First Order Logic B: Semantics, Inference, Proof

CS171, Fall Quarter, 2018 Introduction to Artificial Intelligence Prof. Richard Lathrop

Read Beforehand: R\&N 8, 9.1-9.2, 9.5.1-9.5.5

Semantics: Worlds

- The world consists of objects that have properties.
- There are relations and functions between these objects
- Objects in the world, individuals: people, houses, numbers, colors, baseball games, wars, centuries
- Clock A, John, 7, the-house in the corner, Tel-Aviv
- Functions on individuals:
- father-of, best friend, third inning of, one more than
- a function returns an object
- Relations (terminology: same thing as a predicate):
- brother-of, bigger than, inside, part-of, has color, occurred after
- a relation/predicate returns a truth value
- Properties (a relation of arity 1):
- red, round, bogus, prime, multistoried, beautiful

Semantics: Interpretation

- An interpretation of a sentence is an assignment that maps
- Object constants to objects in the worlds,
- n-ary function symbols to n-ary functions in the world,
- n-ary relation symbols to n-ary relations in the world
- Given an interpretation, an atomic sentence has the value "true" if it denotes a relation that holds for those individuals denoted in the terms. Otherwise it has the value "false."
- Example: Block world:
- A, B, C, Floor, On, Clear
- World:
- On (A, B) is false, Clear(B) is true, On(C,Floor) is true...

Floor

- Under an interpretation that maps symbol A to block A, symbol B to block B, symbol C to block C, symbol Floor to the Floor
- Some other interpretation might result in different truth values.

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for constant symbols $\quad \rightarrow \quad$ objects predicate symbols $\quad \rightarrow \quad$ relations (a relation yields a truth value) function symbols $\quad \rightarrow \quad$ functions (a function yields an object)
- An atomic sentence predicate (term ${ }_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Review: Models (and in FOL, Interpretations)

- Models are formal worlds within which truth can be evaluated
- Interpretations map symbols in the logic to the world
- Constant symbols in the logic map to objects in the world
- n -ary functions/predicates map to n -ary functions/predicates in the world
- We say $\frac{m}{}$ is a model given an interpretation i of a sentence α if and only if α is true in the world m under the mapping i.
- $M(\alpha)$ is the set of all models of α
- Then KB $=\alpha$ iff $M(K B) \subseteq M(\alpha)$
- E.g. KB, = "Mary is Sue's sister and Amy is Sue's daughter."
- $\alpha=$ "Mary is Amy's aunt." (Must Tell it about mothers/daughters)
- Think of $K B$ and α as constraints, and models as states.
- $M(K B)$ are the solutions to $K B$ and $M(\alpha)$ the solutions to α.
- Then, $K B \neq \alpha$, i.e., $=(K B \Rightarrow a)$,
when all solutions to $K B$ are also solutions to α.

Semantics: Models and Definitions

- An interpretation and possible world satisfies a wff (sentence) if the wff has the value "true" under that interpretation in that possible world.
- Model: A domain and an interpretation that satisfies a wff is a model of that wff
- Validity: Any wff that has the value "true" in all possible worlds and under all interpretations is valid.
- Any wff that does not have a model under any interpretation is inconsistent or unsatisfiable.
- Any wff that is true in at least one possible world under at least one interpretation is satisfiable.
- If a wff w has a value true under all the models of a set of sentences KB then KB logically entails w.

Models for FOL: Example

All possible interpretations will map all of these symbols in the logic onto symbols in the domain in all possible ways.

An interpretation maps all symbols in KB onto matching symbols in a possible world. All possible interpretations gives a combinatorial explosion of mappings. Your job, as a Knowledge Engineer, is to write the axioms in KB so they are satisfied only under the intended interpretation in your own real world.

