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Introduction to Artificial Intelligence 

Prof. Richard Lathrop 
 
 Read Beforehand: R&N All Assigned Reading 

Chaps. 1-4, 7-9, 13-14 



Review Agents 
Chapter 2.1-2.3 

• Agent definition (2.1) 
 

• Rational Agent definition (2.2) 
– Performance measure 

 

• Task evironment definition (2.3) 
– PEAS acronym 
– Properties of task environments 



Agents 
• An agent is anything that can be viewed as 

perceiving its environment through sensors and 
acting upon that environment through actuators 

 
• Human agent:  

– Sensors: eyes, ears, …  
– Actuators: hands, legs, mouth… 

 
• Robotic agent 

– Sensors: cameras, range finders, … 
– Actuators: motors 



Agents and environments 

• Percept: agent’s perceptual inputs at an 
instant 

• The agent function maps from percept 
sequences to actions: [f: P*  A] 

• The agent program runs on the physical 
architecture to produce f 

• agent = architecture + program 



• Rational Agent: For each possible percept sequence, a 
rational agent should select an action that is expected to 
maximize its performance measure, based on the 
evidence provided by the percept sequence and 
whatever built-in knowledge the agent has. 

 
• Performance measure: An objective criterion for success 

of an agent's behavior    (“cost”, “reward”, “utility”) 
 

• E.g., performance measure of a vacuum-cleaner agent 
could be amount of dirt cleaned up, amount of time 
taken, amount of electricity consumed, amount of noise 
generated, etc. 

Rational agents 



Task Environment 

• Before we design an intelligent agent, we 
must specify its “task environment”: 

   
   PEAS: 
 
   Performance measure 
   Environment 
   Actuators 
   Sensors 
 



Environment types 
• Fully observable (vs. partially observable): An agent's 

sensors give it access to the complete state of the 
environment at each point in time. 
 

• Deterministic (vs. stochastic): The next state of the 
environment is completely determined by the current state 
and the action executed by the agent. (If the environment 
is deterministic except for the actions of other agents, then 
the environment is strategic) 
 

• Episodic (vs. sequential): An agent’s action is divided into 
atomic episodes. Decisions do not depend on previous 
decisions/actions. 
 

• Known (vs. unknown):  An environment is considered to 
be "known" if the agent understands the laws that govern 
the environment's behavior. 



Environment types 
• Static (vs. dynamic): The environment is unchanged while 

an agent is deliberating. (The environment is semidynamic 
if the environment itself does not change with the passage 
of time but the agent's performance score does) 
 

• Discrete (vs. continuous): A limited number of distinct, 
clearly defined percepts and actions. 
– How do we represent or abstract or model the world? 

 
• Single agent (vs. multi-agent): An agent operating by itself 

in an environment. Does the other agent interfere with my 
performance measure? 



Review State Space Search 
Chapter 3 

• Problem Formulation (3.1, 3.3) 
• Blind (Uninformed) Search (3.4) 

• Depth-First, Breadth-First, Iterative Deepening 
• Uniform-Cost, Bidirectional (if applicable) 
• Time? Space? Complete? Optimal? 

• Heuristic Search (3.5) 
• A*, Greedy-Best-First 



State-Space Problem Formulation 
A problem is defined by five items: 
 
   (1) initial state e.g., "at Arad“ 
 
   (2) actions Actions(s) = set of actions avail. in state s 
 
   (3) transition model Results(s,a) = state that results from action a in state s  
   Alt: successor function S(x) = set of action–state pairs  

– e.g., S(Arad) = {<Arad  Zerind, Zerind>, … } 
 

    (4) goal test, (or goal state) 
    e.g., x = "at Bucharest”, Checkmate(x) 

 
    (5) path cost (additive) 

– e.g., sum of distances, number of actions executed, etc. 
– c(x,a,y) is the step cost, assumed to be ≥ 0 (and often, assumed to be ≥ ε > 0) 

 
    A solution is a sequence of actions leading from the initial state to a goal state 
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Vacuum world state space graph 

• states? discrete: dirt and robot locations  
• initial state? any 
• actions? Left, Right, Suck 
• transition model? as shown on graph 
• goal test? no dirt at all locations 
• path cost? 1 per action 
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Implementation: states vs. nodes 
• A state is a (representation of) a physical configuration 

 
• A node is a data structure constituting part of a search tree 
• A node contains info such as: 

– state, parent node, action, path cost g(x), depth, etc. 
 
 
 
 
 
 
 

• The Expand function creates new nodes, filling in the various 
fields using the Actions(S) and Result(S,A)functions 
associated with the problem. 
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Tree search vs. Graph search 
Review Fig. 3.7, p. 77 

• Failure to detect repeated states can turn a 
linear problem into an exponential one! 

• Test is often implemented as a hash table. 
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Tree search vs. Graph search 
Review Fig. 3.7, p. 77 

• What R&N call Tree Search vs. Graph Search 
– (And we follow R&N exactly in this class) 
– Has NOTHING to do with searching trees vs. graphs 

• Tree Search = do NOT remember visited nodes 
– Exponentially slower search, but memory efficient 

• Graph Search = DO remember visited nodes 
– Exponentially faster search, but memory blow-up 

• CLASSIC Comp Sci TIME-SPACE TRADE-OFF 



Solutions to Repeated States 

• Graph search 
– never generate a state generated before 

• must keep track of all possible states (uses a lot of memory) 
• e.g., 8-puzzle problem, we have 9! = 362,880 states 
• approximation for DFS/DLS: only avoid states in its (limited) memory: 

avoid infinite loops by checking path back to root. 

– “visited?” test usually implemented as a hash table 
16 
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State Space 
Example of a Search Tree 

faster, but memory inefficient 



Checking for identical nodes (1) 
Check if a node is already in fringe-frontier 

• It is “easy” to check if a node is already in the 
fringe/frontier (recall fringe = frontier = open = queue) 
– Keep a hash table holding all fringe/frontier nodes 

• Hash size is same O(.) as priority queue, so hash does not increase overall 
space O(.) 

• Hash time is O(1), so hash does not increase overall time O(.) 

– When a node is expanded, remove it from hash table (it is 
no longer in the fringe/frontier) 

– For each resulting child of the expanded node: 
• If child is not in hash table, add it to queue (fringe) and hash table 
• Else if an old lower- or equal-cost node is in hash, discard the new 

higher- or equal-cost child 
• Else remove and discard the old higher-cost node from queue and 

hash, and add the new lower-cost child to queue and hash 
 

 
Always do this for tree or graph search in BFS, UCS, GBFS, and A* 



Checking for identical nodes (2) 
Check if a node is in explored/expanded 

• It is memory-intensive [ O(bd) or O(bm) ]to  check if a 
node is in explored/expanded (recall explored = 
expanded = closed) 
– Keep a hash table holding all explored/expanded nodes 

(hash table may be HUGE!!) 
• When a node is expanded, add it to hash (explored) 
• For each resulting child of the expanded node: 

– If child is not in hash table or in fringe/frontier, then add it 
to the queue (fringe/frontier) and process normally (BFS 
normal processing differs from UCS normal processing, but 
the ideas behind checking a node for being in 
explored/expanded are the same). 

– Else discard any redundant node. 
 Always do this for graph search 



General tree search 
Do not remember visited nodes 

Goal test after pop 



General graph search (R&N Fig. 3.7) 
Do remember visited nodes 

Goal test after pop 

These three statements change tree search to graph search. 



When to do Goal-Test?  (Summary) 
• For BFS, the goal test is done when the child node is generated. 

– Not an optimal search in the general case. 
• For DLS, IDS, and DFS as in Fig. 3.17, goal test is done in the recursive call. 

– Result is that children are generated then iterated over. For each child DLS, is 
called recursively, goal-test is done first in the callee, and the process repeats. 

– More efficient search goal-tests children as generated. We follow your text. 
• For DFS as in Fig. 3.7, goal test is done when node is popped. 

– Search behavior depends on how the LIFO queue is implemented. 
• For UCS and A*(next lecture), goal test when node removed from queue. 

– This avoids finding a short expensive path before a long cheap path. 
• Bidirectional search can use either BFS or UCS. 

– Goal-test is search fringe intersection, see additional complications below 
• For GBFS (next lecture) the behavior is the same either way  

– h(goal)=0 so any goal will be at the front of the queue anyway. 



Breadth-first graph search 
function BRE ADT H-FIRST-SEARCH( problem ) returns a solution, or failure 

node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if 
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node ) frontier ← 
a FIFO queue with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the shallowest node in frontier */ 
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child ) 
frontier ← INSE RT(child , frontier ) 

 
Figure 3.11     Breadth-first search on a graph. 

Goal test before push 



Properties of breadth-first search 

• Complete? Yes, it always reaches a goal (if b is finite) 
• Time?   1 + b + b2 + b3 + … + bd = O(bd) 
             (this is the number of nodes we generate) 
• Space?  O(bd)  
  (keeps every node in memory, either in frontier or on a path to frontier). 
• Optimal?  No, for general cost functions. 
   Yes, if cost is a non-decreasing function only of depth. 

– With f(d) ≥ f(d-1), e.g., step-cost = constant: 
• All optimal goal nodes occur on the same level 
• Optimal goals are always shallower than non-optimal goals 
• An optimal goal will be found before any non-optimal goal 

 
• Usually Space is the bigger problem (more than time) 



function UNIFORM-COST-SEARCH( problem ) returns a solution, or failure 
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0  
frontier ← a priority queue ordered by PAT H-COST, with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the lowest-cost node in frontier */ 
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node )  
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

frontier ← INSE RT(child , frontier ) 
else if child .STAT E is in frontier with higher PAT H-COST then 

replace that frontier node with child 
 

Figure 3.14     Uniform-cost search on a graph.  The algorithm is identical to the general 
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an 
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier 
needs to support efficient membership testing, so it should combine the capabilities of a priority 
queue and a hash table. 

Uniform cost search (R&N Fig. 3.14) 
[A* is identical except queue sort = f(n)] 

Goal test after pop 

Avoid 
redundant 
frontier nodes 

These three statements change tree search to graph search. 

Avoid 
higher-cost 
frontier nodes 



Uniform-cost search 
Implementation: Frontier = queue ordered by path cost. 
Equivalent to breadth-first if all step costs all equal. 
 
•Complete? Yes, if b is finite and step cost ≥ ε > 0. 
                     (otherwise it can get stuck in infinite regression) 

 

•Time? # of nodes with path cost ≤ cost of optimal solution.  
  O(b1+C*/ε) ≈ O(bd+1) 

 

•Space? # of nodes with path cost ≤ cost of optimal solution.    
  O(b1+C*/ε) ≈ O(bd+1). 

 

•Optimal? Yes, for step cost ≥ ε > 0. 



