
Uninformed Search 

CS171, Fall Quarter, 2018 
Introduction to Artificial Intelligence 

Prof. Richard Lathrop 
 
 Read Beforehand: R&N 3.4 



Uninformed search strategies 

• Uninformed (blind): 
– You have no clue whether one non-goal state is better than any other. 

Your search is blind. You don’t know if your current exploration is likely 
to be fruitful. 

 
• Various blind strategies: 

– Breadth-first search 
– Uniform-cost search 
– Depth-first search 
– Iterative deepening search (generally preferred) 
– Bidirectional search (preferred if applicable) 



Basic graph/tree search scheme 
• We have 3 kinds of states: 

– [only for graph search: explored (past states; = closed list) ] 
– frontier (current nodes; = open list, fringe, queue) [nodes now on the queue] 
– unexplored (future nodes) [implicitly given] 

• Initially, frontier =  MakeNode( start state)  
• Loop until solution is found or state space is exhausted 

– pick/remove first node from queue/frontier/fringe/open using search strategy 
– if node is a goal then return node 
– [only for graph search: add node to explored/closed] 
– expand this node, add children to frontier only if not already in frontier 

• [only for graph search: add children only if their state is not in explored/closed list] 
 

• Question: 
– what if a better path is found to a node already in frontier or on explored list? 



Search strategy evaluation 
• A search strategy is defined by the order of node expansion 

 

• Strategies are evaluated along the following dimensions: 
– completeness: does it always find a solution if one exists? 
– time complexity: number of nodes generated 
– space complexity: maximum number of nodes in memory 
– optimality: does it always find a least-cost solution? 

 

• Time and space complexity are measured in terms of  
– b: maximum branching factor of the search tree (always finite) 
– d: depth of the least-cost solution 
– m: maximum depth of the state space (may be ∞) 
– (for UCS: C*: true cost to optimal goal; ε > 0: minimum step cost) 



Uninformed search design choices 
• Queue for Frontier: 

– FIFO? LIFO? Priority? If Priority, what sort function? 
 

• Goal-Test: 
– Do goal-test when node inserted into Frontier? 
– Do goal-test when node removed? 

 

• Tree Search, or Graph Search: 
– Forget Expanded (or Explored, Closed, Fig. 3.7) nodes? 

• = Tree Search:  Smaller memory cost, but larger search time 
– Or remember them? 

• = Graph Search: Smaller search time, but larger memory cost 
– Classic space/time computational tradeoff 



Queue for Frontier 
• FIFO (First In, First Out) 

– Results in Breadth-First Search 
 

• LIFO (Last In, First Out) 
– Results in Depth-First Search 

 

• Priority Queue sorted by path cost so far 
– Results in Uniform Cost Search 

 

• Iterative Deepening Search uses Depth-First 
 

• Bidirectional Search can use either Breadth-First or Uniform 
Cost Search 



When to do goal test? (General) 
• Do Goal-Test when node is popped from queue: 
 IF you care about finding the optimal path 
 AND your search space may have both short expensive and long 

cheap paths to a goal. 
– Guard against a short expensive goal. 
– E.g., Uniform Cost search with variable step costs. 

•  Otherwise, do Goal-Test when is node generated and inserted. 
– Usually, most of the search cost goes into creating the children (storage 

allocation, data structure creation, etc.), while the goal-test is usually fast 
and light-weight (am I in Bucharest? even the complicated ‘check-mate?’ 
goal-test in chess usually is fast because it does little or no storage 
allocation or data structure creation). 

– So most efficient search does goal-test as soon as nodes are generated. 
• REASON ABOUT your search space & problem. 

– How could I possibly find a non-optimal goal? 



When to do Goal-Test?  (Summary) 
• For BFS, the goal test is done when the child node is generated. 

– Not an optimal search in the general case. 
• For DLS, IDS, and DFS as in Fig. 3.17, goal test is done in the recursive call. 

– Result is that children are generated then iterated over. For each child DLS, is 
called recursively, goal-test is done first in the callee, and the process repeats. 

– More efficient search goal-tests children as generated. We follow your text. 
• For DFS as in Fig. 3.7, goal test is done when node is popped. 

