ x P(x) ≡ ¬ ¬∃ x ¬P(x) ≡ ∃ x ¬P(x)
– ¬∃ x P(x) ≡ ¬ ¬∀ x ¬P(x) ≡ ∀ x ¬P(x)

Universal Quantification ∀
• ∀ x means “for all x it is true that…”

• Allows us to make statements about all objects that have

certain properties

• Can now state general rules:

∀ x King(x) => Person(x) “All kings are persons.”
∀ x Person(x) => HasHead(x) “Every person has a head.”
∀ i Integer(i) => Integer(plus(i,1)) “If i is an integer then i+1 is an integer.”

• Note: ∀ x King(x) ∧ Person(x) is not correct!

This would imply that all objects x are Kings and are People (!)

∀ x King(x) => Person(x) is the correct way to say this

• Note that => is the natural connective to use with ∀ .

Universal Quantification ∀
• Universal quantification is conceptually equivalent to:

– Conjunction of all sentences obtained by substitution of an object
for the quantified variable.

– Not a sentence in the logic --- all logic sentences must be finite.

• Example: All Cats are Mammals.

– ∀x Cat(x) ⇒ Mammal(x)

• Conjunction of all sentences obtained by substitution of an
object for the quantified variable:

 Cat(Spot) ⇒ Mammal(Spot) ∧
 Cat(Rebecca) ⇒ Mammal(Rebecca) ∧
 Cat(LAX) ⇒ Mammal(LAX) ∧
 Cat(Shayama) ⇒ Mammal(Shayama) ∧
 Cat(France) ⇒ Mammal(France) ∧
 Cat(Felix) ⇒ Mammal(Felix) ∧
 …

Existential Quantification ∃
• ∃ x means “there exists an x such that….”

– There is in the world at least one such object x

• Allows us to make statements about some object without
naming it, or even knowing what that object is:

∃ x King(x) “Some object is a king.”
∃ x Lives_in(John, Castle(x)) “John lives in somebody’s castle.”
∃ i Integer(i) ∧ Greater(i,0) “Some integer is greater than zero.”

• Note: ∃ i Integer(i) ⇒ Greater(i,0) is not correct!

It is vacuously true if anything in the world were not an integer (!)

∃ i Integer(i) ∧ Greater(i,0) is the correct way to say this

• Note that ∧ is the natural connective to use with ∃ .

Existential Quantification ∃
• Existential quantification is conceptually equivalent to:

– Disjunction of all sentences obtained by substitution of an object
for the quantified variable.

– Not a sentence in the logic --- all logic sentences must be finite.

• Spot has a sister who is a cat.

– ∃x Sister(x, Spot) ∧ Cat(x)

• Disjunction of all sentences obtained by substitution of an
object for the quantified variable:

 Sister(Spot, Spot) ∧ Cat(Spot) ∨
 Sister(Rebecca, Spot) ∧ Cat(Rebecca) ∨
 Sister(LAX, Spot) ∧ Cat(LAX) ∨
 Sister(Shayama, Spot) ∧ Cat(Shayama) ∨
 Sister(France, Spot) ∧ Cat(France) ∨
 Sister(Felix, Spot) ∧ Cat(Felix) ∨
 …

Combining Quantifiers --- Order (Scope)
The order of “unlike” quantifiers is important.
 Like nested variable scopes in a programming language.
 Like nested ANDs and ORs in a logical sentence.

∀ x ∃ y Loves(x,y)

– For everyone (“all x”) there is someone (“exists y”) whom they love.
– There might be a different y for each x (y is inside the scope of x)

∃ y ∀ x Loves(x,y)
– There is someone (“exists y”) whom everyone loves (“all x”).
– Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: ∃ y (∀ x Loves(x,y))

The order of “like” quantifiers does not matter.
 Like nested ANDs and ANDs in a logical sentence
 ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y)
 ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y)

Connections between Quantifiers
• Asserting that all x have property P is the same as asserting

that does not exist any x that does not have the property P

 ∀ x Likes(x, CS-171 class)  ¬ ∃ x ¬ Likes(x, CS-171 class)

• Asserting that there exists an x with property P is the same

as asserting that not all x do not have the property P

 ∃ x Likes(x, IceCream)  ¬ ∀ x ¬ Likes(x, IceCream)

In effect:
 - ∀ is a conjunction over the universe of objects
 - ∃ is a disjunction over the universe of objects
 Thus, DeMorgan’s rules can be applied

De Morgan’s Law for Quantifiers

()
()
()
()

x P x P
x P x P

x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

()
()

()
()

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule

AND/OR Rule is simple: if you bring a negation inside a disjunction or a
conjunction, always switch between them (¬ OR  AND ¬ ; ¬ AND  OR ¬).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or
existential, always switch between them (¬ ∃ ∀ ¬ ; ¬ ∀  ∃ ¬).

