
Uninformed Search

CS171, Fall Quarter, 2018
Introduction to Artificial Intelligence

Prof. Richard Lathrop

 Read Beforehand: R&N 3.4

Uninformed search strategies

• Uninformed (blind):
– You have no clue whether one non-goal state is better than any other.

Your search is blind. You don’t know if your current exploration is likely
to be fruitful.

• Various blind strategies:

– Breadth-first search
– Uniform-cost search
– Depth-first search
– Iterative deepening search (generally preferred)
– Bidirectional search (preferred if applicable)

Basic graph/tree search scheme
• We have 3 kinds of states:

– [only for graph search: explored (past states; = closed list)]
– frontier (current nodes; = open list, fringe, queue) [nodes now on the queue]
– unexplored (future nodes) [implicitly given]

• Initially, frontier = MakeNode(start state)
• Loop until solution is found or state space is exhausted

– pick/remove first node from queue/frontier/fringe/open using search strategy
– if node is a goal then return node
– [only for graph search: add node to explored/closed]
– expand this node, add children to frontier only if not already in frontier

• [only for graph search: add children only if their state is not in explored/closed list]

• Question:
– what if a better path is found to a node already in frontier or on explored list?

Search strategy evaluation
• A search strategy is defined by the order of node expansion

• Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree (always finite)
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
– (for UCS: C*: true cost to optimal goal; ε > 0: minimum step cost)

Uninformed search design choices
• Queue for Frontier:

– FIFO? LIFO? Priority? If Priority, what sort function?

• Goal-Test:
– Do goal-test when node inserted into Frontier?
– Do goal-test when node removed?

• Tree Search, or Graph Search:
– Forget Expanded (or Explored, Closed, Fig. 3.7) nodes?

• = Tree Search: Smaller memory cost, but larger search time
– Or remember them?

• = Graph Search: Smaller search time, but larger memory cost
– Classic space/time computational tradeoff

Queue for Frontier
• FIFO (First In, First Out)

– Results in Breadth-First Search

• LIFO (Last In, First Out)
– Results in Depth-First Search

• Priority Queue sorted by path cost so far
– Results in Uniform Cost Search

• Iterative Deepening Search uses Depth-First

• Bidirectional Search can use either Breadth-First or Uniform
Cost Search

When to do goal test? (General)
• Do Goal-Test when node is popped from queue:
 IF you care about finding the optimal path
 AND your search space may have both short expensive and long

cheap paths to a goal.
– Guard against a short expensive goal.
– E.g., Uniform Cost search with variable step costs.

• Otherwise, do Goal-Test when is node generated and inserted.
– Usually, most of the search cost goes into creating the children (storage

allocation, data structure creation, etc.), while the goal-test is usually fast
and light-weight (am I in Bucharest? even the complicated ‘check-mate?’
goal-test in chess usually is fast because it does little or no storage
allocation or data structure creation).

– So most efficient search does goal-test as soon as nodes are generated.
• REASON ABOUT your search space & problem.

– How could I possibly find a non-optimal goal?

When to do Goal-Test? (Summary)
• For BFS, the goal test is done when the child node is generated.

– Not an optimal search in the general case.
• For DLS, IDS, and DFS as in Fig. 3.17, goal test is done in the recursive call.

– Result is that children are generated then iterated over. For each child DLS, is
called recursively, goal-test is done first in the callee, and the process repeats.

– More efficient search goal-tests children as generated. We follow your text.
• For DFS as in Fig. 3.7, goal test is done when node is popped.

– Search behavior depends on how the LIFO queue is implemented.
• For UCS and A*(next lecture), goal test when node removed from queue.

– This avoids finding a short expensive path before a long cheap path.
• Bidirectional search can use either BFS or UCS.

– Goal-test is search fringe intersection, see additional complications below
• For GBFS (next lecture) the behavior is the same either way

– h(goal)=0 so any goal will be at the front of the queue anyway.