Depth-limited search & IDS (R&N Fig. 3.17-18) 

Goal test in 
recursive call, 
one-at-a-time 

At depth = 0, IDS only goal-tests 
the start node. The start node is 
is not expanded at depth = 0. 



Properties of iterative deepening search 

• Complete?  Yes 
 

• Time?  O(bd) 
 

• Space? O(bd) 
 

• Optimal?  No, for general cost functions. 
  Yes, if cost is a non-decreasing function only of 

depth. 
 
Generally the preferred uninformed search strategy. 

 



Depth-First Search (R&N Section 3.4.3) 

• Your textbook is ambiguous about DFS. 
– The second paragraph of R&N 3.4.3 states that DFS is an 

instance of Fig. 3.7 using a LIFO queue. Search behavior 
may differ depending on how the LIFO queue is 
implemented (as separate pushes, or one concatenation). 

– The third paragraph of R&N 3.4.3 says that an alternative 
implementation of DFS is a recursive algorithm that calls 
itself on each of its children, as in the Depth-Limited 
Search of Fig. 3.17 (above). 

• For quizzes and exams, we will follow Fig. 3.17. 
 



Properties of depth-first search 

• Complete? No: fails in loops/infinite-depth spaces 
– Can modify to avoid loops/repeated states along path 

• check if current nodes occurred before on path to root  
– Can use graph search (remember all nodes ever seen) 

• problem with graph search: space is exponential, not linear 
– Still fails in infinite-depth spaces (may miss goal entirely) 

 

• Time? O(bm) with m =maximum depth of space 
– Terrible if m is much larger than d 
–  If solutions are dense, may be much faster than BFS 

 

• Space? O(bm), i.e., linear space! 
– Remember a single path + expanded unexplored nodes 

 
• Optimal?  No: It may find a non-optimal goal first 

A 

B C 



Bidirectional Search 
• Idea 

– simultaneously search forward from S and backwards from G 
– stop when both “meet in the middle” 
– need to keep track of the intersection of 2 open sets of nodes 

 
• What does searching backwards from G mean 

– need a way to specify the predecessors of G 
• this can be difficult,  
• e.g., predecessors of checkmate in chess? 

– what if there are multiple goal states? 
– what if there is only a goal test, no explicit list? 

 
• Complexity 

– time complexity is best: O(2 b(d/2)) = O(b (d/2)) 
–  memory complexity is the same as time complexity 



Bi-Directional Search 



Blind Search Strategies (3.4) 

• Depth-first: Add successors to front of queue 
• Breadth-first: Add successors to back of queue 
• Uniform-cost: Sort queue by path cost g(n) 
• Depth-limited: Depth-first, cut off at limit l 
• Iterated-deepening: Depth-limited, increasing l 
• Bidirectional: Breadth-first from goal, too. 

 

• Review “Example hand-simulated search” 
– Lecture on “Uninformed Search” 



Search strategy evaluation 
• A search strategy is defined by the order of node 

expansion 
 

• Strategies are evaluated along the following dimensions: 
– completeness: does it always find a solution if one exists? 
– time complexity: number of nodes generated 
– space complexity: maximum number of nodes in memory 
– optimality: does it always find a least-cost solution? 

 

• Time and space complexity are measured in terms of  
– b: maximum branching factor of the search tree 
– d: depth of the least-cost solution 
– m: maximum depth of the state space (may be ∞) 
– (UCS: C*: true cost to optimal goal; ε > 0: minimum step cost) 



Summary of algorithms 
Fig. 3.21, p. 91 

Generally the preferred  
uninformed search strategy 

Criterion Breadth-
First 

Uniform-
Cost 

Depth-
First 

Depth-
Limited 

Iterative 
Deepening 
DLS 

Bidirectional 
(if applicable) 

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d] 

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d] 

There are a number of footnotes, caveats, and assumptions. 
See Fig. 3.21, p. 91. 
[a] complete if b is finite 
[b] complete if step costs ≥ ε > 0 
[c] optimal if step costs are all identical 
     (also if path cost non-decreasing function of depth only) 
[d] if both directions use breadth-first search 
     (also if both directions use uniform-cost search with step costs ≥ ε > 0) 



Summary 
• Generate the search space by applying actions to the 

initial state and all further resulting states. 

• Problem: initial state, actions, transition model, goal 
test, step/path cost 

• Solution: sequence of actions to goal 

• Tree-search (don’t remember visited nodes) vs. 
     Graph-search (do remember them) 

• Search strategy evaluation: b, d, m (UCS: C*, ε) 
– Complete? Time? Space? Optimal? 



Heuristic function (3.5) 
 Heuristic: 
 Definition: a commonsense rule (or set of rules) intended to 

increase the probability of solving some problem 
 “using rules of thumb to find answers” 

 
 Heuristic function h(n) 
 Estimate of (optimal) cost from n to goal 
 Defined using only the state of node n 
 h(n) = 0 if n is a goal node 
 Example: straight line distance from n to Bucharest 
Note that this is not the true state-space distance 
 It is an estimate – actual state-space distance can be higher 

 
 Provides problem-specific knowledge to the search algorithm 

 
 



Relationship of search algorithms 
• Notation: 

– g(n) = known cost so far to reach n 
– h(n) = estimated optimal cost from n to goal 
– h*(n) = true optimal cost from n to goal (unknown to agent) 
– f(n) = g(n)+h(n) = estimated optimal total cost through n 

 

• Uniform cost search: sort frontier by g(n) 
• Greedy best-first search: sort frontier by h(n) 
• A* search: sort frontier by f(n) = g(n) + h(n) 

– Optimal for admissible / consistent heuristics 
– Generally the preferred heuristic search framework 
– Memory-efficient versions of A* are available: RBFS, SMA* 



Greedy best-first search 
• h(n) = estimate of cost from n to goal 

– e.g., h(n) = straight-line distance from n to 
Bucharest 

 

• Greedy best-first search expands the node 
that appears to be closest to goal. 
– Sort queue by h(n) 

 

• Not an optimal search strategy 
– May perform well in practice 



Greedy best-first search example 



Greedy best-first search example 



Greedy best-first search example 



Greedy best-first search example 



Optimal Path 



Greedy Best-first Search 
With tree search, will become stuck in this loop 

Order of node expansion:  S A D S A D S A D. . . . 
Path found:  none              Cost of path found:  none    . 

B 

D 

G 

S 

A C 

h=5 

h=7 

h=6 

h=8 h=9 

h=0 



Properties of greedy best-first search 

• Complete?  
– Tree version can get stuck in loops. 
– Graph version is complete in finite spaces. 

• Time? O(bm) 
– A good heuristic can give dramatic improvement 

• Space? O(bm) 
– Graph search keeps all nodes in memory 
– A good heuristic can give dramatic improvement 

• Optimal? No 
– E.g., Arad  Sibiu  Rimnicu Vilcea  Pitesti  Bucharest 

is shorter! 



A* search 

• Idea: avoid paths that are already expensive 
– Generally the preferred simple heuristic search 
– Optimal if heuristic is: 
 admissible (tree search)/consistent (graph search) 

• Evaluation function f(n) = g(n) + h(n) 
– g(n) = known path cost so far to node n. 
– h(n) = estimate of (optimal) cost to goal from node n. 
– f(n) = g(n)+h(n) 
      = estimate of total cost to goal through node n. 

• Priority queue sort function = f(n) 



A* tree search example 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next:  
• Children:  
• Expanded:  
• Frontier: Arad/366=0+366 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Arad/366=0+366 
• Children: Sibiu/393=140+253, Timisoara/447=118+329, 

Zerind/449=75+374 
• Expanded: Arad/366=0+366 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374 
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A* tree search example: 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Sibiu/393=140+253 
• Children: Arad/646=280+366, Fagaras/415=239+176, 

Oradea/671=291+380, RimnicuVilcea/413=220+193 
• Expanded: Arad/366=0+366, Sibiu/393=140+253 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, Arad/646=280+366, 
Fagaras/415=239+176, Oradea/671=291+380, 
RimnicuVilcea/413=220+193 
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A* tree search example: 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: RimnicuVilcea/413=220+193 
• Children: Craiova/526=366+160, Pitesti/417=317+100, 

Sibiu/553=300+253 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253 
 
 
 
 



A* tree search example: 
Simulated queue.  City/f=g+h 

Sibiu/ 
393=140+253 

Timisoara/ 
447=118+329 

Zerind/ 
449=75+374 
 

Arad/ 
646=280+366 

Fagaras/ 
415=239+176 

Oradea/ 
671=291+380 

Craiova/ 
526=366+160 

Pitesti/ 
417=317+100 

Sibiu/ 
553=300+253 

RimnicuVilcea/ 
413=220+193 

Arad/ 
366=0+366 



A* search example: 
Simulated queue.  City/f=g+h 

Sibiu/ 
393=140+253 

Timisoara/ 
447=118+329 

Zerind/ 
449=75+374 
 

Arad/ 
646=280+366 

Fagaras/ 
415=239+176 

Oradea/ 
671=291+380 

Craiova/ 
526=366+160 

Pitesti/ 
417=317+100 

Sibiu/ 
553=300+253 

RimnicuVilcea/ 
413=220+193 

Arad/ 
366=0+366 



A* tree search example 
Note: The 
search below 
did not “back 
track.” Rather, 
both arms are 
being pursued 
in parallel on 
the queue. 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Fagaras/415=239+176  
• Children: Bucharest/450=450+0, Sibiu/591=338+253 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, Sibiu/591=338+253 
 
 
 
 
 



A* tree search example 
Note: The 
search below 
did not “back 
track.” Rather, 
both arms are 
being pursued 
in parallel on 
the queue. 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Pitesti/417=317+100  
• Children: Bucharest/418=418+0, Craiova/615=455+160, 

RimnicuVilcea/607=414+193 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176, 
Pitesti/417=317+100 

• Frontier: Arad/366=0+366, Sibiu/393=140+253, 
Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, 
Sibiu/591=338+253, Bucharest/418=418+0, 
Craiova/615=455+160, RimnicuVilcea/607=414+193 
 
 
 
 
 
 



A* tree search example 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Bucharest/418=418+0  
• Children: None; goal test succeeds. 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176, 
Pitesti/417=317+100, Bucharest/418=418+0 

• Frontier: Arad/366=0+366, Sibiu/393=140+253, 
Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, 
Sibiu/591=338+253, Bucharest/418=418+0, 
Craiova/615=455+160, RimnicuVilcea/607=414+193 
 
 
 
 
 
 

Note that 
the short 
expensive 
path stays 
on the 
queue. 
The long 
cheap 
path is 
found and 
returned. 



