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Outline 
• Review --- Syntactic Ambiguity 

 
• Using FOL 

– Tell, Ask 
 

• Example: Wumpus world 
 

• Deducing Hidden Properties 
– Keeping track of change 
– Describing the results of Actions 

 
• Set Theory in First-Order Logic 
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• The electronic circuits domain 

 
 
 

 
 
 

 
 
 



You will be expected to know 

• Seven steps of Knowledge Engineering (R&N 
section 8.4.1) 
 

• Given a simple Knowledge Engineering 
problem, produce a simple FOL Knowledge 
Base that solves the problem 



Review --- Syntactic Ambiguity 
• FOPC provides many ways to represent the same thing. 
• E.g., “Ball-5 is red.” 

– HasColor(Ball-5, Red) 
• Ball-5 and Red are objects related by HasColor. 

– Red(Ball-5) 
• Red is a unary predicate applied to the Ball-5 object. 

– HasProperty(Ball-5, Color, Red) 
• Ball-5, Color, and Red are objects related by HasProperty. 

– ColorOf(Ball-5) = Red 
• Ball-5 and Red are objects, and ColorOf() is a function. 

– HasColor(Ball-5(), Red()) 
• Ball-5() and Red() are functions of zero arguments that both return an 

object, which objects are related by HasColor. 
– … 

 
• This can GREATLY confuse a pattern-matching reasoner. 

– Especially if multiple people collaborate to build the KB, and they 
all have different representational conventions. 

 
 



Review --- Syntactic Ambiguity --- 
Partial Solution 

• FOL can be TOO expressive, can offer TOO MANY choices 
 

• Likely confusion, especially for teams of Knowledge Engineers 
 

• Different team members can make different representation 
choices 
– E.g., represent “Ball43 is Red.” as: 

•  a predicate (= verb)?  E.g., “Red(Ball43)” ? 
•  an object (= noun)?  E.g., “Red = Color(Ball43))” ? 
• a property (= adjective)?  E.g., “HasProperty(Ball43, Red)” ? 

 
• PARTIAL SOLUTION: 

– An upon-agreed ontology that settles these questions 
– Ontology = what exists in the world & how it is represented 
– The Knowledge Engineering teams agrees upon an ontology 

BEFORE they begin encoding knowledge 
 

 



Using FOL 

• We want to TELL things to the KB, e.g. 
      TELL(KB,  ∀ x King(x) ⇒ PersonX) ) 
      TELL(KB, King(John) ) 
 
    These sentences are assertions 

 
 

• We also want to ASK things to the KB, 
     ASK(KB,  ∃ x Person(x) )  
 
     these are queries or goals 
 
 The KB should return the list of x’s for which Person(x) is true: 
  {x/John, x/Richard,...} 

 



Knowledge engineering in FOL 
1. Identify the task 

 
2. Assemble the relevant knowledge 

 
3. Decide on a vocabulary of predicates, functions, and constants 

 
4. Encode general knowledge about the domain 

 
5. Encode a description of the specific problem instance 

 
6. Pose queries to the inference procedure and get answers 

 
7. Debug the knowledge base 



FOL Version of Wumpus World 

• Typical percept sentence: 
Percept([Stench,Breeze,Glitter,None,None],5) 
 

• Actions: 
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb 
 

• To determine best action, construct query: 
 ∃ a BestAction(a,5) 
 

• ASK solves this and returns {a/Grab} 
– And TELL about the action. 

 



Knowledge Base for Wumpus World 

• Perception 
– ∀s,g,x,y,t Percept([s,Breeze,g,x,y],t) ⇒ Breeze(t)  
– ∀s,b,x,y,t Percept([s,b,Glitter,x,y],t) ⇒ Glitter(t) 

 

• Reflex action 
– ∀t Glitter(t) ⇒ BestAction(Grab,t) 

 

• Reflex action with internal state 
– ∀t Glitter(t) ∧¬Holding(Gold,t) ⇒ BestAction(Grab,t) 
 
Holding(Gold,t) can not be observed: keep track of change. 



Deducing hidden properties 
Environment definition: 

∀x,y,a,b Adjacent([x,y],[a,b]) ⇔  
 [a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}  
 
Properties of locations: 
 ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s) 
 
 

Squares are breezy near a pit: 
– Diagnostic rule---infer cause from effect 

∀s Breezy(s) ⇔ ∃ r Adjacent(r,s) ∧ Pit(r) 
 

– Causal rule---infer effect from cause (model based reasoning) 
∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)] 

 





Yale shooting problem 

• The Yale shooting problem illustrates the frame 
problem. (Its inventors were working at Yale University 
when they proposed it.) 