Goal test after pop

General tree search (R&N Fig. 3.7)
Do not remember visited nodes

General graph search (R&N Fig. 3.7)
Do remember visited nodes

Goal test after pop

These three statements change tree search to graph search.

Tree-Search vs. Graph-Search
• Example : Assemble 5 objects {a, b, c, d, e}
• A state is a bit-vector (length 5), 1=object in assembly, 0= not in assembly

– 11010 = a=1, b=1, c=0, d=1, e=0
– ⇒ a, b, d in assembly; c, e not in assembly

• State space:
– Number of states = 2^5 = 32
– Number of undirected edges = (2^5)∙5∙½ = 80

• Tree search space:
– Number of nodes = number of paths = 5! = 120
– States can be reached in multiple ways

• 11010 can be reached by a+b+d or by a+d+b or by … etc.
– Often requires much more time, but much less space, than graph search

• Graph search space:
– Number of nodes = choose(5,0) + choose(5,1) + choose(5,2) + choose(5,3) +

choose(5,4) + choose(5,5) = 1 + 5 + 10 + 10 + 5 + 1 = 32
– States are reached in only one way, redundant paths are pruned

• Question: What if a better path is found to a state that already has been explored?
– Often requires much more space, but much less time, than tree search

Checking for identical nodes (1)
Check if a node is already in fringe-frontier

• It is “easy” to check if a node is already in the
fringe/frontier (recall fringe = frontier = open = queue)
– Keep a hash table holding all fringe/frontier nodes

• Hash size is same O(.) as priority queue, so hash does not increase overall
space O(.)

• Hash time is O(1), so hash does not increase overall time O(.)

– When a node is expanded, remove it from hash table (it is
no longer in the fringe/frontier)

– For each resulting child of the expanded node:
• If child is not in hash table, add it to queue (fringe) and hash table
• Else if an old lower- or equal-cost node is in hash, discard the new

higher- or equal-cost child
• Else remove and discard the old higher-cost node from queue and

hash, and add the new lower-cost child to queue and hash

Always do this for tree or graph search in BFS, UCS, GBFS, and A*

Checking for identical nodes (2)
Check if a node is in explored/expanded

• It is memory-intensive [O(bd) or O(bm)]to check if a
node is in explored/expanded (recall explored =
expanded = closed)
– Keep a hash table holding all explored/expanded nodes

(hash table may be HUGE!!)
• When a node is expanded, add it to hash (explored)
• For each resulting child of the expanded node:

– If child is not in hash table or in fringe/frontier, then add it
to the queue (fringe/frontier) and process normally (BFS
normal processing differs from UCS normal processing, but
the ideas behind checking a node for being in
explored/expanded are the same).

– Else discard any redundant node.
 Always do this for graph search

Checking for identical nodes (3)
Quick check for search being in a loop

• It is “moderately easy” to check for the search
being in a loop
– When a node is expanded, for each child:

• Trace back through parent pointers from child to root
• If an ancestor state is identical to the child, search is looping

– Discard child and fail on that branch
• Time complexity of child loop check is O(depth(child))
• Memory consumption is zero

– Assuming good garbage collection

• Does NOT solve the general problem of repeated
nodes only the specific problem of looping

• For quizzes and exams, we will follow your
textbook and NOT perform this loop check

function BRE ADT H-FIRST-SEARCH(problem) returns a solution, or failure
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node) frontier ←
a FIFO queue with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the shallowest node in frontier */
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child)
frontier ← INSE RT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

Breadth-first graph search (R&N Fig. 3.11)

Goal test before push

These three statements change tree search to graph search.

Avoid
redundant
frontier nodes

Breadth-first search

• Expand shallowest unexpanded node
• Frontier: nodes waiting in a queue to be explored

– also called Fringe, or OPEN

• Implementation:
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
– Goal test when inserted

Initial state = A
Is A a goal state?