Summary of FOL Semantics

- A well-formed formula ("wff") FOL is true or false with respect to a world and an interpretation (a model).
- The world has objects, relations, functions, and predicates.
- The interpretation maps symbols in the logic to the world.
- The wff is true if and only if (iff) its assertion holds among the objects in the world under the mapping by the interpretation.
- Your job, as a Knowledge Engineer, is to write sufficient KB axioms that ensure that KB is true in your own real world under your own intended interpretation.
- The KB axioms must rule out other worlds and interpretations.

Conversion to CNF

- Everyone who loves all animals is loved by someone:

$$
\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]
$$

1. Eliminate biconditionals and implications:
```
\forallx}~[\forally Animal(y) => Loves (x,y)]\vee[\existsy Loves(y,x)
\forallx\neg[\forally \negAnimal(y)\veeLoves(x,y)]\vee [\existsy Loves ( }y,x)
```

2. Move \neg inwards:
[Recall: $\neg \forall \mathrm{x} P(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) ; \neg \exists \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$]
```
\forallx[\neg\forally \negAnimal(y) \vee Loves (x,y)] \vee [\existsy Loves(y,x)]
\forallx[\existsy\neg(\negAnimal(y)\vee\operatorname{Loves}(x,y))]\vee[\existsy Loves(y,x)]
\forallx[\existsy\neg\negAnimal(y)^\negLoves (x,y)]\vee[\existsy Loves ( }y,x)
\forallx[\existsy Animal(y)^\negLoves(x,y)]\vee [\existsy Loves(y,x)]
```


Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different variable
$\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
5. Drop universal quantifiers:
$[$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
6. Distribute \vee over \wedge :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

A note on Skolem functions

Consider the statement: $\forall x \exists y P(x, y)$

The statement asserts that, for all x , there is (at least) one y such that $\mathrm{P}(\mathrm{x}, \mathrm{y})$. Recall that each x may have a different y , and so y depends on x .

So, at least abstractly, there is a list that pairs each x to a y that satisfies $\mathrm{P}(\mathrm{x}, \mathrm{y})$: $\{(x 1, y 1),(x 2, y 2),(x 3, y 3),(x 4, y 4) \ldots\}$
where $P(x 1, y 1)=T R U E ; P(x 2, y 2)=T R U E ; P(x 3, y 3)=$ TRUE; and so on.
So, at least abstractly, there is a function that maps xi to yi. Call that function F() , where $F(x 1)=y 1 ; F(x 2)=y 2 ; F(x 3)=y 3$; and so on. (We don't know what that function is, but we do know that it must exist --- even if we can't write it down.)

So $P(x 1, F(x 1))=T R U E ; P(x 2, F(x 2))=T R U E ; P(x 3, F(x 3))=$ TRUE; and so on.
In other words, $\forall x \exists y P(x, y) \equiv \forall x P(x, F(x))$, where $F()$ is as described above.

Unification

- Recall: $\operatorname{Subst}(\theta, p)=$ result of substituting θ into sentence p
- Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists

$$
\operatorname{Unify}(p, q)=\theta \quad \text { where } \operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)
$$

where θ is a list of variable/substitution pairs that will make p and q syntactically identical

- Example:
p = Knows(John, x)
q = Knows(John, Jane)
$\operatorname{Unify}(p, q)=\{x /$ Jane $\}$

Unification examples

- \quad simple example: query $=$ Knows(John,x), i.e., who does John know?

		θ
p	q	θ
Knows(John, x)	Knows(John,Jane)	$\{x /$ Jane $\}$
Knows(John, $x)$	Knows(y,OJ)	$\{x / O J, y / J o h n\}$
Knows(John, $x)$	Knows(y,Mother(y))	$\{y / J o h n, x /$ Mother(John) $\}$
Knows(John, $x)$	Knows(x,OJ)	$\{f a i l\}$

- Last unification fails: only because x can't take values John and OJ at the same time
- But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that John knows OJ
- Problem is due to use of same variable x in both sentences
- Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ)