A* tree search example: 
Simulated queue.  City/f=g+h 

Sibiu/ 
393=140+253 

Timisoara/ 
447=118+329 

Zerind/ 
449=75+374 
 

Arad/ 
646=280+366 

Fagaras/ 
415=239+176 

Oradea/ 
671=291+380 

Craiova/ 
526=366+160 

Pitesti/ 
417=317+100 

Sibiu/ 
553=300+253 

RimnicuVilcea/ 
413=220+193 

Bucharest/ 
418=418+0 

… 
… 

Arad/ 
366=0+366 



A* tree search example: 
Simulated queue.  City/f=g+h 

Sibiu/ 
393=140+253 

Timisoara/ 
447=118+329 

Zerind/ 
449=75+374 
 

Arad/ 
646=280+366 

Fagaras/ 
415=239+176 

Oradea/ 
671=291+380 

Craiova/ 
526=366+160 

Pitesti/ 
417=317+100 

Sibiu/ 
553=300+253 

RimnicuVilcea/ 
413=220+193 

Bucharest/ 
418=418+0 … 

… 

Arad/ 
366=0+366 



Properties of A* 

• Complete? Yes 
 (unless there are infinitely many nodes with f ≤ f(G); 
 can’t happen if step-cost ≥ ε > 0) 
• Time/Space? Exponential O(bd) 
           except if:   
• Optimal? Yes 
 (with: Tree-Search, admissible heuristic; 
 Graph-Search, consistent heuristic) 
• Optimally Efficient? Yes 
 (no optimal algorithm with same heuristic is guaranteed to expand 

fewer nodes) 

* *| ( ) ( ) | (log ( ))h n h n O h n− ≤



Admissible heuristics 

• A heuristic h(n) is admissible if for every node n, 
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal 

state from n. 
• An admissible heuristic never overestimates the cost to 

reach the goal, i.e., it is optimistic 
• Example: hSLD(n) (never overestimates the actual road 

distance) 
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is 

optimal 



Consistent heuristics 
(consistent => admissible) 

• A heuristic is consistent if for every node n, every successor n' of n 
generated by any action a,    
 

      h(n) ≤ c(n,a,n') + h(n') 
 

• If h is consistent, we have 
 

f(n’) = g(n’) + h(n’)                   (by def.) 
       = g(n) + c(n,a,n') + h(n’)    (g(n’)=g(n)+c(n.a.n’))  
       ≥ g(n) + h(n) = f(n)            (consistency) 
f(n’)   ≥ f(n) 
 
• i.e., f(n) is non-decreasing along any path. 

 
• Theorem:  
     If h(n) is consistent, A* using GRAPH-SEARCH is optimal 

It’s the triangle 
inequality ! 

keeps all checked nodes in 
memory to avoid repeated states 



Optimality of A* (proof) 
Tree Search, where h(n) is admissible 

• Suppose some suboptimal goal G2 has been generated and is in the 
frontier. Let n be an unexpanded node in the frontier such that n is on a 
shortest path to an optimal goal G. 
 
 
 

• f(G2)  = g(G2) since h(G2) = 0  
• f(G)   = g(G) since h(G) = 0  
• g(G2) > g(G)  since G2 is suboptimal  

• f(G2)  > f(G) from above, with h=0  
• h(n) ≤ h*(n)  since h is admissible (under-estimate) 
• g(n) + h(n) ≤ g(n) + h*(n)  from above 
• f(n)  ≤ f(G)  since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G) 
• f(n)  < f(G2) from above 

 

We want to prove: 
 f(n) < f(G2) 
(then A* will expand n before G2) 

R&N pp. 95-98 proves the optimality of A* 
graph search with a consistent heuristic 



Dominance 

• IF h2(n) ≥ h1(n) for all n 
 THEN h2 dominates h1  

– h2 is almost always better for search than h1 
– h2 guarantees to expand no more nodes than does h1 
– h2 almost always expands fewer nodes than does h1 
– Not useful unless both h1 & h2 are admissible/consistent 

 
• Typical 8-puzzle search costs 
 (average number of nodes expanded): 

– d=12 IDS = 3,644,035 nodes 
  A*(h1) = 227 nodes  
  A*(h2) = 73 nodes  

– d=24  IDS = too many nodes 
  A*(h1) = 39,135 nodes  
  A*(h2) = 1,641 nodes  



Review Local Search 
Chapter 4.1-4.2, 4.6; Optional 4.3-4.5 

• Problem Formulation (4.1) 
• Hill-climbing Search (4.1.1) 
• Simulated annealing search (4.1.2) 
• Local beam search (4.1.3) 
• Genetic algorithms  (4.1.4) 



Local search algorithms 
• In many optimization problems, the path to the goal is 

irrelevant; the goal state itself is the solution 
– Local  search: widely used for very big problems 
– Returns good but not optimal solutions 
– Usually very slow, but can yield good solutions if you  wait 

 

• State space = set of "complete" configurations 
• Find a complete configuration satisfying constraints 

– Examples: n-Queens, VLSI layout, airline flight schedules 
 

• Local search algorithms 
– Keep a single "current" state, or small set of states 
– Iteratively try to improve it / them 
– Very memory efficient 

• keeps only one or a few states 
• You control how much memory you use 



Random restart wrapper 

• We’ll use stochastic local search methods 
– Return different solution for each trial & initial state 

 

• Almost every trial hits difficulties (see sequel) 
– Most trials will not yield a good result (sad!) 

 

• Using many random restarts improves your chances 
– Many “shots at goal” may finally get a good one 

 

• Restart a random initial state, many times 
– Report the best result found across many trials 



Random restart wrapper 
best_found ← RandomState()   // initialize to something 
 
// now do repeated local search 
loop do 
    if (tired of doing it) 
        then return best_found 
    else 
        result ← LocalSearch( RandomState() ) 
        if ( Cost(result) < Cost(best_found) ) 
           // keep best result found so far 

            then best_found ← result 

Typically, “tired of doing it” means that some resource limit has been 
exceeded, e.g., number of iterations, wall clock time, CPU time, etc. 
It may also mean that result improvements are small and infrequent, 
e.g., less than 0.1% result improvement in the last week of run time. 

You, as 
algorithm 
designer, write 
the functions 
named in red. 



Tabu search wrapper 

• Add recently visited states to a tabu-list 
– Temporarily excluded from being visited again 
– Forces solver away from explored regions 
– Less likely to get stuck in local minima (hope, in principle) 

 
• Implemented as a hash table + FIFO queue 

– Unit time cost per step; constant memory cost 
– You control how much memory is used 

 
• RandomRestart( TabuSearch ( LocalSearch() ) ) 



Tabu search wrapper (inside random restart! ) 

best_found ← current_state ← RandomState()   // initialize 
loop do // now do local search 
    if (tired of doing it) then return best_found else 
        neighbor ← MakeNeighbor( current_state ) 
        if ( neighbor is in hash_table ) then discard neighbor 

  else push neighbor onto fifo, pop oldest_state 
                remove oldest_state from hash_table, insert neighbor 

  current_state ← neighbor; 
           if ( Cost(current_state ) < Cost(best_found) ) 
               then best_found ← current_state  
 

 FIFO QUEUE Oldest 
State 

New 
State 

 HASH TABLE 
State 

Present? 



Local search algorithms 

• Hill-climbing search 
– Gradient descent in continuous state spaces 
– Can use, e.g., Newton’s method to find roots 

• Simulated annealing search 
• Local beam search 
• Genetic algorithms 
• Linear Programming (for specialized problems) 



Local Search Difficulties 

• Problems: depending on state, can get stuck in local maxima 
– Many other problems also endanger your success!! 

 

These difficulties apply to ALL local search algorithms, and become MUCH 
more difficult as the search space increases to high dimensionality. 



Local Search Difficulties 

• Ridge problem: Every neighbor appears to be downhill 
– But the search space has an uphill!! (worse in high dimensions) 

Ridge: 
Fold a piece of 
paper and hold 
it tilted up at an 
unfavorable 
angle to every 
possible search 
space step. 
Every step 
leads downhill; 
but the ridge 
leads uphill. 

These difficulties apply to ALL local search algorithms, and become MUCH 
more difficult as the search space increases to high dimensionality. 



Hill-climbing search 

“…like trying to find the top of Mount Everest in a thick fog while 
suffering from amnesia”  
 

Equivalently: “if COST[neighbor] ≥ COST[current] then …” 

Equivalently:  
“…a lowest-cost successor…” 

You must shift effortlessly between maximizing value and minimizing cost 



Simulated annealing (Physics!) 

• Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency 

•  
 

Improvement: Track the 
BestResultFoundSoFar. 
Here, this slide follows 
Fig. 4.5 of the textbook, 
which is simplified. 



Probability( accept worse successor ) 
•Decreases as temperature T decreases 
•Increases as |Δ E| decreases 
•Sometimes, step size also decreases with T 

 

Tem
perature 

e ∆E / T 
Temperature T 

High Low 

|∆E | 
High Medium Low 

Low High Medium 

(accept very bad moves early on; later, mainly accept “not very much worse”) 



Your “random restart 
wrapper” starts here. 

A 
Value=42 

B 
Value=41 

C 
Value=45 

D 
Value=44 

E 
Value=48 

F 
Value=47 

G  
Value=51 

Va
lu

e 

You want to get 
here.  HOW?? 

This is an illustrative cartoon… 

Arbitrary (Fictitious) Search Space Coordinate 

Goal: “ratchet up” a bumpy slope 
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale) 



C 
Value=45 

∆E(CB)=-4 
∆E(CD)=-1 

P(CB) ≈.018 
P(CD)≈.37 

B 
Value=41 
∆E(BA)=1 
∆E(BC)=4 
P(BA)=1 
P(BC)=1 

A 
Value=42 

∆E(AB)=-1 
P(AB) ≈.37 

D 
Value=44 
∆E(DC)=1 
∆E(DE)=4 
P(DC)=1 
P(DE)=1 

E 
Value=48 

∆E(ED)=-4 
∆E(EF)=-1 

P(ED) ≈.018 
P(EF)≈.37 

F 
Value=47 
∆E(FE)=1 
∆E(FG)=4 
P(FE)=1 
P(FG)=1 

G 
Value=51 

∆E(GF)=-4 
P(GF) ≈.018 

x -1 -4 

ex ≈.37 ≈.018 

From A you will accept a move to B with P(AB) ≈.37. 
From B you are equally likely to go to A or to C. 
From C you are ≈20X more likely to go to D than to B. 
From D you are equally likely to go to C or to E. 
From E you are ≈20X more likely to go to F than to D. 
From F you are equally likely to go to E or to G. 
Remember best point you ever found (G or neighbor?). This is an illustrative cartoon… 

Your “random 
restart wrapper” 
starts here. 

Goal: “ratchet up” a jagged slope 



Local beam search 

• Keep track of k states rather than just one 
 

• Start with k randomly generated states 
 

• At each iteration, all the successors of all k states are 
generated 

 

• If any one is a goal state, stop; else select the k best 
successors from the complete list and repeat. 