Put A at end of queue:
Frontier = [A]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Breadth-first search

• Expand shallowest unexpanded node
• Frontier: nodes waiting in a queue to be explored

– also called Fringe, or OPEN

• Implementation:
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
– Goal test when inserted

Expand A to B,C
Is B or C a goal state?

Put B,C at end of queue:
Frontier = [B,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Breadth-first search

• Expand shallowest unexpanded node
• Frontier: nodes waiting in a queue to be explored

– also called Fringe, or OPEN

• Implementation:
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
– Goal test when inserted

Expand B to D,E
Is D or E a goal state?

Put D,E at end of queue:
Frontier = [C,D,E]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Breadth-first search

• Expand shallowest unexpanded node
• Frontier: nodes waiting in a queue to be explored

– also called Fringe, or OPEN

• Implementation:
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
– Goal test when inserted

Expand C to F, G
Is F or G a goal state?

Put F,G at end of queue:
Frontier = [D,E,F,G]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Breadth-first search

• Expand shallowest unexpanded node
• Frontier: nodes waiting in a queue to be explored

– also called Fringe, or OPEN

• Implementation:
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
– Goal test when inserted

Expand D; no children
Forget D

Frontier = [E,F,G]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Breadth-first search

• Expand shallowest unexpanded node
• Frontier: nodes waiting in a queue to be explored

– also called Fringe, or OPEN

• Implementation:
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
– Goal test when inserted

Expand E; no children
Forget E; B

Frontier = [F,G]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Example
BFS for
8-puzzle

Properties of breadth-first search

• Complete? Yes, it always reaches a goal (if b is finite)
• Time? 1 + b + b2 + b3 + … + bd = O(bd)
 (this is the number of nodes we generate)
• Space? O(bd)
 (keeps every node in memory, either in frontier or on a path to frontier).
• Optimal? No, for general cost functions.
 Yes, if cost is a non-decreasing function only of depth.

– With f(d) ≥ f(d-1), e.g., step-cost = constant:
• All optimal goal nodes occur on the same level
• Optimal goals are always shallower than non-optimal goals
• An optimal goal will be found before any non-optimal goal

• Usually Space is the bigger problem (more than time)

Depth of Nodes
Solution Expanded Time Memory

0 1 5 microseconds 100 bytes

2 111 0.5 milliseconds 11 kbytes

4 11,111 0.05 seconds 1 megabyte

8 108 9.25 minutes 11 gigabytes

12 1012 64 days 111 terabytes

Assuming b=10; 200k nodes/sec; 100 bytes/node

BFS: Time & Memory Costs

Uniform-cost search
Breadth-first is only optimal if path cost is a non-decreasing function of

depth, i.e., g(d) ≥ g(d-1); e.g., constant step cost, as in the 8-puzzle.
Can we guarantee optimality for variable positive step costs ≥ε?
 (Why ≥ε? To avoid infinite paths w/ step costs 1, ½, ¼, …)

Uniform-cost Search:
 Expand node with smallest path cost g(n).
• Frontier is a priority queue, i.e., new successors are merged into the

queue sorted by g(n).
– Can remove successors already on queue w/higher g(n).

• Saves memory, costs time; another space-time trade-off.

• Goal-Test when node is popped off queue.

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0
frontier ← a priority queue ordered by PAT H-COST, with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the lowest-cost node in frontier */
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node)
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

frontier ← INSE RT(child , frontier)
else if child .STAT E is in frontier with higher PAT H-COST then

replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier
needs to support efficient membership testing, so it should combine the capabilities of a priority
queue and a hash table.

Uniform cost search (R&N Fig. 3.14)
[A* is identical except queue sort = f(n)]

Goal test after pop

Avoid
redundant
frontier nodes

These three statements change tree search to graph search.

Avoid
higher-cost
frontier nodes

Proof of Completeness:
Assume (1) finite max branching factor = b; (2) min step cost ≥
ε > 0; (3) cost to optimal goal = C*. Then a node at depth
 1+C*/ε must have a path cost > C*. There are
O(b^(1+C*/ε) such nodes, so a goal will be found.