De Morgan’s Law for Quantifiers
De Morgan’s Rule Generalized De Morgan’s Rule

AND/OR Rule is simple: if you bring a negation inside a disjunction or a
conjunction, always switch between them (¬ OR  AND ¬ ; ¬ AND  OR ¬).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or
existential, always switch between them (¬ ∃ ∀ ¬ ; ¬ ∀  ∃ ¬).

P ∧ Q ≡ ¬ (¬ P ∨ ¬ Q) ∀ x P(x) ≡ ¬ ∃ x ¬ P(x)
P ∨ Q ≡ ¬ (¬ P ∧ ¬ Q) ∃ x P(x) ≡ ¬ ∀ x ¬ P(x)

¬ (P ∧ Q) ≡ (¬ P ∨ ¬ Q) ¬ ∀ x P(x) ≡ ∃ x ¬ P(x)
¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q) ¬ ∃ x P(x) ≡ ∀ x ¬ P(x)

Aside: More syntactic sugar --- uniqueness

• ∃! x is “syntactic sugar” for “There exists a unique x”
– “There exists one and only one x”
– “There exists exactly one x”
– Sometimes ∃! is written as ∃1

• For example, ∃! x PresidentOfTheUSA(x)

– “There is exactly one PresidentOfTheUSA.”

• This is just syntactic sugar:

– ∃! x P(x) is the same as ∃ x P(x) ∧ (∀ y P(y) => (x = y))
– “Syntactic sugar” = a convenient syntax abbreviation/extension

Equality
• term1 = term2 is true under a given interpretation
 if and only if term1 and term2 refer to the same object

• E.g., definition of Sibling in terms of Parent, using = is:

∀x,y Sibling(x,y) ⇔
 [¬(x = y) ∧
 ∃ m,f ¬ (m = f) ∧ Parent(m,x) ∧ Parent(f,x)
 ∧ Parent(m,y) ∧ Parent(f,y)]

• Equality can make reasoning much more difficult!
– (See R&N, section 9.5.5, page 353)
– You may not know when two objects are equal.

• E.g., Ancients did not know (MorningStar = EveningStar = Venus)
– You may have to prove x = y before proceeding

• E.g., a resolution prover may not know 2+1 is the same as 1+2 or 4−1

Syntactic Ambiguity
• FOPC provides many ways to represent the same thing.
• E.g., “Ball-5 is red.”

– HasColor(Ball-5, Red)
• Ball-5 and Red are objects related by HasColor.

– Red(Ball-5)
• Red is a unary predicate applied to the Ball-5 object.

– HasProperty(Ball-5, Color, Red)
• Ball-5, Color, and Red are objects related by HasProperty.

– ColorOf(Ball-5) = Red
• Ball-5 and Red are objects, and ColorOf() is a function.

– HasColor(Ball-5(), Red())
• Ball-5() and Red() are functions of zero arguments that both return an

object, which objects are related by HasColor.
– …

• This can GREATLY confuse a pattern-matching reasoner.
– Especially if multiple people collaborate to build the KB, and they

all have different representational conventions.

Syntactic Ambiguity --- Partial Solution
• FOL can be TOO expressive, can offer TOO MANY choices

• Likely confusion, especially for teams of Knowledge

Engineers

• Different team members can make different
representation choices
– E.g., represent “Ball43 is Red.” as:

• a predicate (= verb)? E.g., “Red(Ball43)” ?
• an object (= noun)? E.g., “Red = Color(Ball43))” ?
• a property (= adjective)? E.g., “HasProperty(Ball43, Red)” ?