Unification examples

- UNIFY(Knows(John, x), Knows(John, Jane))
- UNIFY(Knows(John, x), Knows(y, Jane))
- UNIFY(Knows(y, x), Knows(John, Jane))
- UNIFY(Knows(John, x), Knows(y, Father (y)))
- UNIFY(Knows(John, F(x)), Knows(y, F(F(z))))
- UNIFY(Knows(John, F(x)), Knows(y, G(z)))
- UNIFY(Knows(John, F(x)), Knows(y, F(G(y))))
\{x/Jane \}
\{ x / Jane, y / John \}
\{ x / Jane, y / John \}
\{ y / John, x / Father (John) \}
\{ y/John, x/F(z) \}

None
\{ y / John, x/G(John) \}

Unification

- To unify Knows(John, x) and $\operatorname{Knows(y,z),~}$
$\theta=\{y / J o h n, x / z\}$ or $\theta=\{y / J o h n, x / J o h n, z / J o h n\}$
- The first unifier is more general than the second.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.

MGU $=\{y / J o h n, x / z\}$

- General algorithm in Figure 9.1 in the text

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound expression
            y, a variable, constant, list, or compound expression
    0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if VARIABLE?( }x\mathrm{ ) then return UNIFY-VAR( }x,y,0
    else if VaRIable?(y) then return Unify-VAR (y,x,0)
    else if Compound?(x) and Compound?(y) then
        return UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP,},0)
    else if LIST?( }x\mathrm{ ) and LIST?(y) then
        return UNIFY( }x\mathrm{ .REST, }y\mathrm{ .REST, UNIFY( }x\mathrm{ .FIRST, }y\mathrm{ .FIRST, }0\mathrm{ ))
    else return failure
```

function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ val, $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ var, val,$\theta)$
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{v a r / x\}$ to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound expression
            y, a variable, constant, list, or compound expression
            0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure If we have failed or succeeded,
    else if }x=y\mathrm{ then return }0\mathrm{ then fail or succeed.
    else if VARIABLE?(x) then return UNifY-VAR( }x,y,0
    else if VARIABLE?( }y\mathrm{ ) then return UNIFY-VAR ( }y,x,0
    else if COMPOUND?( }x\mathrm{ ) and COMPOUND?(y) then
        return UNIFY(x.ARGS, y.ARGS, UNIFY(x.Op, y.OP, }0\mathrm{ ))
    else if LIST?( }x\mathrm{ ) and LIST?(y) then
        return UNIFY( }x\mathrm{ .REST, }y\mathrm{ .REST, UNIFY( }x\mathrm{ .FIRST, }y\mathrm{ .FIRST, }0\mathrm{ ))
    else return failure
```

function UNIFY-VAR $($ var $, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{UniFY}($ var, val,$\theta)$
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{\mathrm{var} / x\}$ to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound expression
            y, a variable, constant, list, or compound expression
            0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if Variable?(x) then return UNify-VaR(x,y,0) If we can unify a variable
    else if Variable?( }y\mathrm{ ) then return Unify-VAR (y,x,})\mathrm{ then do So.
    else if COMPOUND?( }x\mathrm{ ) and COMPOUND?( }y\mathrm{ ) then
```



```
    else if LIST?(x) and LIST?(y) then
        return UNIFY( }x\mathrm{ .REST, }y\mathrm{ .REST, UNIFY( }x\mathrm{ .FIRST, }y\mathrm{ .FIRST, }0\mathrm{ ))
    else return failure
```

function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ var, val, $\theta)$
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{v a r / x\}$ to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound expression
    y, a variable, constant, list, or compound expression
    0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if VARIABLE?( }x\mathrm{ ) then return UNIFY-VAR( }x,y,0
    else if Variable?(y) then return Unify-VAR ( }y,x,0
    else if COMPOUND?(x) and COMPOUND?(y) then
        return UNIFY(x.ARGS, y.ARGS, UNIFY(x.Op, y.OP, }0\mathrm{ ))
    else if LIST?( }x\mathrm{ ) and LIST?(y) then
        return UNIFY( }x\mathrm{ .REST, }y\mathrm{ .REST, UNIFY( }x\mathrm{ .FIRST, }y\mathrm{ .FIRST, }0\mathrm{ ))
    else return failure
```