Proof of Optimality (given completeness):
Suppose that UCS is not optimal. Then there must be an
(optimal) goal state with path cost smaller than the found
(suboptimal) goal state (invoking completeness).
However, this is impossible because UCS would have
expanded that node first, by definition.
Contradiction.

Uniform-cost search

10

S

A

B

C

G
1

5

15

5

5
Route finding problem.
Steps labeled w/cost.

Order of node expansion:
Path found: Cost of path found:

S
g=0

Example: Uniform-cost search
(Search tree version)

10

S

A

B

C

G
1

5

15

5

5
Route finding problem.
Steps labeled w/cost.

Order of node expansion: S
Path found: Cost of path found:

S
g=0

B
g=5

C
g=15

A
g=1

Example: Uniform-cost search
(Search tree version)

10

S

A

B

C

G
1

5

15

5

5
Route finding problem.
Steps labeled w/cost.

Order of node expansion: S A
Path found: Cost of path found:

S
g=0

B
g=5

C
g=15

A
g=1

G
g=11

This early
expensive goal
node will go
back onto the
queue until after
the later
cheaper goal is
found.

Example: Uniform-cost search
(Search tree version)

10

S

A

B

C

G
1

5

15

5

5

Order of node expansion: S A B
Path found: Cost of path found:

S
g=0

B
g=5

C
g=15

A
g=1

G
g=11

G
g=10

Remove the higher-cost of identical nodes on the queue and
save memory. However, UCS is optimal even if this is not
done, since lower-cost nodes sort to the front.

Route finding problem.
Steps labeled w/cost.

Example: Uniform-cost search
(Search tree version)

10

S

A

B

C

G
1

5

15

5

5

Order of node expansion: S A B G
Path found: S B G Cost of path found: 10

S
g=0

B
g=5

C
g=15

A
g=1

G
g=11

G
g=10

Technically, the goal node is not really expanded,
because we do not generate the children of a goal
node. It is listed in “Order of node expansion” only for
your convenience, to see explicitly where it was found.

Route finding problem.
Steps labeled w/cost.

Example: Uniform-cost search
(Search tree version)

10

S

A

B

C

G
1

5

15

5

5

Order of node expansion:
Path found: Cost of path found:

Expanded:
Next:
Children:
Queue: S/g=0

Route finding problem.
Steps labeled w/cost.

Example: Uniform-cost search
(Virtual queue version)

10

S

A

B

C

G
1

5

15

5

5

Order of node expansion: S
Path found: Cost of path found:

Expanded: S/g=0
Next: S/g=0
Children: A/g=1, B/g=5, C/g=15
Queue: S/g=0, A/g=1, B/g=5, C/g=15

Route finding problem.
Steps labeled w/cost.

Example: Uniform-cost search
(Virtual queue version)

10

S

A

B

C

G
1

5

15

5

5

Order of node expansion: S A
Path found: Cost of path found:

Expanded: S/g=0, A/g=1
Next: A/g=1
Children: G/g=11
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11

Note that in a proper priority queue in a computer system, this queue
would be sorted by g(n). For hand-simulated search it is more
convenient to write children as they occur, and then scan the current
queue to pick the highest-priority node on the queue.

Route finding problem.
Steps labeled w/cost.

Example: Uniform-cost search
(Virtual queue version)

10

S

A

B

C

G
1

5

15

5

5

Order of node expansion: S A B
Path found: Cost of path found:

Expanded: S/g=0, A/g=1, B/g=5
Next: B/g=5
Children: G/g=10
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11, G/g=10

Route finding problem.
Steps labeled w/cost.

Example: Uniform-cost search
(Virtual queue version)

Remove the higher-cost of identical nodes on the queue and
save memory. However, UCS is optimal even if this is not
done, since lower-cost nodes sort to the front.