– Search behavior depends on how the LIFO queue is implemented. 
• For UCS and A*(next lecture), goal test when node removed from queue. 

– This avoids finding a short expensive path before a long cheap path. 
• Bidirectional search can use either BFS or UCS. 

– Goal-test is search fringe intersection, see additional complications below 
• For GBFS (next lecture) the behavior is the same either way  

– h(goal)=0 so any goal will be at the front of the queue anyway. 



Goal test after pop 

General tree search (R&N Fig. 3.7) 
Do not remember visited nodes 



General graph search (R&N Fig. 3.7) 
Do remember visited nodes 

Goal test after pop 

These three statements change tree search to graph search. 



Tree-Search vs. Graph-Search 
• Example : Assemble 5 objects {a, b, c, d, e} 
• A state is a bit-vector (length 5), 1=object in assembly, 0= not in assembly 

– 11010 = a=1, b=1, c=0, d=1, e=0 
– ⇒ a, b, d in assembly; c, e not in assembly 

• State space: 
– Number of states = 2^5 = 32 
– Number of undirected edges = (2^5)∙5∙½ = 80 
 

• Tree search space: 
– Number of nodes = number of paths = 5! = 120 
– States can be reached in multiple ways 

• 11010 can be reached by a+b+d or by a+d+b or by … etc.  
– Often requires much more time, but much less space, than graph search 

• Graph search space:  
– Number of nodes = choose(5,0) + choose(5,1) + choose(5,2) + choose(5,3) + 

choose(5,4) + choose(5,5) = 1 + 5 + 10 + 10 + 5 + 1 = 32 
– States are reached in only one way, redundant paths are pruned 

• Question: What if a better path is found to a state that already has been explored? 
– Often requires much more space, but much less time, than tree search 

 



Checking for identical nodes (1) 
Check if a node is already in fringe-frontier 

• It is “easy” to check if a node is already in the 
fringe/frontier (recall fringe = frontier = open = queue) 
– Keep a hash table holding all fringe/frontier nodes 

• Hash size is same O(.) as priority queue, so hash does not increase overall 
space O(.) 

• Hash time is O(1), so hash does not increase overall time O(.) 

– When a node is expanded, remove it from hash table (it is 
no longer in the fringe/frontier) 

– For each resulting child of the expanded node: 
• If child is not in hash table, add it to queue (fringe) and hash table 
• Else if an old lower- or equal-cost node is in hash, discard the new 

higher- or equal-cost child 
• Else remove and discard the old higher-cost node from queue and 

hash, and add the new lower-cost child to queue and hash 
 

 
Always do this for tree or graph search in BFS, UCS, GBFS, and A* 



Checking for identical nodes (2) 
Check if a node is in explored/expanded 

• It is memory-intensive [ O(bd) or O(bm) ]to  check if a 
node is in explored/expanded (recall explored = 
expanded = closed) 
– Keep a hash table holding all explored/expanded nodes 

(hash table may be HUGE!!) 
• When a node is expanded, add it to hash (explored) 
• For each resulting child of the expanded node: 

– If child is not in hash table or in fringe/frontier, then add it 
to the queue (fringe/frontier) and process normally (BFS 
normal processing differs from UCS normal processing, but 
the ideas behind checking a node for being in 
explored/expanded are the same). 

– Else discard any redundant node. 
 Always do this for graph search 



Checking for identical nodes (3) 
Quick check for search being in a loop 

• It is “moderately easy” to check for the search 
being in a loop 
– When a node is expanded, for each child: 

• Trace back through parent pointers from child to root 
• If an ancestor state is identical to the child, search is looping 

– Discard child and fail on that branch 
• Time complexity of child loop check is O( depth(child) ) 
• Memory consumption is zero 

– Assuming good garbage collection 

• Does NOT solve the general problem of repeated 
nodes  only the specific problem of looping 

• For quizzes and exams, we will follow your 
textbook and NOT perform this loop check 



function BRE ADT H-FIRST-SEARCH( problem ) returns a solution, or failure 
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if 
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node ) frontier ← 
a FIFO queue with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the shallowest node in frontier */ 
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child ) 
frontier ← INSE RT(child , frontier ) 

 
Figure 3.11     Breadth-first search on a graph. 