 

• Concentrates search effort in areas believed to be fruitful 
– May lose diversity as search progresses, resulting in wasted effort 



a1 b1 k1 … Create k random initial states 

… Generate their children 

a2 b2 k2 … Select the k best children 

… Repeat indefinitely… 

Is it better than simply running k searches?  
Maybe…?? 

Local beam search 



Genetic algorithms (Darwin!!) 
• A state = a string over a finite alphabet (an individual) 

– A successor state is generated by combining two parent states 
 

• Start with k randomly generated states (a population) 
 
• Fitness function (= our heuristic objective function). 

– Higher fitness values for better states. 
 

• Select individuals for next generation based on fitness 
– P(individual in next gen.) = individual fitness/total population fitness 

 
• Crossover fit parents to yield next generation (offspring) 

 
• Mutate the offspring randomly with some low probability 



Genetic algorithms 

 
 
 
 
 

 
• Fitness function (value): number of non-attacking pairs of 

queens (min = 0, max = 8 × 7/2 = 28) 
• 24/(24+23+20+11) = 31% 
• 23/(24+23+20+11) = 29%; etc. 



 
 
 
 

 
• Fitness function: #non-attacking queen pairs 

– min = 0, max = 8 × 7/2 = 28 

• Σ_i fitness_i = 24+23+20+11 = 78 
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31% 
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc 

fitness =  
#non-attacking 
queens 

probability of being  
in next generation = 
fitness/(Σ_i fitness_i) 

How to convert a 
fitness value into a 
probability of being in 
the next generation. 



Review Propositional Logic 
Chapter 7.1-7.5; Optional 7.6-7.8 

• Definitions: 
– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, 

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology) 

• Syntactic  & Semantic Transformations: 
– E.g., (A ⇒ B) ⇔ (¬A ∨ B) 
– E.g., (KB |= α) ≡ (|= (KB ⇒ α) 

• Truth Tables: 
– Negation, Conjunction, Disjunction, Implication, Equivalence 

(Biconditional) 

• Inference: 
– By Resolution (CNF) 
– By Backward & Forward Chaining (Horn Clauses) 
– By Model Enumeration (Truth Tables) 



Recap propositional logic: Syntax 

• Propositional logic is the simplest logic –  illustrates basic 
ideas 
 

• The proposition symbols P1, P2 etc are sentences 
 

– If S is a sentence, ¬S is a sentence (negation) 
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction) 
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction) 
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication) 
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional) 



Recap propositional logic: 
Semantics 

Each model/world specifies true or false for each proposition symbol 
E.g.,  P1,2  P2,2  P3,1 
    false true false 
With these symbols, 8 possible models can be enumerated automatically. 

 
Rules for evaluating truth with respect to a model m: 
  ¬S is true iff  S is false   
  S1 ∧ S2   is true iff  S1 is true and  S2 is true 
  S1 ∨ S2   is true iff  S1is true or  S2 is true 
  S1 ⇒ S2  is true iff S1 is false or S2 is true 
   (i.e.,  is false iff S1 is true and S2 is false) 
  S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true 
 
Simple recursive process evaluates an arbitrary sentence, e.g., 

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) =  true ∧ true = true 



Recap propositional logic: 
Truth tables for connectives 

OR: P or Q is true or both are true. 
XOR: P or Q is true but not both. 

Implication is always true 
when the premises are False! 



Recap propositional logic: 
Logical equivalence and rewrite rules 

• To manipulate logical sentences we need some rewrite rules. 
• Two sentences are logically equivalent iff they are true in same 

models: α ≡ ß iff α╞ β and β╞ α 

You need to  
know these ! 



Recap propositional logic: 
Entailment 

• Entailment means that one thing follows from 
another: 

KB ╞ α 
 

• Knowledge base KB entails sentence α if and only if α 
is true in all worlds where KB is true 

 
– E.g., the KB containing “the Giants won and the Reds won” 

entails “The Giants won”. 
– E.g., x+y = 4 entails  4 = x+y 
– E.g., “Mary is Sue’s sister and Amy is Sue’s daughter” 

entails “Mary is Amy’s aunt.” 
 



Review: Models (and in FOL, 
Interpretations) 

• Models are formal worlds in which truth can be evaluated 
 

• We say m is a model of a sentence α if α is true in m 
 

• M(α) is the set of all models of α 
 

• Then KB ╞ α iff M(KB) ⊆ M(α) 
– E.g. KB, = “Mary is Sue’s sister 
 and Amy is Sue’s daughter.” 
– α = “Mary is Amy’s aunt.” 

 
• Think of KB and α as constraints, 

 and of models m as possible states. 
• M(KB) are the solutions to KB 
   and M(α) the solutions to α. 
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) , 
      when all solutions to KB are also solutions to α.  



Wumpus models 

All possible models in this reduced Wumpus world.  What can we infer? 



Review:  Wumpus models 

• KB = all possible wumpus-worlds consistent 
with the observations and the “physics” of the 
Wumpus world. 



Review:  Wumpus models 

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking. 
 
Every model that makes KB true also makes α1 true. 

 



Wumpus models 

α2 = "[2,2] is safe", KB ╞ α2 



Review: Schematic for Follows, Entails, and Derives 

If KB is true in the real world, 
then any sentence α entailed by KB 
and any sentence α derived from KB 
       by a sound inference procedure 
is also true in the  real world.  

Sentences Sentence 
Derives 

Inference 



Recap propositional logic: Validity and satisfiability 

A sentence is valid if it is true in all models, 
e.g., True, A ∨¬A,  A ⇒ A,  (A ∧ (A ⇒ B)) ⇒ B 

 

Validity is connected to inference via the Deduction Theorem: 
KB ╞ α if and only if (KB ⇒ α) is valid 

 
A sentence is satisfiable if it is true in some model 

e.g., A∨ B,  C 
 

A sentence is unsatisfiable if it is false in all models 
e.g., A∧¬A 

 

Satisfiability is connected to inference via the following: 
 

KB ╞ A if and only if (KB ∧¬A) is unsatisfiable 
(there is no model for which KB is true and A is false)  



Inference Procedures 
• KB ├ i  A means that sentence A can be derived from KB by procedure i 

 
• Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α 

– (no wrong inferences, but maybe not all inferences) 
 

• Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α 
– (all inferences can be made, but maybe some wrong extra ones as 

well) 
 

• Entailment can be used for inference (Model checking) 
– enumerate all possible models and check whether α  is true. 
– For n symbols, time complexity is O(2n)... 
 

• Inference can be done directly on the sentences 
– Forward chaining, backward chaining, resolution (see FOPC, later) 

 
 



Inference by Resolution 

• KB is represented in CNF 
– KB = AND of all the sentences in KB 
– KB sentence = clause = OR of literals 
– Literal = propositional symbol or its negation 

 
• Find two clauses in KB, one of which contains a literal and the 

other its negation 
– Cancel the literal and its negation 
– Bundle everything else into a new clause 
– Add the new clause to KB 
– Repeat 



Example: Conversion to CNF 
Example: B1,1  ⇔ (P1,2 ∨ P2,1) 
 
1. Eliminate ⇔ by replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α). 

= (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) 
 

2. Eliminate ⇒ by replacing α ⇒ β with ¬α∨ β and simplify. 
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) 

 

3. Move ¬ inwards using de Morgan's rules and simplify. 
   ¬(α ∨ β) ≡ (¬α ∧ ¬β), ¬(α ∧ β) ≡ (¬α ∨ ¬β) 

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) 
 

4. Apply distributive law (∧ over ∨) and simplify. 
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 



Example: Conversion to CNF 
Example: B1,1  ⇔ (P1,2 ∨ P2,1) 
 
From the previous slide we had: 

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 
 
5. KB is the conjunction of all of its sentences (all are true), 
 so write each clause (disjunct) as a sentence in KB: 
 
     KB = 
 … 

(¬B1,1 ∨ P1,2 ∨ P2,1)  
(¬P1,2 ∨ B1,1)  
(¬P2,1 ∨ B1,1) 
… 
 

Often, Won’t Write “∨” or “∧” 
(we know they are there) 

(¬B1,1     P1,2    P2,1)  
(¬P1,2    B1,1)  
(¬P2,1   B1,1) 

(same) 



Resolution = Efficient Implication 

(OR    A  B  C  D) 
(OR  ¬A  E  F  G) 
----------------------------- 
(OR  B  C  D  E  F  G) 

(NOT (OR  B  C  D))  =>  A 
A  =>  (OR  E  F  G) 
---------------------------------------------------- 
(NOT (OR  B  C  D))  => (OR  E  F  G) 
---------------------------------------------------- 
(OR  B  C  D  E  F  G) 

->Same -> 
->Same -> 

Recall that (A => B) = ( (NOT A) OR B) 
and so: 
             (Y OR X) = ( (NOT X) => Y) 
 ( (NOT Y) OR Z) = (Y => Z) 
which yields: 
 ( (Y OR X) AND ( (NOT Y) OR Z) ) = ( (NOT X) => Z) = (X OR Z)   

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation). 



Resolution Examples 
 

• Resolution: inference rule for CNF: sound and complete! * 
( )
( )

( )

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.” 

( )
( )

( )

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true 
then D or E must be true, hence since A is either true or  
false, B or C or D or E must be true.”  

( )
( )

( )

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡ Simplification 
is done always. 

* Resolution is “refutation complete” 
in that it can prove the truth of any 
entailed sentence by refutation. 

“If A or B is true, and 
not A or B is true, 
then B must be true.”  



More Resolution Examples 
•  (P Q ¬R S) with (P ¬Q W X) yields (P ¬R S W X) 

– Order of literals within clauses does not matter. 
• (P Q ¬R S) with (¬P) yields (Q ¬R S) 
•  (¬R) with (R) yields ( ) or FALSE 
•  (P Q ¬R S) with (P R ¬S W X) yields (P Q ¬R R W X) or (P Q S ¬S W X) or TRUE 
• (P ¬Q R ¬S) with (P ¬Q R ¬S) yields None possible 
•  (P ¬Q ¬S W) with (P R ¬S X) yields None possible 
•  ( (¬ A) (¬ B) (¬ C) (¬ D) ) with ( (¬ C) D) yields ( (¬ A) (¬ B) (¬ C ) ) 
•  ( (¬ A) (¬ B) (¬ C ) ) with ( (¬ A) C) yields ( (¬ A) (¬ B) ) 
•  ( (¬ A) (¬ B) ) with (B) yields (¬ A) 
•  (A C) with (A (¬ C) ) yields (A) 
•  (¬ A) with (A) yields ( ) or FALSE 



Only Resolve ONE Literal Pair! 
If more than one pair, result always = TRUE. 