Expanded: S/g=0, A/g=1, B/g=5, G/g=10
Next: G/g=10
Children: none
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11, G/g=10

10

S

A

B

C

G
1

5

15

5

5

Order of node expansion: S A B G
Path found: S B G Cost of path found: 10

Technically, the goal node is not really expanded,
because we do not generate the children of a goal
node. It is listed in “Order of node expansion” only for
your convenience, to see explicitly where it was found.

The same “Order of node expansion”, “Path found”,
and “Cost of path found” is obtained by both methods.
They are formally equivalent to each other in all ways.

Route finding problem.
Steps labeled w/cost.

Example: Uniform-cost search
(Virtual queue version)

Uniform-cost search
Implementation: Frontier = queue ordered by path cost.
Equivalent to breadth-first if all step costs all equal.

•Complete? Yes, if b is finite and step cost ≥ ε > 0.
 (otherwise it can get stuck in infinite regression)

•Time? # of nodes with path cost ≤ cost of optimal solution.
 O(b1+C*/ε) ≈ O(bd+1)

•Space? # of nodes with path cost ≤ cost of optimal solution.
 O(b1+C*/ε) ≈ O(bd+1).

•Optimal? Yes, for step cost ≥ ε > 0.

S B

A D

E

C

F

G

1 20

2

3

4 8

6 1
1

The graph above shows the step-costs for different paths going from the start (S) to
the goal (G).

Use uniform cost search to find the optimal path to the goal.

Exercise for home

• Why require step cost ≥ ε > 0?
– Otherwise, an infinite regress is possible.
– Recall:

Uniform cost search

S

G

G is the only goal node
in the search space.

S is the start node.

cost(S,G) = 1

g(G) = 1

A

B

D

C

cost(S,A) = 1/2
g(A) = 1/2

cost(A,B) = 1/4
g(B) = 3/4

cost(B,C) = 1/8
g(C) = 7/8

cost(C,D) = 1/16
g(D) = 15/16

No return from this branch.
G will never be popped.

...

Iterative Deepening Search
• To avoid the infinite depth problem of DFS:

– Only search until depth L
– i.e, don’t expand nodes beyond depth L
– Depth-Limited Search

• What if solution is deeper than L?
– Increase depth iteratively
– Iterative Deepening Search

• IDS GENERALLY THE PREFERRED UNINFORMED SEARCH
– Inherits the memory advantage of depth-first search
– Has the completeness property of breadth-first search

Depth-limited search & IDS (R&N Fig. 3.17-18)

Goal test in
recursive call,
one-at-a-time

At depth = 0, IDS only goal-tests
the start node. The start node is
is not expanded at depth = 0.

Iterative Deepening Search, L=0

At L=0, the start node is
goal-tested but no nodes
are expanded. This is so
that you can solve trick
problems like, “Starting in
Arad, go to Arad.”

Iterative Deepening Search, L=1

At L=1, the start node is expanded.
Its children are goal-tested, but not
expanded. Recall that to expand a
node means to generate its children.

Iterative Deepening Search, L=2

At L=2, the start node and its children
are expanded. Its grand-children are
goal-tested, but not expanded.

Iterative Deepening Search, L=3

At L=3, the start node, its children, and its
grand-children are expanded. Its great-grand-
children are goal-tested, but not expanded.

Iterative Deepening Search
• Number of nodes generated in a depth-limited search to

depth d with branching factor b:
 NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search

to depth d with branching factor b:
 NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

 = O(bd)

• For b = 10, d = 5,

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

 [Ratio: b/(b-1)]

Properties of iterative deepening search

• Complete? Yes

• Time? O(bd)

• Space? O(bd)

• Optimal? No, for general cost functions.
 Yes, if cost is a non-decreasing function only of

depth.

Generally the preferred uninformed search strategy.

Depth-First Search (R&N Section 3.4.3)

• Your textbook is ambiguous about DFS.
– The second paragraph of R&N 3.4.3 states that DFS is an

instance of Fig. 3.7 using a LIFO queue. Search behavior
may differ depending on how the LIFO queue is
implemented (as separate pushes, or one concatenation).