• PARTIAL SOLUTION:
– An upon-agreed ontology that settles these questions
– Ontology = what exists in the world & how it is represented
– The Knowledge Engineering teams agrees upon an ontology

BEFORE they begin encoding knowledge

More fun with sentences

• “All persons are mortal.”
• [Use: Person(x), Mortal (x)]

More fun with sentences
• “All persons are mortal.”
 [Use: Person(x), Mortal (x)]

• ∀x Person(x) ⇒ Mortal(x)

• Equivalent Forms:
• ∀x ¬Person(x) ˅ Mortal(x)

• Common Mistakes:
• ∀x Person(x) ∧ Mortal(x)

More fun with sentences

• “Fifi has a sister who is a cat.”
• [Use: Sister(Fifi, x), Cat(x)]
•

More fun with sentences

• “Fifi has a sister who is a cat.”
• [Use: Sister(Fifi, x), Cat(x)]

• ∃x Sister(Fifi, x) ∧ Cat(x)

• Common Mistakes:
• ∃x Sister(Fifi, x) ⇒ Cat(x)

More fun with sentences

• “For every food, there is a person who eats
that food.”

 [Use: Food(x), Person(y), Eats(y, x)]

More fun with sentences
• “For every food, there is a person who eats that food.”
 [Use: Food(x), Person(y), Eats(y, x)]

• ∀x ∃y Food(x) ⇒ [Person(y) ∧ Eats(y, x)]

• Equivalent Forms:
• ∀x Food(x) ⇒ ∃y [Person(y) ∧ Eats(y, x)]
• ∀x ∃y ¬Food(x) ˅ [Person(y) ∧ Eats(y, x)]
• ∀x ∃y [¬Food(x) ˅ Person(y)] ∧ [¬ Food(x) ˅ Eats(y, x)]
• ∀x ∃y [Food(x) ⇒ Person(y)] ∧ [Food(x) ⇒ Eats(y, x)]

• Common Mistakes:
• ∀x ∃y [Food(x) ∧ Person(y)] ⇒ Eats(y, x)
• ∀x ∃y Food(x) ∧ Person(y) ∧ Eats(y, x)

More fun with sentences

• “Every person eats every food.”
 [Use: Person (x), Food (y), Eats(x, y)]

More fun with sentences
• “Every person eats every food.”
 [Use: Person (x), Food (y), Eats(x, y)]

• ∀x ∀y [Person(x) ∧ Food(y)] ⇒ Eats(x, y)

• Equivalent Forms:
• ∀x ∀y ¬Person(x) ˅ ¬Food(y) ˅ Eats(x, y)
• ∀x ∀y Person(x) ⇒ [Food(y) ⇒ Eats(x, y)]
• ∀x ∀y Person(x) ⇒ [¬Food(y) ˅ Eats(x, y)]
• ∀x ∀y ¬Person(x) ˅ [Food(y) ⇒ Eats(x, y)]

• Common Mistakes:
• ∀x ∀y Person(x) ⇒ [Food(y) ∧ Eats(x, y)]
• ∀x ∀y Person(x) ∧ Food(y) ∧ Eats(x, y)

More fun with sentences

• “All greedy kings are evil.”
 [Use: King(x), Greedy(x), Evil(x)]

More fun with sentences
• “All greedy kings are evil.”
 [Use: King(x), Greedy(x), Evil(x)]

• ∀x [Greedy(x) ∧ King(x)] ⇒ Evil(x)

• Equivalent Forms:
• ∀x ¬Greedy(x) ˅ ¬King(x) ˅ Evil(x)
• ∀x Greedy(x) ⇒ [King(x) ⇒ Evil(x)]

• Common Mistakes:
• ∀x Greedy(x) ∧ King(x) ∧ Evil(x)

More fun with sentences

• “Everyone has a favorite food.”
 [Use: Person(x), Food(y), Favorite(y, x)]

More fun with sentences
• “Everyone has a favorite food.”
 [Use: Person(x), Food(y), Favorite(y, x)]

• Equivalent Forms:
• ∀x ∃y Person(x) ⇒ [Food(y) ∧ Favorite(y, x)]
• ∀x Person(x) ⇒ ∃y [Food(y) ∧ Favorite(y, x)]
• ∀x ∃y ¬Person(x) ˅ [Food(y) ∧ Favorite(y, x)]
• ∀x ∃y [¬Person(x) ˅ Food(y)] ∧ [¬Person(x)
 ˅ Favorite(y, x)]
• ∀x ∃y [Person(x) ⇒ Food(y)] ∧ [Person(x) ⇒ Favorite(y, x)]