function UnIFY-VAR $(\operatorname{var}, x, \theta)$ returns a substitution If we already have bound
if $\{$ var $/ v a l\} \in \theta$ then return $\operatorname{UnIFY}($ val $, x, \theta) \quad$ variable var to a value, try else if $\{x /$ val $\} \in \theta$ then return UNIFY $(v a r, v a l, \theta)$ to continue on that basis. else if OCCUR-CHECK? $(v a r, x)$ then return failure
else return add $\{v a r / x\}$ to θ
$\begin{array}{l}\text { Figur } \\ \text { of the }\end{array}$ There is an implicit assumption that "\{var/val $\} \in \theta$ ", if it succeeds, binds val to the value that allowed it to succeed, that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound expression
        y, a variable, constant, list, or compound expression
    0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if Variable?(x) then return Unify-VaR( }x,y,0
    else if VARIABLE?( }y\mathrm{ ) then return UNIFY-VAR ( }y,x,0
    else if COMPOUND?(x) and COMPOUND?(y) then
        return UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP,},0)
    else if LIST?( }x\mathrm{ ) and LIST?(y) then
        return UNIFY( }x\mathrm{ .REST, }y\mathrm{ .REST, UNIFY( }x\mathrm{ .FIRST, }y\mathrm{ .FIRST, }0\mathrm{ ))
    else return failure
```

function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/ \mathrm{val}\} \in \theta$ then return UNIFY(val, x, θ) else if $\{x /$ val $\} \in \theta$ then return UNIFY (var, val, θ) else if Oceuk-CHEen? (var, x) then return faiture else return add $\{v a r / x\}$ to θ

If we already have bound x to a value, try to continue on that basis.

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound expression
        y, a variable, constant, list, or compound expression
    0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if VARIABLE?( }x\mathrm{ ) then return UNIFY-VAR( }x,y,0
    else if VARIABLE?( }y\mathrm{ ) then return UNIFY-VAR ( }y,x,0
    else if COMPOUND?(x) and COMPOUND?(y) then
        return UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP,},0)
    else if LIST?( }x\mathrm{ ) and LIST?(y) then
        return UNIFY( }x\mathrm{ .REST, }y\mathrm{ .REST, UNIFY( }x\mathrm{ .FIRST, }y\mathrm{ .FIRST, }0\mathrm{ ))
    else return failure
```

function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/ \mathrm{val}\} \in \theta$ then return $\operatorname{UNIFY}($ val $, x, \theta)$
else if $\{x / v a r\} \in \theta$ then-return Unwey (var,val, θ) else if OCCUR-CHECK? $($ var,$x)$ then return failure
else return add $\{$ var $/ x\}$ to θ

If var occurs anywhere within x, then no substitution will succeed.