Breadth-first graph search (R&N Fig. 3.11) 

Goal test before push 

These three statements change tree search to graph search. 

Avoid 
redundant 
frontier nodes 



Breadth-first search 

• Expand shallowest unexpanded node 
• Frontier: nodes waiting in a queue to be explored 

– also called Fringe, or OPEN 

• Implementation: 
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end) 
– Goal test when inserted 

Initial state = A 
Is A a goal state? 
 
Put A at end of queue: 
Frontier = [A] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Breadth-first search 

• Expand shallowest unexpanded node 
• Frontier: nodes waiting in a queue to be explored 

– also called Fringe, or OPEN 

• Implementation: 
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end) 
– Goal test when inserted 

Expand A to B,C 
Is B or C a goal state? 
 
 
Put B,C at end of queue: 
Frontier = [B,C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Breadth-first search 

• Expand shallowest unexpanded node 
• Frontier: nodes waiting in a queue to be explored 

– also called Fringe, or OPEN 

• Implementation: 
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end) 
– Goal test when inserted 

Expand B to D,E 
Is D or E a goal state? 
 
Put D,E at end of queue: 
Frontier = [C,D,E] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Breadth-first search 

• Expand shallowest unexpanded node 
• Frontier: nodes waiting in a queue to be explored 

– also called Fringe, or OPEN 

• Implementation: 
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end) 
– Goal test when inserted 

Expand C to F, G 
Is F or G a goal state? 
 
Put F,G at end of queue: 
Frontier = [D,E,F,G] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Breadth-first search 

• Expand shallowest unexpanded node 
• Frontier: nodes waiting in a queue to be explored 

– also called Fringe, or OPEN 

• Implementation: 
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end) 
– Goal test when inserted 

Expand D; no children 
Forget D 
 
 
Frontier = [E,F,G] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Breadth-first search 

• Expand shallowest unexpanded node 
• Frontier: nodes waiting in a queue to be explored 

– also called Fringe, or OPEN 

• Implementation: 
– Frontier is a first-in-first-out (FIFO) queue (new successors go at end) 
– Goal test when inserted 

Expand E; no children 
Forget E; B 
 
 
Frontier = [F,G] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Example 
BFS for 
8-puzzle 



Properties of breadth-first search 

• Complete? Yes, it always reaches a goal (if b is finite) 
• Time?   1 + b + b2 + b3 + … + bd = O(bd) 
             (this is the number of nodes we generate) 
• Space?  O(bd)  
  (keeps every node in memory, either in frontier or on a path to frontier). 
• Optimal?  No, for general cost functions. 
   Yes, if cost is a non-decreasing function only of depth. 

– With f(d) ≥ f(d-1), e.g., step-cost = constant: 
• All optimal goal nodes occur on the same level 
• Optimal goals are always shallower than non-optimal goals 
• An optimal goal will be found before any non-optimal goal 

 
• Usually Space is the bigger problem (more than time) 



Depth of   Nodes 
Solution  Expanded  Time  Memory 
 
0  1  5 microseconds 100 bytes 
 
2  111  0.5 milliseconds 11 kbytes 
 
4  11,111  0.05 seconds 1 megabyte 
 
8  108  9.25 minutes 11 gigabytes 
 
12  1012  64 days  111 terabytes
  

Assuming b=10;  200k nodes/sec; 100 bytes/node  

BFS: Time & Memory Costs 



Uniform-cost search 
Breadth-first is only optimal if path cost is a non-decreasing function of 

depth, i.e., g(d) ≥ g(d-1); e.g., constant step cost, as in the 8-puzzle. 
Can we guarantee optimality for variable positive step costs ≥ε? 
 (Why ≥ε? To avoid infinite paths w/ step costs 1, ½, ¼, …) 
 
Uniform-cost Search: 
 Expand node with smallest path cost g(n). 
• Frontier is a priority queue, i.e., new successors are merged into the 

queue sorted by g(n). 
– Can remove successors already on queue w/higher g(n). 