– The third paragraph of R&N 3.4.3 says that an alternative
implementation of DFS is a recursive algorithm that calls
itself on each of its children, as in the Depth-Limited
Search of Fig. 3.17 (above).

• For quizzes and exams, we will follow Fig. 3.17.

Depth-first search

• Expand deepest unexpanded node
• Frontier = Last In First Out (LIFO) queue, i.e., new successors

go at the front of the queue.
• Goal-Test first step of recursive call (R&N, Fig. 3.17).

Initial state = A
Put A at front of queue
(note: queue is on stack)
queue/frontier = [A]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is A a goal state? No.
Expand A to B, C.

Put B, C at front of queue
(note: queue is on stack)
queue/frontier = [B,C]

Note: Can save a space factor of b by generating successors one at a time.
See backtracking search in your book, p. 87 and Chapter 6.

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is B a goal state? No.
Expand B to D, E.

Put D, E at front of queue
(note: queue is on stack)
queue/frontier = [D,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is D a goal state? No.
Expand D to H, I.

Put H, I at front of queue
(note: queue is on stack)
queue/frontier = [H,I,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is H a goal state? No.
Expand H to no children.
Forget H.

(note: queue is on stack)
queue/frontier = [I,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is I a goal state? No.
Expand I to no children.
Forget D, I.

(note: queue is on stack)
queue/frontier = [E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is E a goal state? No.
Expand E to J, K.

Put J, K at front of queue.
(note: queue is on stack)
queue/frontier = [J,K,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is J a goal state? No.
Expand J to no children.
Forget J.

(note: queue is on stack)
queue/frontier = [K,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is K a goal state? No.
Expand K to no children.
Forget B, E, K.

(note: queue is on stack)
queue/frontier = [C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Depth-first search

• Expand deepest unexpanded node
– Frontier = LIFO queue, i.e., put successors at front

Is C a goal state? No.
Expand C to F, G.

Put F, G at front of queue.
(note: queue is on stack)
queue/frontier = [F,G]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Properties of depth-first search

• Complete? No: fails in loops/infinite-depth spaces
– Can modify to avoid loops/repeated states along path

• check if current nodes occurred before on path to root
– Can use graph search (remember all nodes ever seen)

• problem with graph search: space is exponential, not linear
– Still fails in infinite-depth spaces (may miss goal entirely)

• Time? O(bm) with m =maximum depth of space
– Terrible if m is much larger than d
– If solutions are dense, may be much faster than BFS

• Space? O(bm), i.e., linear space!
– Remember a single path + expanded unexplored nodes

• Optimal? No: It may find a non-optimal goal first

A

B C

Comparing DFS and BFS

• BFS is optimal if path cost is non-decreasing function of depth, DFS is not
• Worst-case Time Complexity: BFS = O(bd), DFS = O(bm); m may be infinite

– In the worst-case, BFS is always better than DFS
• Sometimes, on the average, DFS is better if:

– Many goals, no loops, and no long or infinite paths
– Thus, DFS may luckily blunder into an early goal

• BFS is much worse memory-wise
– BFS may store the whole search space

• DFS can be linear space
– Stores only the nodes on the path from the current leaf to the root

• In general:
– BFS is better if shallow goals, many long paths, many loops, small search space
– DFS is better if many goals, not many loops (easy to check), few long or infinite

paths (hard to check), huge search space
– DFS is always much better in terms of memory

Bidirectional Search
• Idea

– simultaneously search forward from S and backwards from G
– stop when both “meet in the middle”
– need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean

– need a way to specify the predecessors of G
• this can be difficult,
• e.g., predecessors of checkmate in chess?

– what if there are multiple goal states?
– what if there is only a goal test, no explicit list?