• Fred (a turkey) is initially alive and a gun is initially 
unloaded. Loading the gun, waiting for a moment, and 
then shooting the gun at Fred is expected to kill Fred. 

• However, in one solution, Fred indeed dies; in another 
(also logically correct) solution, the gun becomes 
mysteriously unloaded and Fred survives. 

• By Hanks and McDermott, adapted from Wikipedia 
 







Set Theory in First-Order Logic 
Can we define set theory using FOL? 
      - individual sets, union, intersection, etc 
 
 
Answer is yes. 
 
Basics: 
  - empty set = constant = { } 
 
  - unary predicate Set( ), true for sets 
 
  - binary predicates: 

        x ∈  s    (true if x is a member of the set s) 

     s1 ⊆ s2    (true if s1 is a subset of s2) 
 
 - binary functions: 

       intersection s1 ∩ s2, union s1 ∪ s2 ,  adjoining {x|s} 
 



A Possible Set of FOL Axioms for Set 
Theory   

The only sets are the empty set and sets made by adjoining an 
element to a set 

   ∀s Set(s) ⇔ (s = {} ) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2}) 
 
The empty set has no elements adjoined to it 
      ¬∃x,s {x|s} = {} 
 
Adjoining an element already in the set has no effect 
          ∀x,s x ∈ s ⇔ s = {x|s} 
 
 The only elements of a set are those that were adjoined into 

it. Expressed recursively: 
   ∀x,s    x ∈ s ⇔ [ ∃y,s2  (s = {y|s2} ∧ (x = y ∨ x ∈ s2))] 
 



A Possible Set of FOL Axioms for Set 
Theory   

A set is a subset of another set iff all the first set’s members 
are members of the 2nd set 

     ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2) 
 
Two sets are equal iff each is a subset of the other 
 ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) 
 
An object is in the intersection of 2 sets only if a member of 

both 
 ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2) 
 
An object is in the union of 2 sets only if a member of either 
 ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2) 



The electronic circuits domain 
One-bit full adder 
 
 
 
 
 
 
 
 
Possible queries: 
 - does the circuit function properly? 
    - what gates are connected to the first input terminal? 
    - what would happen if one of the gates is broken? 
    and so on 
 

 



The electronic circuits domain 
1. Identify the task 

– Does the circuit actually add properly?   
 

2. Assemble the relevant knowledge 
– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT) 
–  
– Irrelevant: size, shape, color, cost of gates 

 

3. Decide on a vocabulary 
– Many alternative ways to say X1 is an OR gate: 
–  
– Type(X1) = XOR  (function) 

Type(X1, XOR)   (binary predicate) 
XOR(X1)      (unary predicate) 
etc. 



The electronic circuits domain 
4. Encode general knowledge of the domain 

 
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2) 

 
– ∀t Signal(t) = 1 ∨ Signal(t) = 0 
 
– 1 ≠ 0 

 
– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1) 

 
– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1 

 
– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0 
 
 
– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠ Signal(In(2,g)) 

 
– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g)) 



The electronic circuits domain 
5. Encode the specific problem instance 

 
Type(X1) = XOR   Type(X2) = XOR 
Type(A1) = AND   Type(A2) = AND 
Type(O1) = OR 
 
Connected(Out(1,X1),In(1,X2))  Connected(In(1,C1),In(1,X1)) 
Connected(Out(1,X1),In(2,A2))  Connected(In(1,C1),In(1,A1)) 
Connected(Out(1,A2),In(1,O1))   Connected(In(2,C1),In(2,X1)) 
Connected(Out(1,A1),In(2,O1))   Connected(In(2,C1),In(2,A1)) 
Connected(Out(1,X2),Out(1,C1))   Connected(In(3,C1),In(2,X2)) 
Connected(Out(1,O1),Out(2,C1))   Connected(In(3,C1),In(1,A2)) 
 
 



The electronic circuits domain 
6. Pose queries to the inference procedure: 

 
What are the possible sets of values of all the terminals for the adder circuit?  
 

 ∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3 

    ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2 
 

 
 

 

7. Debug the knowledge base 
 
May have omitted assertions like 1 ≠ 0 
 



Review --- Knowledge engineering in FOL 

1. Identify the task 
 

2. Assemble the relevant knowledge 
 

3. Decide on a vocabulary of predicates, functions, and constants 
 

4. Encode general knowledge about the domain 
 

5. Encode a description of the specific problem instance 
 

6. Pose queries to the inference procedure and get answers 
 

7. Debug the knowledge base 



Summary 

• First-order logic: 
– Much more expressive than propositional logic 
– Allows objects and relations as semantic 

primitives 
– Universal and existential quantifiers 
– syntax: constants, functions, predicates, equality, 

quantifiers 
 

• Knowledge engineering using FOL 
– Capturing domain knowledge in logical form 
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