• Saves memory, costs time; another space-time trade-off. 

• Goal-Test when node is popped off queue. 
 



function UNIFORM-COST-SEARCH( problem ) returns a solution, or failure 
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0  
frontier ← a priority queue ordered by PAT H-COST, with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the lowest-cost node in frontier */ 
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node )  
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

frontier ← INSE RT(child , frontier ) 
else if child .STAT E is in frontier with higher PAT H-COST then 

replace that frontier node with child 
 

Figure 3.14     Uniform-cost search on a graph.  The algorithm is identical to the general 
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an 
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier 
needs to support efficient membership testing, so it should combine the capabilities of a priority 
queue and a hash table. 

Uniform cost search (R&N Fig. 3.14) 
[A* is identical except queue sort = f(n)] 

Goal test after pop 

Avoid 
redundant 
frontier nodes 

These three statements change tree search to graph search. 

Avoid 
higher-cost 
frontier nodes 



Proof of Completeness: 
Assume (1) finite max branching factor = b; (2) min step cost ≥ 
ε > 0; (3) cost to optimal goal = C*. Then a node at depth 
 1+C*/ε  must have a path cost > C*. There are 
O( b^( 1+C*/ε  ) such nodes, so a goal will be found. 

Proof of Optimality (given completeness): 
Suppose that UCS is not optimal. Then there must be an 
(optimal) goal state with path cost smaller than the found 
(suboptimal) goal state (invoking completeness). 
However, this is impossible because UCS would have 
expanded that node first, by definition. 
Contradiction. 

Uniform-cost search 
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Route finding problem. 
Steps labeled w/cost. 

Order of node expansion:      
Path found:    Cost of path found:   
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Example: Uniform-cost search 
(Search tree version) 



10 

S 

A 

B 

C 

G 
1 

5 

15 

5 

5 
Route finding problem. 
Steps labeled w/cost. 

Order of node expansion:  S     
Path found:    Cost of path found:   

S 
g=0 

B 
g=5 

C 
g=15 

A 
g=1 

Example: Uniform-cost search 
(Search tree version) 
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Route finding problem. 
Steps labeled w/cost. 

Order of node expansion:  S A    
Path found:    Cost of path found:   

S 
g=0 

B 
g=5 
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g=15 

A 
g=1 

G 
g=11 

This early 
expensive goal 
node will go 
back onto the 
queue until after 
the later 
cheaper goal is 
found. 

Example: Uniform-cost search 
(Search tree version) 
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Order of node expansion:  S A B    
Path found:    Cost of path found:   

S 
g=0 
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Remove the higher-cost of identical nodes on the queue and 
save memory. However, UCS is optimal even if this is not 
done, since lower-cost nodes sort to the front. 

Route finding problem. 
Steps labeled w/cost. 

Example: Uniform-cost search 
(Search tree version) 
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Order of node expansion:  S A B G    
Path found:  S B G  Cost of path found:  10  
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Technically, the goal node is not really expanded, 
because we do not generate the children of a goal 
node. It is listed in “Order of node expansion” only for 
your convenience, to see explicitly where it was found. 

Route finding problem. 
Steps labeled w/cost. 

Example: Uniform-cost search 
(Search tree version) 
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Path found:    Cost of path found:   

Expanded: 
Next: 
Children: 
Queue: S/g=0 

Route finding problem. 
Steps labeled w/cost. 

Example: Uniform-cost search 
(Virtual queue version) 
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Order of node expansion:  S    
Path found:    Cost of path found:   

Expanded: S/g=0 
Next: S/g=0 
Children: A/g=1, B/g=5, C/g=15 
Queue: S/g=0, A/g=1, B/g=5, C/g=15 

Route finding problem. 
Steps labeled w/cost. 

Example: Uniform-cost search 
(Virtual queue version) 
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Order of node expansion:  S A    
Path found:    Cost of path found:   

Expanded: S/g=0, A/g=1 
Next: A/g=1 
Children: G/g=11 
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11 

Note that in a proper priority queue in a computer system, this queue 
would be sorted by g(n). For hand-simulated search it is more 
convenient to write children as they occur, and then scan the current 
queue to pick the highest-priority node on the queue. 