Useless!! Always simplifies to TRUE!! 
No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR  C  D  F  G) 
No! This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR   B ¬B C  D  F  G) 
Yes! (but = TRUE) 

No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C  ) 
----------------------------- 
(OR  D) 
No! This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C   ) 
----------------------------- 
(OR   A ¬A B ¬B  D) 
Yes! (but = TRUE) 



•  The resolution algorithm tries to prove: 
 
 

•  Generate all new sentences from KB and the (negated) query. 
•  One of two things can happen: 

 
1. We find                         which is unsatisfiable. I.e. we can entail the query. 

 
2. We find no contradiction: there is a model that satisfies the sentence 
                        (non-trivial) and hence we cannot entail the query. 

Resolution Algorithm 

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬

P P∧ ¬

KB α∧ ¬



Resolution example 
Resulting Knowledge Base stated in CNF 

• “Laws of Physics” in the Wumpus World: 
 (¬B1,1     P1,2    P2,1)  
 (¬P1,2    B1,1)  
 (¬P2,1   B1,1) 
 

• Particular facts about a specific instance: 
 (¬ B1,1) 
 

• Negated goal or query sentence: 
 (P1,2) 



Resolution example 
A Resolution proof ending in ( ) 

• Knowledge Base at start of proof: 
 (¬B1,1     P1,2    P2,1) 
 (¬P1,2    B1,1) 
 (¬P2,1   B1,1) 
 (¬ B1,1) 
 (P1,2) 

 A resolution proof ending in ( ): 
• Resolve (¬P1,2    B1,1) and (¬ B1,1) to give (¬P1,2 ) 
• Resolve (¬P1,2 ) and (P1,2) to give ( ) 

 
• Consequently, the goal or query sentence is entailed by KB. 
• Of course, there are many other proofs, which are OK iff correct. 



Resolution example 

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1  

• α = ¬P1,2 
KB α∧ ¬

False in 
all worlds 

True! 

¬P2,1 

A sentence in KB is not “used up” when it is used in a 
resolution step. It is true, remains true, and is still in KB. 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 
( (NOT Y) (NOT R) ) (M Y)  (R Y)  (H (NOT M) ) 
(H R)   ( (NOT H) G) ( (NOT G) (NOT H) ) 
 

• Fourth, produce a resolution proof ending in ( ): 
• Resolve (¬H ¬G) and (¬H G) to give (¬H) 
• Resolve (¬Y ¬R) and (Y M) to give (¬R M) 
• Resolve (¬R M) and (R H) to give (M H) 
• Resolve (M H) and (¬M H) to give (H) 
• Resolve (¬H) and (H) to give ( ) 

 
• Of course, there are many other proofs, which are OK iff correct. 



Propositional Logic --- Summary 
• Logical agents apply inference to a knowledge base to derive new 

information and make decisions 
 

• Basic concepts of logic: 
– syntax: formal structure of sentences 
– semantics: truth of sentences wrt models 
– entailment: necessary truth of one sentence given another 
– inference: deriving sentences from other sentences 
– soundness: derivations produce only entailed sentences 
– completeness: derivations can produce all entailed sentences 
– valid: sentence is true in every model (a tautology) 

 
• Logical equivalences allow syntactic manipulations 
 
• Propositional logic lacks expressive power 

– Can only state specific facts about the world. 
– Cannot express general rules about the world 
    (use First Order Predicate Logic instead) 



Review First-Order Logic 
Chapter 8.1-8.5, 9.1-9.2, 9.5.1-9.5.5 

• Syntax & Semantics  
– Predicate symbols, function symbols, constant symbols, variables, quantifiers. 
– Models, symbols, and interpretations 

• De Morgan’s rules for quantifiers 
• Nested quantifiers 

– Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)” 
• Translate simple English sentences to FOPC and back 

– ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.” 
– ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.” 

• Unification and the Most General Unifier 
• Inference in FOL 

– By Resolution (CNF) 
– By Backward & Forward Chaining (Horn Clauses) 

• Knowledge engineering in FOL 



Syntax of FOL: Basic elements 
• Constants KingJohn, 2, UCI,...  

 
• Predicates Brother, >,... 

 
• Functions Sqrt, LeftLegOf,... 

 
• Variables x, y, a, b,... 

 
• Quantifiers   ∀, ∃   

 
• Connectives ¬, ∧, ∨, ⇒, ⇔ (standard) 

 
• Equality = (but causes difficulties….) 



Syntax of FOL: Basic syntax elements are symbols 

• Constant Symbols (correspond to English nouns) 
– Stand for objects in the world. 

• E.g., KingJohn, 2, UCI, ...  
 
• Predicate Symbols (correspond to English verbs) 

– Stand for relations (maps a tuple of objects to a truth-value) 
• E.g., Brother(Richard, John), greater_than(3,2), ... 

– P(x, y) is usually read as “x is P of y.” 
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.” 

 
• Function Symbols (correspond to English nouns) 

– Stand for functions (maps a tuple of objects to an object) 
• E.g., Sqrt(3), LeftLegOf(John), ... 

 
• Model (world) = set of domain objects, relations, functions 
• Interpretation maps symbols onto the model (world) 

– Very many interpretations are possible for each KB and world! 
– The KB is to rule out those inconsistent with our knowledge. 



Syntax of FOL: Terms 
• Term = logical expression that refers to an object 

 

• There are two kinds of terms: 
 
– Constant Symbols stand for (or name) objects: 

• E.g., KingJohn, 2, UCI, Wumpus, ...  
 

– Function Symbols map tuples of objects to an object: 
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x) 
• This is nothing but a complicated kind of name 

– No “subroutine” call, no “return value” 
 



Syntax of FOL: Atomic Sentences 
• Atomic Sentences state facts (logical truth values). 

– An atomic sentence is a Predicate symbol, optionally followed by a 
parenthesized list of any argument terms 

– E.g., Married( Father(Richard), Mother(John) ) 
– An atomic sentence asserts that some relationship (some predicate) holds 

among the objects that are its arguments. 
 

• An Atomic Sentence is true in a given model if the relation referred to 
by the predicate symbol holds among the objects (terms) referred to 
by the arguments. 



Syntax of FOL: 
Connectives & Complex Sentences 

• Complex Sentences are formed in the same way, using 
the same logical connectives, as in propositional logic 

 
• The Logical Connectives: 

– ⇔   biconditional 
– ⇒   implication 
– ∧   and 
– ∨   or 
– ¬   negation 

 
• Semantics for these logical connectives are the same as 

we already know from propositional logic. 



Syntax of FOL: Variables 

• Variables range over objects in the world. 
 

• A variable is like a term because it represents an object. 
 

• A variable may be used wherever a term may be used. 
– Variables may be arguments to functions and predicates. 

 
• (A term with NO variables is called a ground term.) 

 
• (A variable not bound by a quantifier is called free.) 

– All variables we will use are bound by a quantifier. 
 



Syntax of FOL: Logical Quantifiers 
• There are two Logical Quantifiers: 

– Universal: ∀ x P(x)   means “For all x, P(x).” 
• The “upside-down A” reminds you of “ALL.” 
• Some texts put a comma after the variable: ∀ x, P(x) 

– Existential: ∃ x P(x)   means “There exists x such that, P(x).” 
• The “backward E” reminds you of “EXISTS.” 
• Some texts put a comma after the variable: ∃ x, P(x) 

 
• You can ALWAYS convert one quantifier to the other. 

– ∀ x P(x) ≡ ¬∃ x ¬P(x) 
– ∃ x P(x) ≡ ¬∀ x ¬P(x) 
– RULES: ∀ ≡ ¬∃¬  and  ∃ ≡ ¬∀¬ 

 
• RULES: To move negation “in” across a quantifier, 

Change the quantifier to “the other quantifier” 
and negate the predicate on “the other side.” 

– ¬∀ x P(x) ≡ ¬ ¬∃ x ¬P(x) ≡ ∃ x ¬P(x) 
– ¬∃ x P(x) ≡ ¬ ¬∀ x ¬P(x) ≡ ∀ x ¬P(x) 

 
 
 



Universal Quantification ∀ 
• ∀ x means “for all x it is true that…” 

 
• Allows us to make statements about all objects that have 

certain properties 
 

• Can now state general rules: 
 
∀ x  King(x) => Person(x)   “All kings are persons.” 
∀ x  Person(x) => HasHead(x)   “Every person has a head.” 
∀ i  Integer(i) => Integer(plus(i,1))   “If i is an integer then i+1 is an integer.” 
 

• Note:  ∀ x  King(x) ∧ Person(x)   is not correct!   
 
This would imply that all objects x are Kings and are People (!) 
 
∀ x  King(x) => Person(x) is the correct way to say this 
 

• Note that => is the natural connective to use with ∀ . 
 
 
 

 
 



Existential Quantification ∃ 
• ∃ x means “there exists an x such that….”  

– There is in the world at least one such object x 
 

• Allows us to make statements about some object without 
naming it, or even knowing what that object is: 
 

∃ x   King(x)   “Some object is a king.” 
∃ x   Lives_in(John, Castle(x))   “John lives in somebody’s castle.” 
∃ i    Integer(i) ∧ Greater(i,0)   “Some integer is greater than zero.” 
                 
 

• Note:  ∃ i    Integer(i) ⇒ Greater(i,0)   is not correct!   
 
It is vacuously true if anything in the world were not an integer (!) 
 
∃ i    Integer(i) ∧ Greater(i,0) is the correct way to say this 
 

• Note that ∧ is the natural connective to use with ∃ . 
 
 
 

 
    



Combining Quantifiers --- Order (Scope) 
The order of “unlike” quantifiers is important. 
 Like nested variable scopes in a programming language. 
 Like nested ANDs and ORs in a logical sentence. 
 
∀ x ∃ y  Loves(x,y)     

– For everyone (“all x”) there is someone (“exists y”) whom they love. 
– There might be a different y for each x (y is inside the scope of x) 

∃ y ∀ x  Loves(x,y) 
– There is someone (“exists y”) whom everyone loves (“all x”). 
– Every x loves the same y (x is inside the scope of y) 

Clearer with parentheses:  ∃ y ( ∀ x    Loves(x,y) ) 
 
The order of “like” quantifiers does not matter. 
 Like nested ANDs and ANDs in a logical sentence 
  ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y) 
  ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y) 



De Morgan’s Law for Quantifiers 
De Morgan’s Rule Generalized De Morgan’s Rule 

AND/OR Rule is simple: if you bring a negation inside a disjunction or a 
conjunction, always switch between them (¬ OR  AND ¬ ;  ¬ AND  OR ¬). 

QUANTIFIER Rule is similar: if you bring a negation inside a universal or 
existential, always switch between them (¬ ∃ ∀ ¬ ; ¬ ∀  ∃ ¬). 