• Common Mistakes:
• ∀x ∃y [Person(x) ∧ Food(y)] ⇒ Favorite(y, x)
• ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x)

More fun with sentences

• “There is someone at UCI who is smart.”
 [Use: Person(x), At(x, UCI), Smart(x)]

More fun with sentences

• “There is someone at UCI who is smart.”
 [Use: Person(x), At(x, UCI), Smart(x)]

• ∃x Person(x) ∧ At(x, UCI) ∧ Smart(x)

• Common Mistakes:
• ∃x [Person(x) ∧ At(x, UCI)] ⇒ Smart(x)

More fun with sentences

• “Everyone at UCI is smart.”
 [Use: Person(x), At(x, UCI), Smart(x)]

More fun with sentences
• “Everyone at UCI is smart.”
 [Use: Person(x), At(x, UCI), Smart(x)]

• ∀x [Person(x) ∧ At(x, UCI)] ⇒ Smart(x)

• Equivalent Forms:
• ∀x ¬[Person(x) ∧ At(x, UCI)] ˅ Smart(x)
• ∀x ¬Person(x) ˅ ¬At(x, UCI) ˅ Smart(x)

• Common Mistakes:
• ∀x Person(x) ∧ At(x, UCI) ∧ Smart(x)
• ∀x Person(x) ⇒ [At(x, UCI) ∧ Smart(x)]
•

More fun with sentences

• “Every person eats some food.”
 [Use: Person (x), Food (y), Eats(x, y)]

More fun with sentences
• “Every person eats some food.”
 [Use: Person (x), Food (y), Eats(x, y)]

• ∀x ∃y Person(x) ⇒ [Food(y) ∧ Eats(x, y)]
•
• Equivalent Forms:
• ∀x Person(x) ⇒ ∃y [Food(y) ∧ Eats(x, y)]
• ∀x ∃y ¬Person(x) ˅ [Food(y) ∧ Eats(x, y)]
• ∀x ∃y [¬Person(x) ˅ Food(y)] ∧ [¬Person(x) ˅ Eats(x, y)]

• Common Mistakes:
• ∀x ∃y [Person(x) ∧ Food(y)] ⇒ Eats(x, y)
• ∀x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y)
•

More fun with sentences

• “Some person eats some food.”
 [Use: Person (x), Food (y), Eats(x, y)]

More fun with sentences

• “Some person eats some food.”
 [Use: Person (x), Food (y), Eats(x, y)]

• ∃x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y)

• Common Mistakes:
• ∃x ∃y [Person(x) ∧ Food(y)] ⇒ Eats(x, y)

Summary
• First-order logic:

– Much more expressive than propositional logic
– Allows objects and relations as semantic primitives
– Universal and existential quantifiers

• Syntax: constants, functions, predicates, equality, quantifiers

• Nested quantifiers

– Order of unlike quantifiers matters (the outer scopes the inner)
• Like nested ANDs and ORs

– Order of like quantifiers does not matter
• like nested ANDS and ANDs

• Translate simple English sentences to FOPC and back

	First-Order Logic A:�Syntax
	Common Sense Reasoning�Example, adapted from Lenat
	Outline for First-Order Logic�(FOL, also called FOPC)
	FOL Syntax:�You will be expected to know
	Pros and cons of propositional logic
	First-Order Logic (FOL), also called�First-Order Predicate Calculus (FOPC)
	Aside: First-Order Logic (FOL) vs.�Second-Order Logic
	Syntax of FOL: Basic elements
	Syntax of FOL: Basic syntax elements are symbols
	Syntax of FOL: Terms
	Syntax of FOL: Atomic Sentences
	Syntax of FOL: Atomic Sentences
	Syntax of FOL:�Connectives & Complex Sentences
	Examples
	Syntax of FOL: Variables
	Syntax of FOL: Logical Quantifiers
	Universal Quantification 
	Universal Quantification 
	Existential Quantification 
	Existential Quantification 
	Combining Quantifiers --- Order (Scope)
	Connections between Quantifiers
	De Morgan’s Law for Quantifiers
	De Morgan’s Law for Quantifiers
	Aside: More syntactic sugar --- uniqueness
	Equality
	Syntactic Ambiguity
	Syntactic Ambiguity --- Partial Solution
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	Summary