Route finding problem. 
Steps labeled w/cost. 

Example: Uniform-cost search 
(Virtual queue version) 
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Order of node expansion:  S A B    
Path found:    Cost of path found:   

Expanded: S/g=0, A/g=1, B/g=5 
Next: B/g=5 
Children: G/g=10 
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11, G/g=10 

Route finding problem. 
Steps labeled w/cost. 

Example: Uniform-cost search 
(Virtual queue version) 

Remove the higher-cost of identical nodes on the queue and 
save memory. However, UCS is optimal even if this is not 
done, since lower-cost nodes sort to the front. 



Expanded: S/g=0, A/g=1, B/g=5, G/g=10 
Next: G/g=10 
Children: none 
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11, G/g=10 
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Order of node expansion:  S A B G    
Path found:  S B G   Cost of path found:  10  

Technically, the goal node is not really expanded, 
because we do not generate the children of a goal 
node. It is listed in “Order of node expansion” only for 
your convenience, to see explicitly where it was found. 

The same “Order of node expansion”, “Path found”, 
and “Cost of path found” is obtained by both methods. 
They are formally equivalent to each other in all ways. 

Route finding problem. 
Steps labeled w/cost. 

Example: Uniform-cost search 
(Virtual queue version) 



Uniform-cost search 
Implementation: Frontier = queue ordered by path cost. 
Equivalent to breadth-first if all step costs all equal. 
 
•Complete? Yes, if b is finite and step cost ≥ ε > 0. 
                     (otherwise it can get stuck in infinite regression) 

 

•Time? # of nodes with path cost ≤ cost of optimal solution.  
  O(b1+C*/ε) ≈ O(bd+1) 

 

•Space? # of nodes with path cost ≤ cost of optimal solution.    
  O(b1+C*/ε) ≈ O(bd+1). 

 

•Optimal? Yes, for step cost ≥ ε > 0. 
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The graph above shows the step-costs for different paths going from the start (S) to  
the goal (G).  
 
Use uniform cost search to find the optimal path to the goal. 
 
 

Exercise for home 



• Why require step cost ≥ ε > 0? 
– Otherwise, an infinite regress is possible. 
– Recall: 

Uniform cost search 

S 

G 

G is the only goal node 
in the search space. 

S is the start node. 

cost(S,G) = 1 

g(G) = 1 

A 

B 

D 

C 

cost(S,A) = 1/2 
g(A) = 1/2 

cost(A,B) = 1/4 
g(B) = 3/4 

cost(B,C) = 1/8 
g(C) = 7/8 

cost(C,D) = 1/16 
g(D) = 15/16 

No return from this branch. 
G will never be popped. 

... 



Iterative Deepening Search 
• To avoid the infinite depth problem of DFS: 

– Only search until depth L 
– i.e, don’t expand nodes beyond depth L 
– Depth-Limited Search 

 

• What if solution is deeper than L? 
– Increase depth iteratively 
– Iterative Deepening Search 

 

• IDS  GENERALLY THE PREFERRED UNINFORMED SEARCH 
– Inherits the memory advantage of depth-first search 
– Has the completeness property of breadth-first search 



Depth-limited search & IDS (R&N Fig. 3.17-18) 

Goal test in 
recursive call, 
one-at-a-time 

At depth = 0, IDS only goal-tests 
the start node. The start node is 
is not expanded at depth = 0. 



Iterative Deepening Search,   L=0 

At L=0, the start node is 
goal-tested but no nodes 
are expanded.  This is so 
that you can solve trick 
problems like, “Starting in 
Arad, go to Arad.” 



Iterative Deepening Search,   L=1 

At L=1, the start node is expanded. 
Its children are goal-tested, but not 
expanded. Recall that to expand a 
node means to generate its children. 



Iterative Deepening Search,   L=2 

At L=2, the start node and its children 
are expanded. Its grand-children are 
goal-tested, but not expanded. 