P ∧ Q ≡ ¬ (¬ P ∨ ¬ Q)  ∀ x P(x) ≡ ¬ ∃ x ¬ P(x) 
P ∨ Q ≡ ¬ (¬ P ∧ ¬ Q)  ∃ x P(x) ≡ ¬ ∀ x ¬ P(x) 
 
¬ (P ∧ Q) ≡ (¬ P ∨ ¬ Q)  ¬ ∀ x P(x) ≡ ∃ x ¬ P(x) 
¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q)  ¬ ∃ x P(x) ≡ ∀ x ¬ P(x) 





More fun with sentences 

•  “All persons are mortal.”  
•    [Use: Person(x), Mortal (x) ] 

 
 



More fun with sentences 
•  “All persons are mortal.”  
   [Use: Person(x), Mortal (x) ] 

 
•  ∀x Person(x) ⇒ Mortal(x) 

 
• Equivalent Forms: 
•  ∀x ¬Person(x) ˅ Mortal(x) 

 
• Common Mistakes: 
•  ∀x Person(x) ∧ Mortal(x) 

 
 



More fun with sentences 

• “Fifi has a sister who is a cat.” 
•    [Use: Sister(Fifi, x), Cat(x) ] 
•   



More fun with sentences 

• “Fifi has a sister who is a cat.” 
•    [Use: Sister(Fifi, x), Cat(x) ] 

 
•  ∃x Sister(Fifi, x) ∧ Cat(x)  

 
• Common Mistakes: 
•  ∃x Sister(Fifi, x) ⇒ Cat(x)  

 



More fun with sentences 

• “For every food, there is a person who eats 
that food.” 

  [Use: Food(x), Person(y), Eats(y, x) ] 
  
  



More fun with sentences 
• “For every food, there is a person who eats that food.” 
  [Use: Food(x), Person(y), Eats(y, x) ] 

 
•  ∀x ∃y Food(x) ⇒ [ Person(y) ∧ Eats(y, x) ]  

 
• Equivalent Forms: 
•  ∀x Food(x) ⇒ ∃y [ Person(y) ∧ Eats(y, x) ]  
•  ∀x ∃y ¬Food(x) ˅ [ Person(y) ∧ Eats(y, x) ]  
•  ∀x ∃y [ ¬Food(x) ˅  Person(y) ] ∧ [¬ Food(x) ˅  Eats(y, x) ]  
•  ∀x ∃y [ Food(x) ⇒ Person(y) ] ∧ [ Food(x) ⇒ Eats(y, x) ] 

 
• Common Mistakes: 
•  ∀x ∃y [ Food(x) ∧ Person(y) ] ⇒ Eats(y, x)  
•  ∀x ∃y Food(x) ∧ Person(y) ∧ Eats(y, x)  
 

 



More fun with sentences 

• “Every person eats every food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 



More fun with sentences 
• “Every person eats every food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 
  
•  ∀x ∀y [ Person(x) ∧ Food(y) ] ⇒ Eats(x, y)  

 
• Equivalent Forms: 
•  ∀x ∀y ¬Person(x) ˅ ¬Food(y) ˅ Eats(x, y)   
•  ∀x ∀y Person(x) ⇒ [ Food(y) ⇒ Eats(x, y) ]   
•  ∀x ∀y Person(x) ⇒ [ ¬Food(y) ˅ Eats(x, y) ]  
•  ∀x ∀y ¬Person(x) ˅ [ Food(y) ⇒ Eats(x, y) ] 

 
• Common Mistakes: 
•  ∀x ∀y Person(x) ⇒ [Food(y) ∧ Eats(x, y) ] 
•  ∀x ∀y Person(x) ∧ Food(y) ∧ Eats(x, y) 

 



More fun with sentences 

•  “All greedy kings are evil.” 
  [Use: King(x), Greedy(x), Evil(x) ] 



More fun with sentences 
•  “All greedy kings are evil.” 
  [Use: King(x), Greedy(x), Evil(x) ] 
  
•  ∀x [ Greedy(x) ∧ King(x) ] ⇒ Evil(x)  

 
• Equivalent Forms: 
•  ∀x ¬Greedy(x) ˅ ¬King(x) ˅ Evil(x)  
•  ∀x Greedy(x) ⇒ [ King(x) ⇒ Evil(x) ] 
 
• Common Mistakes: 
•  ∀x Greedy(x) ∧ King(x) ∧ Evil(x)  

 



More fun with sentences 

• “Everyone has a favorite food.” 
  [Use: Person(x), Food(y), Favorite(y, x) ] 



More fun with sentences 
• “Everyone has a favorite food.” 
  [Use: Person(x), Food(y), Favorite(y, x) ] 
 
• Equivalent Forms: 
•  ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x Person(x) ⇒ ∃y [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x ∃y ¬Person(x) ˅ [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x ∃y [ ¬Person(x) ˅ Food(y) ] ∧ [ ¬Person(x) 
           ˅ Favorite(y, x) ]  
•  ∀x ∃y [Person(x) ⇒ Food(y) ] ∧ [ Person(x) ⇒ Favorite(y, x) ] 
 
• Common Mistakes: 
•  ∀x ∃y [ Person(x) ∧ Food(y) ] ⇒ Favorite(y, x) 
•  ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x) 

 



More fun with sentences 

• “There is someone at UCI who is smart.”  
 [Use: Person(x), At(x, UCI), Smart(x) ] 

 



More fun with sentences 

• “There is someone at UCI who is smart.”  
 [Use: Person(x), At(x, UCI), Smart(x) ] 

 
•  ∃x Person(x) ∧ At(x, UCI) ∧ Smart(x) 

 
• Common Mistakes: 
•  ∃x [ Person(x) ∧ At(x, UCI) ] ⇒ Smart(x) 

 



More fun with sentences 

• “Everyone at UCI is smart.” 
   [Use: Person(x), At(x, UCI), Smart(x) ] 



More fun with sentences 
• “Everyone at UCI is smart.” 
   [Use: Person(x), At(x, UCI), Smart(x) ] 

 
•  ∀x [Person(x) ∧ At(x, UCI) ] ⇒ Smart(x)  

 
• Equivalent Forms: 
•  ∀x ¬[Person(x) ∧ At(x, UCI) ] ˅ Smart(x)  
•  ∀x ¬Person(x) ˅ ¬At(x, UCI) ˅ Smart(x) 
 
• Common Mistakes: 
•  ∀x Person(x) ∧ At(x, UCI) ∧ Smart(x)  
•  ∀x Person(x) ⇒ [At(x, UCI) ∧ Smart(x) ] 
•   

 



More fun with sentences 

• “Every person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 



More fun with sentences 
• “Every person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 
  
•  ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Eats(x, y) ]  
•   
• Equivalent Forms: 
•  ∀x Person(x) ⇒ ∃y [ Food(y) ∧ Eats(x, y) ]  
•  ∀x ∃y ¬Person(x) ˅ [ Food(y) ∧ Eats(x, y) ]  
•  ∀x ∃y [ ¬Person(x) ˅ Food(y) ] ∧ [ ¬Person(x) ˅ Eats(x, y) ]  

 
• Common Mistakes: 
•  ∀x ∃y [ Person(x) ∧ Food(y)  ] ⇒ Eats(x, y) 
•  ∀x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y) 
•   

 



More fun with sentences 

•  “Some person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 



More fun with sentences 

•  “Some person eats some food.” 
  [Use: Person (x), Food (y), Eats(x, y) ] 

 
•  ∃x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y) 

 
• Common Mistakes: 
•  ∃x ∃y [ Person(x) ∧ Food(y) ] ⇒ Eats(x, y) 



Semantics: Interpretation 
• An interpretation of a sentence is an assignment that maps  

– Object constants to objects in the worlds,  
– n-ary function symbols to n-ary functions in the world, 
– n-ary relation symbols to n-ary relations in the world 

• Given an interpretation, an atomic sentence has the value 
“true” if it denotes a relation that holds for those individuals 
denoted in the terms. Otherwise it has the value “false” 
– Example: Block world: 

• A, B, C, floor, On, Clear 
– World: 
– On(A,B) is false, Clear(B) is true, On(C,Floor) is true… 

• Under an interpretation that maps symbol A to block A, 
    symbol B to block B, symbol C to block C, symbol Floor to the 
floor 



Semantics: Models and Definitions 

•An interpretation and possible world satisfies a wff (sentence) if the wff 
has the value “true” under that interpretation in that possible world. 
 

•Model: A domain and an interpretation that satisfies a wff is a model of 
that wff 
 

•Validity: Any wff that has the value “true” in all possible worlds and 
under all interpretations is valid. 
 

•Any wff that does not have a model under any interpretation is 
inconsistent or unsatisfiable. 
 

•Any wff that is true in at least one possible world under at least one 
interpretation is satisfiable. 
 

•If a wff w has a value true under all the models of a set of sentences KB 
then KB logically entails w. 



Conversion to CNF 
• Everyone who loves all animals is loved by someone: 

 
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] 

 
1. Eliminate biconditionals and implications 

 
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 

 
2. Move ¬ inwards: 
   ¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p 
 

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]  
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
 



Conversion to CNF contd. 
3. Standardize variables: each quantifier should use a different one 

 
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)] 

  
 

4. Skolemize: a more general form of existential instantiation. 
Each existential variable is replaced by a Skolem function of the enclosing universally 

quantified variables: 
 
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x) 

 

5. Drop universal quantifiers: 
 [Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x) 

 
 

6. Distribute ∨ over ∧ : 
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)] 



Unification 
•Recall: Subst(θ, p) = result of substituting θ into sentence p 
 
 

•Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists 
 

         Unify(p,q) = θ   where Subst(θ, p) = Subst(θ, q) 
 
  where θ is a list of variable/substitution pairs 
  that will make p and q syntactically identical 
 
•Example: 
       p = Knows(John,x) 
       q = Knows(John, Jane) 
 
           Unify(p,q) = {x/Jane}    



Unification examples 
•  simple example: query = Knows(John,x), i.e., who does John know? 
   
 
p    q    θ   
Knows(John,x)  Knows(John,Jane)   {x/Jane} 
Knows(John,x) Knows(y,OJ)   {x/OJ,y/John} 
Knows(John,x)  Knows(y,Mother(y))  {y/John,x/Mother(John)} 
Knows(John,x) Knows(x,OJ)   {fail} 
 

 
 

 
• Last unification fails: only because x can’t take values John and OJ at the same time 

– But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that John 
knows OJ 

 
• Problem is due to use of same variable x in both sentences 

 
• Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ) 



Unification examples 

 
• UNIFY( Knows( John, x ), Knows( John, Jane ) )     { x / Jane }   

 
• UNIFY( Knows( John, x ), Knows( y, Jane ) )  { x / Jane, y / John }   

 
• UNIFY( Knows( y, x ), Knows( John, Jane ) )  { x / Jane, y / John }   

 
• UNIFY( Knows( John, x ), Knows( y, Father (y) ) )    { y / John, x / Father (John) }   

 
• UNIFY( Knows( John, F(x) ), Knows( y, F(F(z)) ) )    { y / John, x / F (z) }   

 
• UNIFY( Knows( John, F(x) ), Knows( y, G(z) ) )  None   

 
• UNIFY( Knows( John, F(x) ), Knows( y, F(G(y)) ) )   { y / John, x / G (John) }   

 



Unification Algorithm 



Example knowledge base 

• The law says that it is a crime for an American to sell weapons 
to hostile nations.  The country Nono, an enemy of America, 
has some missiles, and all of its missiles were sold to it by 
Colonel West, who is American. 

