
First-Order Logic C: 
Knowledge Engineering 

CS171, Fall Quarter, 2018 
Introduction to Artificial Intelligence 

Prof. Richard Lathrop 
 
 Read Beforehand: R&N 8, 9.1-9.2, 9.5.1-9.5.5 



Outline 
• Review --- Syntactic Ambiguity 

 
• Using FOL 

– Tell, Ask 
 

• Example: Wumpus world 
 

• Deducing Hidden Properties 
– Keeping track of change 
– Describing the results of Actions 

 
• Set Theory in First-Order Logic 

 
• Knowledge engineering in FOL 

 
• The electronic circuits domain 

 
 
 

 
 
 

 
 
 



You will be expected to know 

• Seven steps of Knowledge Engineering (R&N 
section 8.4.1) 
 

• Given a simple Knowledge Engineering 
problem, produce a simple FOL Knowledge 
Base that solves the problem 



Review --- Syntactic Ambiguity 
• FOPC provides many ways to represent the same thing. 
• E.g., “Ball-5 is red.” 

– HasColor(Ball-5, Red) 
• Ball-5 and Red are objects related by HasColor. 

– Red(Ball-5) 
• Red is a unary predicate applied to the Ball-5 object. 

– HasProperty(Ball-5, Color, Red) 
• Ball-5, Color, and Red are objects related by HasProperty. 

– ColorOf(Ball-5) = Red 
• Ball-5 and Red are objects, and ColorOf() is a function. 

– HasColor(Ball-5(), Red()) 
• Ball-5() and Red() are functions of zero arguments that both return an 

object, which objects are related by HasColor. 
– … 

 
• This can GREATLY confuse a pattern-matching reasoner. 

– Especially if multiple people collaborate to build the KB, and they 
all have different representational conventions. 

 
 



Review --- Syntactic Ambiguity --- 
Partial Solution 

• FOL can be TOO expressive, can offer TOO MANY choices 
 

• Likely confusion, especially for teams of Knowledge Engineers 
 

• Different team members can make different representation 
choices 
– E.g., represent “Ball43 is Red.” as: 

•  a predicate (= verb)?  E.g., “Red(Ball43)” ? 
•  an object (= noun)?  E.g., “Red = Color(Ball43))” ? 
• a property (= adjective)?  E.g., “HasProperty(Ball43, Red)” ? 

 
• PARTIAL SOLUTION: 

– An upon-agreed ontology that settles these questions 
– Ontology = what exists in the world & how it is represented 
– The Knowledge Engineering teams agrees upon an ontology 

BEFORE they begin encoding knowledge 
 

 



Using FOL 

• We want to TELL things to the KB, e.g. 
      TELL(KB,  ∀ x King(x) ⇒ PersonX) ) 
      TELL(KB, King(John) ) 
 
    These sentences are assertions 

 
 

• We also want to ASK things to the KB, 
     ASK(KB,  ∃ x Person(x) )  
 
     these are queries or goals 
 
 The KB should return the list of x’s for which Person(x) is true: 
  {x/John, x/Richard,...} 

 



Knowledge engineering in FOL 
1. Identify the task 

 
2. Assemble the relevant knowledge 

 
3. Decide on a vocabulary of predicates, functions, and constants 

 
4. Encode general knowledge about the domain 

 
5. Encode a description of the specific problem instance 

 
6. Pose queries to the inference procedure and get answers 

 
7. Debug the knowledge base 



FOL Version of Wumpus World 

• Typical percept sentence: 
Percept([Stench,Breeze,Glitter,None,None],5) 
 

• Actions: 
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb 
 

• To determine best action, construct query: 
 ∃ a BestAction(a,5) 
 

• ASK solves this and returns {a/Grab} 
– And TELL about the action. 

 



Knowledge Base for Wumpus World 

• Perception 
– ∀s,g,x,y,t Percept([s,Breeze,g,x,y],t) ⇒ Breeze(t)  
– ∀s,b,x,y,t Percept([s,b,Glitter,x,y],t) ⇒ Glitter(t) 

 

• Reflex action 
– ∀t Glitter(t) ⇒ BestAction(Grab,t) 

 

• Reflex action with internal state 
– ∀t Glitter(t) ∧¬Holding(Gold,t) ⇒ BestAction(Grab,t) 
 
Holding(Gold,t) can not be observed: keep track of change. 



Deducing hidden properties 
Environment definition: 

∀x,y,a,b Adjacent([x,y],[a,b]) ⇔  
 [a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}  
 
Properties of locations: 
 ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s) 
 
 

Squares are breezy near a pit: 
– Diagnostic rule---infer cause from effect 

∀s Breezy(s) ⇔ ∃ r Adjacent(r,s) ∧ Pit(r) 
 

– Causal rule---infer effect from cause (model based reasoning) 
∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)] 

 





Yale shooting problem 

• The Yale shooting problem illustrates the frame 
problem. (Its inventors were working at Yale University 
when they proposed it.) 

• Fred (a turkey) is initially alive and a gun is initially 
unloaded. Loading the gun, waiting for a moment, and 
then shooting the gun at Fred is expected to kill Fred. 

• However, in one solution, Fred indeed dies; in another 
(also logically correct) solution, the gun becomes 
mysteriously unloaded and Fred survives. 