Iterative Deepening Search,   L=3 

At L=3, the start node, its children, and its 
grand-children are expanded. Its great-grand-
children are goal-tested, but not expanded. 



Iterative Deepening Search 
• Number of nodes generated in a depth-limited search to 

depth d with branching factor b:  
 NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd  

 
• Number of nodes generated in an iterative deepening search 

to depth d with branching factor b:  
   NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd 

          = O(bd) 
 

 
• For b = 10, d = 5, 

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111 
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 

 [ Ratio: b/(b-1) ] 



Properties of iterative deepening search 

• Complete?  Yes 
 

• Time?  O(bd) 
 

• Space? O(bd) 
 

• Optimal?  No, for general cost functions. 
  Yes, if cost is a non-decreasing function only of 

depth. 
 
Generally the preferred uninformed search strategy. 

 



Depth-First Search (R&N Section 3.4.3) 

• Your textbook is ambiguous about DFS. 
– The second paragraph of R&N 3.4.3 states that DFS is an 

instance of Fig. 3.7 using a LIFO queue. Search behavior 
may differ depending on how the LIFO queue is 
implemented (as separate pushes, or one concatenation). 

– The third paragraph of R&N 3.4.3 says that an alternative 
implementation of DFS is a recursive algorithm that calls 
itself on each of its children, as in the Depth-Limited 
Search of Fig. 3.17 (above). 

• For quizzes and exams, we will follow Fig. 3.17. 
 



Depth-first search 

• Expand deepest unexpanded node 
• Frontier = Last In First Out (LIFO) queue, i.e., new successors 

go at the front of the queue. 
• Goal-Test first step of recursive call (R&N, Fig. 3.17). 
 

 
 

Initial state = A 
Put A at front of queue 
(note: queue is on stack) 
queue/frontier = [A] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is A a goal state? No. 
Expand A to B, C.  
 
Put B, C at front of queue 
(note: queue is on stack) 
queue/frontier = [B,C] 

Note: Can save a space factor of b by generating successors one at a time. 
See backtracking search in your book, p. 87 and Chapter 6. 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is B a goal state? No. 
Expand B to D, E.  
 
Put D, E at front of queue 
(note: queue is on stack) 
queue/frontier = [D,E,C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is D a goal state? No. 
Expand D to H, I.  
 
Put H, I at front of queue 
(note: queue is on stack) 
queue/frontier = [H,I,E,C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is H a goal state? No. 
Expand H to no children. 
Forget H. 
 
(note: queue is on stack) 
queue/frontier = [I,E,C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is I a goal state? No. 
Expand I to no children. 
Forget D, I. 
 
(note: queue is on stack) 
queue/frontier = [E,C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is E a goal state? No. 
Expand E to J, K.  
 
Put J, K at front of queue. 
(note: queue is on stack) 
queue/frontier = [J,K,C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is J a goal state? No. 
Expand J to no children. 
Forget J. 
 
(note: queue is on stack) 
queue/frontier = [K,C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is K a goal state? No. 
Expand K to no children. 
Forget B, E, K. 
 
(note: queue is on stack) 
queue/frontier = [C] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Depth-first search 

• Expand deepest unexpanded node 
– Frontier = LIFO queue, i.e., put successors at front 

Is C a goal state? No. 
Expand C to F, G. 
 
Put F, G at front of queue. 
(note: queue is on stack) 
queue/frontier = [F,G] 

Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 



Properties of depth-first search 

• Complete? No: fails in loops/infinite-depth spaces 
– Can modify to avoid loops/repeated states along path 

• check if current nodes occurred before on path to root  
– Can use graph search (remember all nodes ever seen) 

• problem with graph search: space is exponential, not linear 
– Still fails in infinite-depth spaces (may miss goal entirely) 

 

• Time? O(bm) with m =maximum depth of space 
– Terrible if m is much larger than d 
–  If solutions are dense, may be much faster than BFS 

 

• Space? O(bm), i.e., linear space! 
– Remember a single path + expanded unexplored nodes 

 
• Optimal?  No: It may find a non-optimal goal first 

A 

B C 



Comparing DFS and BFS 
 

• BFS is optimal if path cost is non-decreasing function of depth, DFS is not 
• Worst-case Time Complexity: BFS = O(bd), DFS = O(bm); m may be infinite 