• Complexity

– time complexity is best: O(2 b(d/2)) = O(b (d/2))
– memory complexity is the same as time complexity

Bi-Directional Search

Bidirectional search termination
• R&N Sec. 3.4.6 discusses the BDS termination condition for BFS.

– To clarify it, and to handle UCS:
• For BFS, the search terminates when one fringe expands a node and discovers

that one of the new children is present in the other fringe. This is quick and
easy because the other fringe already maintains a hash table holding its fringe,
as discussed in the lecture slides about removing duplicate nodes from the
fringe, so you just look up the new child in the other fringe's hash table. If
present, then you join the path from the Start to that child to the reverse of
the path from the Goal to that child, and you have your path from Start to
Goal. The first such solution found may not be optimal; some additional search
is required to make sure there isn’t a short-cut across the gap.

• For UCS, the same applies, except that afterward you must continue searching
until the sum of the costs of the nodes at the head of each queue is greater
than or equal to the cost of the path you just found. This continuation
guarantees that there is not a longer cheaper path somewhere in the queues.
Of course, if you find a cheaper solution as the search winds down, it replaces
the previous solution.

Summary of algorithms

Generally the preferred
uninformed search strategy

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening
DLS

Bidirectional
(if applicable)

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d]

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d]

There are a number of footnotes, caveats, and assumptions.
See Fig. 3.21, p. 91.
[a] complete if b is finite
[b] complete if step costs ≥ ε > 0
[c] optimal if step costs are all identical
 (also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search
 (also if both directions use uniform-cost search with step costs ≥ ε > 0)

Note that d ≤ 1+C*/ε

You should know…
• Overview of uninformed search methods

• Search strategy evaluation
– Complete? Time? Space? Optimal?
– Max branching (b), Solution depth (d), Max depth (m)
– (for UCS: C*: true cost to optimal goal; ε > 0: minimum step cost)

• Search Strategy Components and Considerations
– Queue? Goal Test when? Tree search vs. Graph search?

• Various blind strategies:
– Breadth-first search
– Uniform-cost search
– Depth-first search
– Iterative deepening search (generally preferred)
– Bidirectional search (preferred if applicable)

Summary

• Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

http://www.cs.rmit.edu.au/AI-Search/Product/
http://aima.cs.berkeley.edu/demos.html (for more demos)

http://www.cs.rmit.edu.au/AI-Search/Product/
http://aima.cs.berkeley.edu/demos.html

	Uninformed Search
	Uninformed search strategies
	Basic graph/tree search scheme
	Search strategy evaluation
	Uninformed search design choices
	Queue for Frontier
	When to do goal test? (General)
	When to do Goal-Test? (Summary)
	General tree search (R&N Fig. 3.7)�Do not remember visited nodes
	General graph search (R&N Fig. 3.7)�Do remember visited nodes
	Tree-Search vs. Graph-Search
	Checking for identical nodes (1)�Check if a node is already in fringe-frontier
	Checking for identical nodes (2)�Check if a node is in explored/expanded
	Checking for identical nodes (3)�Quick check for search being in a loop
	Breadth-first graph search (R&N Fig. 3.11)
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Slide Number 23
	Properties of breadth-first search
	BFS: Time & Memory Costs
	Uniform-cost search
	Uniform cost search (R&N Fig. 3.14)�[A* is identical except queue sort = f(n)]
	Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Example: Uniform-cost search
	Uniform-cost search
	Slide Number 45
	Uniform cost search
	Iterative Deepening Search
	Depth-limited search & IDS (R&N Fig. 3.17-18)
	Iterative Deepening Search, L=0
	Iterative Deepening Search, L=1
	Iterative Deepening Search, L=2
	Iterative Deepening Search, L=3
	Iterative Deepening Search
	Properties of iterative deepening search
	Depth-First Search (R&N Section 3.4.3)
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Properties of depth-first search
	Comparing DFS and BFS
	Bidirectional Search
	Bi-Directional Search
	Bidirectional search termination
	Summary of algorithms
	You should know…
	Summary