 

• Prove that Col. West is a criminal 



Example knowledge base (Horn clauses) 
... it is a crime for an American to sell weapons to hostile nations: 

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 
 

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x): 
Owns(Nono,M1) ∧ Missile(M1) 

 

… all of its missiles were sold to it by Colonel West 
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 

 

An enemy of America counts as "hostile“: 
Enemy(x,America) ⇒ Hostile(x) 

 

West, who is American … 
American(West) 

 

The country Nono, an enemy of America … 
Enemy(Nono,America) 
 



Resolution proof: 

~ 



Knowledge engineering in FOL 
1. Identify the task 

 
2. Assemble the relevant knowledge 

 
3. Decide on a vocabulary of predicates, functions, and constants 

 
4. Encode general knowledge about the domain 

 
5. Encode a description of the specific problem instance 

 
6. Pose queries to the inference procedure and get answers 

 
7. Debug the knowledge base 



The electronic circuits domain 
One-bit full adder 
 
 
 
 
 
 
 
 
Possible queries: 
 - does the circuit function properly? 
    - what gates are connected to the first input terminal? 
    - what would happen if one of the gates is broken? 
    and so on 
 

 



The electronic circuits domain 
1. Identify the task 

– Does the circuit actually add properly?   
 

2. Assemble the relevant knowledge 
– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT) 
–  
– Irrelevant: size, shape, color, cost of gates 
–  

 
3. Decide on a vocabulary 

– Alternatives: 
–  

Type(X1) = XOR  (function) 
Type(X1, XOR)   (binary predicate) 
XOR(X1) 
      (unary predicate) 



The electronic circuits domain 
4. Encode general knowledge of the domain 

– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2) 
 

– ∀t Signal(t) = 1 ∨ Signal(t) = 0 
 
– 1 ≠ 0 

 
– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1) 

 
– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1 

 
– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0 

 
– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠ 

Signal(In(2,g)) 
 

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g)) 



The electronic circuits domain 
5. Encode the specific problem instance 

 
Type(X1) = XOR   Type(X2) = XOR 
Type(A1) = AND   Type(A2) = AND 
Type(O1) = OR 
 
Connected(Out(1,X1),In(1,X2))  Connected(In(1,C1),In(1,X1)) 
Connected(Out(1,X1),In(2,A2))  Connected(In(1,C1),In(1,A1)) 
Connected(Out(1,A2),In(1,O1))   Connected(In(2,C1),In(2,X1)) 
Connected(Out(1,A1),In(2,O1))   Connected(In(2,C1),In(2,A1)) 
Connected(Out(1,X2),Out(1,C1))   Connected(In(3,C1),In(2,X2)) 
Connected(Out(1,O1),Out(2,C1))   Connected(In(3,C1),In(1,A2)) 
 
 



The electronic circuits domain 
6. Pose queries to the inference procedure: 

 
What are the possible sets of values of all the terminals for the adder circuit?  
 

 ∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3 

    ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2 
 

 
 

 

7. Debug the knowledge base 
 
May have omitted assertions like 1 ≠ 0 
 



Review Probability 
Chapter 13 

• Basic probability notation/definitions: 
– Probability model, unconditional/prior and conditional/posterior probabilities, 

random variable, (joint) probability distribution, probability density function 
(pdf), marginal probability, (conditional) independence, normalization, etc. 

• Basic probability formulas: 
– E.g., Probability axioms, sum rule, product rule, Bayes’ rule. 

• How to use Bayes’ rule: 
– Naïve Bayes model (naïve Bayes classifier) 



Syntax 
 

•Basic element: random variable 
•Similar to propositional logic: possible worlds defined by assignment of 

values to random variables. 
 

•Booleanrandom variables 

 e.g., Cavity (= do I have a cavity?) 
•Discreterandom variables 

 e.g., Weather is one of 
<sunny,rainy,cloudy,snow> 

•Domain values must be exhaustive and mutually exclusive 
 

•Elementary proposition is an assignment of a value to a random variable: 
 e.g., Weather = sunny; Cavity = false(abbreviated as ¬cavity) 

 
•Complex propositions formed from elementary propositions and standard 

logical connectives : 
 e.g., Weather = sunny ∨  Cavity = false 

 



Probability 
• P(a) is the probability of proposition “a” 

– e.g., P(it will rain in London tomorrow) 
– The proposition a is actually true or false in the real-world 
 

• Probability Axioms: 
– 0  ≤ P(a) ≤ 1 
– P(NOT(a))  = 1 – P(a) =>  ΣA P(A) = 1 
– P(true)  =  1 
– P(false) =  0 
– P(A OR B) = P(A) + P(B) – P(A AND B) 

 
• Any agent that holds degrees of beliefs that contradict these 

axioms will act irrationally in some cases 
 

• Rational agents cannot violate probability theory. 
─ Acting otherwise results in irrational behavior. 

 
 
 
 
 

 



Conditional Probability 
• P(a|b) is the conditional probability of proposition a, 

conditioned on knowing that b is true, 
– E.g., P(rain in London tomorrow | raining in London today) 
– P(a|b) is a “posterior” or conditional probability 
– The updated probability that a is true, now that we know b 
– P(a|b) = P(a ∧ b) / P(b) 
– Syntax:  P(a | b) is the probability of a given that b is true 

• a and b can be any propositional sentences 
• e.g., p( John wins OR Mary wins | Bob wins AND Jack loses) 

 

• P(a|b) obeys the same rules as probabilities, 
– E.g., P(a | b)  + P(NOT(a) | b) = 1 
– All probabilities in effect are conditional probabilities 

• E.g., P(a) = P(a | our background knowledge) 

 
 
 
 
 
 

 



Concepts of Probability 
• Unconditional Probability  

─ P(a), the probability of “a” being true, or P(a=True) 
─ Does not depend on anything else to be true (unconditional) 
─ Represents the probability prior to further information that may adjust it 

(prior) 
 

• Conditional Probability  
─ P(a|b), the probability of “a” being true, given that “b” is true 
─ Relies on “b” =  true (conditional) 
─ Represents the prior probability adjusted based upon new information “b” 

(posterior) 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a|b, c, d) 
 

• Joint Probability  
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a, b, c, d) 
 

 
 

 
 
 
 
 

 



Basic Probability Relationships 
• P(A) + P(¬ A) = 1 

– Implies that P(¬ A) = 1 ─ P(A) 

• P(A, B) = P(A ˄ B) = P(A) + P(B) ─ P(A ˅ B) 
– Implies that P(A ˅ B) = P(A) + P(B) ─ P(A ˄ B) 

• P(A | B) = P(A, B) / P(B) 
– Conditional probability; “Probability of A given B” 

• P(A, B) = P(A | B) P(B) 
– Product Rule (Factoring); applies to any number of variables 
– P(a, b, c,…z) = P(a | b, c,…z) P(b | c,...z) P(c|...z)...P(z) 

• P(A) =  ΣB,C P(A, B, C) =  Σb∈B,c∈C P(A, b, c) 
– Sum Rule (Marginal Probabilities); for any number of variables 
– P(A, D) = ΣB  ΣC  P(A, B, C, D) = Σb∈B  Σc∈C  P(A, b, c, D) 

• P(B | A) = P(A | B) P(B) / P(A) 
– Bayes’ Rule; for any number of variables 

 
 

 

 
 

 

You need to  
know these ! 



Summary of Probability Rules 
• Product Rule: 

– P(a, b) = P(a|b) P(b)  = P(b|a) P(a) 
– Probability of “a” and “b” occurring is the same as probability of “a” occurring 

given “b” is true, times the probability of “b” occurring. 
 e.g., P( rain, cloudy ) = P(rain | cloudy) * P(cloudy) 

 
• Sum Rule: (AKA Law of Total Probability) 

– P(a) =  Σb P(a, b) =  Σb  P(a|b) P(b),   where B is any random variable 
– Probability of “a” occurring is the same as the sum of all joint probabilities 

including the event, provided the joint probabilities represent all possible 
events. 

– Can be used to “marginalize” out other variables from probabilities, resulting 
in prior probabilities also being called marginal probabilities. 
 e.g., P(rain) = ΣWindspeed P(rain, Windspeed) 
  where Windspeed = {0-10mph, 10-20mph, 20-30mph, etc.} 

 
• Bayes’ Rule: 

- P(b|a) =  P(a|b) P(b)  / P(a) 
- Acquired from rearranging the product rule. 
- Allows conversion between conditionals, from  P(a|b) to P(b|a). 

 e.g.,  b = disease, a = symptoms 
         More natural to encode knowledge as P(a|b) than as P(b|a). 

 
 



Full Joint Distribution 

• We can fully specify a probability space by 
constructing a full joint distribution: 
– A full joint distribution contains a probability for 

every possible combination of variable values.  
– E.g., P( J=f, M=t, A=t, B=t, E=f ) 

 

• From a full joint distribution, the product rule, 
sum rule, and Bayes’ rule can create any 
desired joint and conditional probabilities. 

    

 



Computing with Probabilities: Law of Total Probability 

Law of Total Probability (aka “summing out” or marginalization) 
             P(a)  = Σb  P(a, b)  
                     = Σb  P(a | b) P(b)        where B is any random variable 
 
  

Why is this useful? 

  Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any 
“marginal” probability (e.g., P(b)) by summing out the other 
variables, e.g., 

                   

                 P(b)  = Σa Σc Σd P(a, b, c, d)  
 

We can compute any conditional probability given a joint distribution, e.g., 
                

              P(c | b)  = Σa Σd P(a, c, d | b)  
                        =  Σa Σd P(a, c, d, b) / P(b)   
                          where P(b) can be computed as above 
 
 

 

 
 



Computing with Probabilities: 
The Chain Rule or Factoring 

We can always write 
      P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
Repeatedly applying this idea, we can write 
       P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
This factorization holds for any ordering of the variables 
 
This is the chain rule for probabilities 
 



Independence 
• Formal Definition: 

– 2 random variables A and B are independent iff: 
   P(a, b) = P(a) P(b),     for all values a, b 

 

• Informal Definition: 
– 2 random variables A and B are independent iff: 
              P(a | b) = P(a)     OR   P(b | a) = P(b),   for all values a, b 
– P(a | b) = P(a) tells us that knowing b provides no change in our probability 

for a, and thus b contains no information about a. 
 