– In the worst-case, BFS is always better than DFS 
• Sometimes, on the average, DFS is better if: 

– Many goals, no loops, and no long or infinite paths 
– Thus, DFS may luckily blunder into an early goal 

• BFS is much worse memory-wise 
– BFS may store the whole search space 

• DFS can be linear space 
– Stores only the nodes on the path from the current leaf to the root 

• In general: 
– BFS is better if shallow goals, many long paths, many loops, small search space 
– DFS is better if many goals, not many loops (easy to check), few long or infinite 

paths (hard to check), huge search space 
– DFS is always much better in terms of memory  



Bidirectional Search 
• Idea 

– simultaneously search forward from S and backwards from G 
– stop when both “meet in the middle” 
– need to keep track of the intersection of 2 open sets of nodes 

 
• What does searching backwards from G mean 

– need a way to specify the predecessors of G 
• this can be difficult,  
• e.g., predecessors of checkmate in chess? 

– what if there are multiple goal states? 
– what if there is only a goal test, no explicit list? 

 
• Complexity 

– time complexity is best: O(2 b(d/2)) = O(b (d/2)) 
–  memory complexity is the same as time complexity 



Bi-Directional Search 



Bidirectional search termination 
• R&N Sec. 3.4.6 discusses the BDS termination condition for BFS. 

– To clarify it, and to handle UCS: 
• For BFS, the search terminates when one fringe expands a node and discovers 

that one of the new children is present in the other fringe. This is quick and 
easy because the other fringe already maintains a hash table holding its fringe, 
as discussed in the lecture slides about removing duplicate nodes from the 
fringe, so you just look up the new child in the other fringe's hash table. If 
present, then you join the path from the Start to that child to the reverse of 
the path from the Goal to that child, and you have your path from Start to 
Goal. The first such solution found may not be optimal; some additional search 
is required to make sure there isn’t a short-cut across the gap. 

• For UCS, the same applies, except that afterward you must continue searching 
until the sum of the costs of the nodes at the head of each queue is greater 
than or equal to the cost of the path you just found. This continuation 
guarantees that there is not a longer cheaper path somewhere in the queues. 
Of course, if you find a cheaper solution as the search winds down, it replaces 
the previous solution. 



Summary of algorithms 

Generally the preferred  
uninformed search strategy 

Criterion Breadth-
First 

Uniform-
Cost 

Depth-
First 

Depth-
Limited 

Iterative 
Deepening 
DLS 

Bidirectional 
(if applicable) 

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d] 

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d] 

There are a number of footnotes, caveats, and assumptions. 
See Fig. 3.21, p. 91. 
[a] complete if b is finite 
[b] complete if step costs ≥ ε > 0 
[c] optimal if step costs are all identical 
     (also if path cost non-decreasing function of depth only) 
[d] if both directions use breadth-first search 
     (also if both directions use uniform-cost search with step costs ≥ ε > 0) 
 
Note that d ≤ 1+C*/ε 



You should know… 
• Overview of uninformed search methods 

• Search strategy evaluation 
– Complete?  Time?  Space?  Optimal?  
– Max branching (b), Solution depth (d), Max depth (m) 
– (for UCS: C*: true cost to optimal goal; ε > 0: minimum step cost) 

• Search Strategy Components and Considerations 
– Queue?  Goal Test when?  Tree search vs. Graph search? 

• Various blind strategies: 
– Breadth-first search 
– Uniform-cost search 
– Depth-first search 
– Iterative deepening search (generally preferred) 
– Bidirectional search (preferred if applicable) 



Summary 

• Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be 
explored 

 

• Variety of uninformed search strategies 
 

• Iterative deepening search uses only linear space and not 
much more time than other uninformed algorithms 

http://www.cs.rmit.edu.au/AI-Search/Product/ 
http://aima.cs.berkeley.edu/demos.html   (for more demos) 

http://www.cs.rmit.edu.au/AI-Search/Product/
http://aima.cs.berkeley.edu/demos.html
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