• By Hanks and McDermott, adapted from Wikipedia 
 







Set Theory in First-Order Logic 
Can we define set theory using FOL? 
      - individual sets, union, intersection, etc 
 
 
Answer is yes. 
 
Basics: 
  - empty set = constant = { } 
 
  - unary predicate Set( ), true for sets 
 
  - binary predicates: 

        x ∈  s    (true if x is a member of the set s) 

     s1 ⊆ s2    (true if s1 is a subset of s2) 
 
 - binary functions: 

       intersection s1 ∩ s2, union s1 ∪ s2 ,  adjoining {x|s} 
 



A Possible Set of FOL Axioms for Set 
Theory   

The only sets are the empty set and sets made by adjoining an 
element to a set 

   ∀s Set(s) ⇔ (s = {} ) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2}) 
 
The empty set has no elements adjoined to it 
      ¬∃x,s {x|s} = {} 
 
Adjoining an element already in the set has no effect 
          ∀x,s x ∈ s ⇔ s = {x|s} 
 
 The only elements of a set are those that were adjoined into 

it. Expressed recursively: 
   ∀x,s    x ∈ s ⇔ [ ∃y,s2  (s = {y|s2} ∧ (x = y ∨ x ∈ s2))] 
 



A Possible Set of FOL Axioms for Set 
Theory   

A set is a subset of another set iff all the first set’s members 
are members of the 2nd set 

     ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2) 
 
Two sets are equal iff each is a subset of the other 
 ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) 
 
An object is in the intersection of 2 sets only if a member of 

both 
 ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2) 
 
An object is in the union of 2 sets only if a member of either 
 ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2) 



The electronic circuits domain 
One-bit full adder 
 
 
 
 
 
 
 
 
Possible queries: 
 - does the circuit function properly? 
    - what gates are connected to the first input terminal? 
    - what would happen if one of the gates is broken? 
    and so on 
 

 



The electronic circuits domain 
1. Identify the task 

– Does the circuit actually add properly?   
 

2. Assemble the relevant knowledge 
– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT) 
–  
– Irrelevant: size, shape, color, cost of gates 

 

3. Decide on a vocabulary 
– Many alternative ways to say X1 is an OR gate: 
–  
– Type(X1) = XOR  (function) 

Type(X1, XOR)   (binary predicate) 
XOR(X1)      (unary predicate) 
etc. 



The electronic circuits domain 
4. Encode general knowledge of the domain 

 
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2) 

 
– ∀t Signal(t) = 1 ∨ Signal(t) = 0 
 
– 1 ≠ 0 

 
– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1) 

 
– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1 

 
– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0 
 
 
– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠ Signal(In(2,g)) 

 
– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g)) 



The electronic circuits domain 
5. Encode the specific problem instance 

 
Type(X1) = XOR   Type(X2) = XOR 
Type(A1) = AND   Type(A2) = AND 
Type(O1) = OR 
 
Connected(Out(1,X1),In(1,X2))  Connected(In(1,C1),In(1,X1)) 
Connected(Out(1,X1),In(2,A2))  Connected(In(1,C1),In(1,A1)) 
Connected(Out(1,A2),In(1,O1))   Connected(In(2,C1),In(2,X1)) 
Connected(Out(1,A1),In(2,O1))   Connected(In(2,C1),In(2,A1)) 
Connected(Out(1,X2),Out(1,C1))   Connected(In(3,C1),In(2,X2)) 
Connected(Out(1,O1),Out(2,C1))   Connected(In(3,C1),In(1,A2)) 
 
 



The electronic circuits domain 
6. Pose queries to the inference procedure: 

 
What are the possible sets of values of all the terminals for the adder circuit?  
 

 ∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3 

    ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2 
 

 
 

 

7. Debug the knowledge base 
 
May have omitted assertions like 1 ≠ 0 
 



Review --- Knowledge engineering in FOL 

1. Identify the task 
 

2. Assemble the relevant knowledge 
 

3. Decide on a vocabulary of predicates, functions, and constants 
 

4. Encode general knowledge about the domain 
 

5. Encode a description of the specific problem instance 
 

6. Pose queries to the inference procedure and get answers 
 

7. Debug the knowledge base 



Summary 

• First-order logic: 
– Much more expressive than propositional logic 
– Allows objects and relations as semantic 

primitives 
– Universal and existential quantifiers 
– syntax: constants, functions, predicates, equality, 

quantifiers 
 

• Knowledge engineering using FOL 
– Capturing domain knowledge in logical form 

 
 

 


	First-Order Logic C:�Knowledge Engineering
	Outline
	You will be expected to know
	Review --- Syntactic Ambiguity
	Review --- Syntactic Ambiguity --- Partial Solution
	Using FOL
	Knowledge engineering in FOL
	FOL Version of Wumpus World
	Knowledge Base for Wumpus World
	Deducing hidden properties
	Slide Number 11
	Yale shooting problem
	Slide Number 13
	Slide Number 14
	Set Theory in First-Order Logic
	A Possible Set of FOL Axioms for Set Theory  
	A Possible Set of FOL Axioms for Set Theory  
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	Review --- Knowledge engineering in FOL
	Summary