• Also known as marginal independence, as all other variables have 
been marginalized out. 

 
• In practice true independence is very rare: 

– “butterfly in China” effect 
– Conditional independence is much more common and useful   

 
 



Conditional Independence 
• Formal Definition: 

– 2 random variables A and B are conditionally independent given C iff: 
  P(a, b|c) = P(a|c) P(b|c),     for all values a, b, c 
 

• Informal Definition: 
– 2 random variables A and B are conditionally independent given C iff: 
  P(a|b, c) = P(a|c)     OR   P(b|a, c) = P(b|c),   for all values a, b, c 
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c, 

provides no change in our probability for a, and thus b contains no 
information about a beyond what c provides. 
 

• Naïve Bayes Model: 
– Often a single variable can directly influence a number of other variables, all 

of which are conditionally independent, given the single variable. 
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to: 
  P(X1, X2,…. XK | C) = P(C) Π  P(Xi | C) 

 

 



Examples of Conditional Independence 
• H=Heat, S=Smoke, F=Fire 

– P(H, S | F) = P(H | F) P(S | F) 
– P(S | F, S) = P(S | F) 
– If we know there is/is not a fire, observing heat tells us no more 

information about smoke 

• F=Fever, R=RedSpots, M=Measles 
– P(F, R | M) = P(F | M) P(R | M) 
– P(R | M, F) = P(R | M) 
– If we know we do/don’t have measles, observing fever tells us no 

more information about red spots 

• C=SharpClaws, F=SharpFangs, S=Species 
– P(C, F | S) = P(C | S) P(F | S) 
– P(F | S, C) = P(F | S) 
– If we know the species, observing sharp claws tells us no more 

information about sharp fangs 



Review Bayesian Networks 
Chapter 14.1-5 

• Basic concepts and vocabulary of Bayesian networks. 
– Nodes represent random variables. 
– Directed arcs represent (informally) direct influences. 
– Conditional probability tables, P( Xi | Parents(Xi) ). 

 
• Given a Bayesian network: 

– Write down the full joint distribution it represents. 
 

• Given a full joint distribution in factored form: 
– Draw the Bayesian network that represents it. 

 
• Given a variable ordering and background assertions of conditional 

independence among the variables: 
– Write down the factored form of the full joint distribution, as simplified by the 

conditional independence assertions. 
• Use the network to find answers to probability questions about it.  

 



Bayesian Networks 
• Represent dependence/independence via a directed graph   

– Nodes = random variables 
– Edges = direct dependence 

• Structure of the graph  Conditional independence 
 

• Recall the chain rule of repeated conditioning: 
 
 

 
 

 
• Requires that graph is acyclic (no directed cycles) 
• 2 components to a Bayesian network 

– The graph structure (conditional independence assumptions) 
– The numerical probabilities (of each variable given its parents) 

 

The full joint distribution The graph-structured approximation 



•   A Bayesian network specifies a joint distribution in a structured form: 

 

 

 

 

   

 
• Dependence/independence represented via a directed graph:   

− Node   = random variable 
− Directed Edge  = conditional dependence 
− Absence of Edge  = conditional independence 
 

 
•Allows concise view of joint distribution relationships:   

− Graph nodes and edges show conditional relationships between variables. 
− Tables provide probability data. 
 

Bayesian Network 

A B 

C 

p(A,B,C) = p(C|A,B)p(A|B)p(B) 
   = p(C|A,B)p(A)p(B) 

Full factorization 

After applying 
conditional 
independence 
from the graph 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
 
You heard alarm, and observe Earthquake 
…. It explains away burglary   

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 A  C 
 B  C 

Independent Causes 
A Earthquake 
B Burglary 
C Alarm 



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 No Edge!  



Extended example of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
“Where there’s Smoke, there’s Fire.” 
 
If we see Smoke, we can infer Fire. 
 
If we see Smoke, observing Heat tells 
us very little additional information. 

Common Cause 
A : Fire 
B:  Heat 
C: Smoke 



Examples of 3-way Bayesian Networks 

A C B 

Markov dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 
 
A affects B and B affects C 
Given B, A and C are independent 
 
e.g.  
If it rains today,  it will rain tomorrow with 90% 
 
On Wed morning… 
If you know it rained yesterday,  
it doesn’t matter whether it rained on Mon 

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 A  B 
 B  C 

Markov Dependence 
A Rain on Mon 
B Ran on Tue 
C Rain on Wed 



Naïve Bayes Model                  (section 20.2.2 R&N 

3rd ed.) 

X1 X2 X3 

C 

Xn 

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about 
computing the probability of a class from input attributes of an example. 
 
Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally 
equivalent expression that involves only P(C) and P(X1,…Xn  | C). 
Then assume that feature values are conditionally independent given class, 
which allows us to turn P(X1,…Xn  | C) into Πi  P(Xi | C). 
 
We estimate P(C) easily from the frequency with which each class appears 
within our training data, and we estimate P(Xi | C) easily from the frequency 
with which each Xi appears in each class C within our training data. 



Naïve Bayes Model                  (section 20.2.2 R&N 

3rd ed.) 

X1 X2 X3 

C 

Xn 

Bayes Rule:    P(C | X1,…Xn)  is proportional to P (C)  Πi  P(Xi | C) 
[note: denominator P(X1,…Xn)  is constant for all classes, may be ignored.] 
 
Features Xi are conditionally independent given the class variable C 

• choose the class value ci with the highest P(ci | x1,…, xn) 
• simple to implement, often works very well 
• e.g., spam email classification: X’s = counts of words in emails 

 
Conditional probabilities P(Xi | C) can easily be estimated from labeled date 

• Problem:  Need to avoid zeroes, e.g., from limited training data 
• Solutions: Pseudo-counts, beta[a,b] distribution, etc. 



Naïve Bayes Model (2) 
                 P(C | X1,…Xn)  =  α  P (C)  Π i  P(Xi | C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label C = cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with attribute value Xi = xik and class label C = cj)  
  /  #(Examples with class label C = cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α  + log P (C) +   Σ  log P(Xi | C) 
 
DANGER: What if ZERO examples with value Xi = xik and class label C = cj ? 
An unseen example with value Xi = xik will NEVER predict class label C = cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 



Bigger Example 
• Consider the following 5 binary variables: 

– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 

• Sample Query: What is P(B|M, J) ? 
• Using full joint distribution to answer this question requires  

– 25 - 1= 31 parameters 

•  Can we use prior domain knowledge to come up with a 
Bayesian network that requires fewer probabilities? 



Constructing a Bayesian Network: Step 1 
• Order the variables in terms of influence (may be a partial order) 
 
            e.g., {E, B} -> {A} -> {J, M} 
 

 
• Now, apply the chain rule, and simplify based on assumptions 

 
• P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B) 

 
                           ≈  P(J, M | A)         P(A| E, B) P(E) P(B) 
 
       ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 
 
    These conditional independence assumptions are reflected in the graph 

structure of the Bayesian network 

 
 
 

 

Generally, order variables to reflect the assumed causal relationships. 



Constructing this Bayesian Network: Step 2 
 

• P(J, M, A, E, B) =     
         P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B) 
 
 
 
 

 

 
 

• There are 3 conditional probability tables (CPDs) to be determined: 
 P(J | A),  P(M | A),  P(A | E, B)  
– Requiring 2 + 2 + 4 = 8 probabilities 

 
• And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities 

 
• Where do  these probabilities come from? 

– Expert knowledge 
– From data (relative frequency estimates) 
– Or a combination of both - see discussion in Section 20.1 and 20.2 

(optional) 
 

 
 
 
 
 

 

Parents in the graph ⇔   
conditioning variables 
(RHS) 
 



The Resulting Bayesian Network 



The Bayesian Network From a 
Different Variable Ordering 

P(J, M, A, E, B) = P(E | A, B)  P(B | A)  P(A | M, J)  P(J | M)  P(M) 
Generally, order variables so that resulting graph reflects assumed causal relationships. 

Parents in the graph ⇔   
conditioning variables 
(RHS) 
 



Example of Answering a Simple Query 

• What is P(¬j, m, a, ¬e, b) = P(J = false ∧ M=true ∧ A=true ∧ E=false ∧ B=true) 
 
P(J, M, A, E, B) ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) ; by conditional independence 
 
P(¬j, m, a, ¬e, b) ≈  P(¬j | a) P(m | a) P(a| ¬e, b) P(¬e) P(b)  
        =   0.10   x   0.70   x   0.94  x  0.998  x  0.001 ≈ .0000657 
 

Earthquake Burglary 

Alarm 

John Mary 

B E P(A|B,E) 

1 1 0.95 

1 0 0.94 

0 1 0.29 

0 0 0.001 

P(B) 

0.001 

P(E) 

0.002 

A P(J|A) 

1 0.90 

0 0.05 
A P(M|A) 

1 0.70 

0 0.01 



Inference in Bayesian Networks 

• X = { X1, X2, …, Xk } = query variables of interest 
• E = { E1, …, El } = evidence variables that are observed 
• Y = { Y1, …, Ym } = hidden variables (nonevidence, nonquery) 

 
 

• What is the posterior distribution of X, given E? 
– P( X | e ) = α Σ y  P( X, y, e ) 

 
 

• What is the most likely assignment of values to X, given E? 
– argmax x P( x | e )  = argmax x  Σ y  P( x, y, e ) 

Normalizing constant α  = Σx  Σ y  P( X, y, e ) 



Given a graph, can we “read off” 
conditional independencies? 

The “Markov Blanket” of X 
(the gray area in the figure) 
 
X is conditionally independent of 
everything else, GIVEN the 
values of: 
 * X’s parents 
 * X’s children 
 * X’s children’s parents 
 
X is conditionally independent of 
its non-descendants, GIVEN the 
values of its parents. 
 



D-Separation 
• Prove sets X,Y independent given Z? 
• Check all undirected paths from X to Y 
• A path is “inactive” if it passes through: 

(1) A “chain” with an observed variable 
 
 

(2) A “split” with an observed variable 
 
 

(3) A “vee” with only unobserved  
 variables below it 

 

• If all paths are inactive, conditionally independent! 

          

X 
Y V 

X Y V 

X Y 
V 



Summary 

• Bayesian networks represent a joint distribution using a graph 
 

• The graph encodes a set of conditional independence assumptions 
 

• Answering queries (or inference or reasoning) in a Bayesian network 
amounts to computation of appropriate conditional probabilities 
 

• Probabilistic inference is intractable in the general case 
– Can be done in linear time for certain classes of Bayesian networks (polytrees: 

at most one directed path between any two nodes) 
– Usually faster and easier than manipulating the full joint distribution 
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