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound expression
            y, a variable, constant, list, or compound expression
    0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if VARIABLE?( }x\mathrm{ ) then return UNIFY-VAR( }x,y,0
    else if VaRIable? ( }y\mathrm{ ) then return Unify-VAR ( }y,x,0
    else if Compound?(x) and Compound?(y) then
        return UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP,},0)
    else if LIST?( }x\mathrm{ ) and LIST?(y) then
        return UNIFY( }x\mathrm{ .REST, }y\mathrm{ .REST, UNIFY( }x\mathrm{ .FIRST, }y\mathrm{ .FIRST, }0\mathrm{ ))
    else return failure
```

function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ var, val, $\theta)$
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{v a r / x\}$ to θ
Else, try to bind var to x, and recurse.

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

function $\operatorname{UNIFY}(x, y, \theta)$ returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound expression
y, a variable, constant, list, or compound expression
θ, the substitution built up so far (optional, defaults to empty)
if $\theta=$ failure then return failure
else if $x=y$ then return θ
else if Variable? (x) then return $\operatorname{Unify-VAR}(x, y, \theta)$
else if VADIADLE? (y) then return UnIFY VAD (y, x, θ)
else if COMPOUND? (x) and COMPOUND? (y) then
return $\operatorname{UNIFY}(x . \operatorname{ARGS}, y$.ARGS, $\operatorname{UNIFY}(x . \mathrm{Op}, y . \mathrm{Op}, \theta))$
If a predicate/function, unify the arguments.
else if List? (w) and List? (y) then
return UNIFY (x.REST, y.REST, UNIFY(x.FIRST, y.FIRST, θ))
else return failure
function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{Unify}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ var, val,$\theta)$
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{\mathrm{var} / \mathrm{x}\}$ to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

function $\operatorname{UNIFY}(x, y, \theta)$ returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound expression
y, a variable, constant, list, or compound expression
θ, the substitution built up so far (optional, defaults to empty)
if $\theta=$ failure then return failure
else if $x=y$ then return θ
else if Variable? (x) then return Unify- $\operatorname{VaR}(x, y, \theta)$
else if Variable? (y) then return $\operatorname{Unify-\operatorname {VaR}(y,x,\theta)}$
else if COMPOUND? (x) and COMPOUND? (y) then
return $\operatorname{UNIFY}(x$. ARGS, y. ARGS, $\operatorname{UNIFY}(x$. Op, $y . \mathrm{Op}, \theta)$)
else if LIST? (x) and LIST? (y) then
return UnIFY(x.REST, y.REST, UNIFY (x.FIRST, y.FIRST, θ)) else return failure

If unifying arguments, unify the remaining arguments.
function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UnIFY}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ var, val, θ)
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{\operatorname{var} / x\}$ to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Unification Algorithm

function $\operatorname{UNIFY}(x, y, \theta)$ returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound expression
y, a variable, constant, list, or compound expression
θ, the substitution built up so far (optional, defaults to empty)
if $\theta=$ failure then return failure
else if $x=y$ then return θ
else if Variable? (x) then return $\operatorname{Unify-VAR}(x, y, \theta)$
else if Variable? (y) then return $\operatorname{Unify-\operatorname {VaR}(y,x,\theta)}$
else if Compound? (x) and Compound? (y) then
return $\operatorname{UNIFY}(x$. ARGS, y.ARGS, $\operatorname{UNIFY}(x . \mathrm{Op}, y . \mathrm{Op}, \theta)$)
else if LIST? (x) and LIST? (y) then
return UNIFY (x.REST, y.REST, UNIFY(x.FIRST, y.FIRST, θ))
else return failure Otherwise, fail.
function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UnIFY}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{UNIFY}($ var, val,$\theta)$
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{\mathrm{var} / \mathrm{x}\}$ to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the Op field picks out the function symbol F and the ARGS field picks out the argument list (A, B).

Hard matching example

$\operatorname{Diff(}(w a, n t) \wedge \operatorname{Diff}(w a, s a) \wedge \operatorname{Diff}(n t, q) \wedge$
$\operatorname{Diff(nt,sa)} \wedge \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge$
$\operatorname{Diff}(n s w, v) \wedge \operatorname{Diff}(n s w, s a) \wedge \operatorname{Diff}(v, s a) \Rightarrow$
Colorable ()

Diff(Red,Blue)	Diff (Red,Green)
Diff(Green,Red)	Diff(Green,Blue)
Diff(Blue,Red)	Diff(Blue,Green)

- To unify the grounded propositions with premises of the implication you need to solve a CSP!
- Colorable() is inferred iff the CSP has a solution
- CSPs include 3SAT as a special case, hence matching is NP-hard

Resolution: brief summary

- Full first-order version:

$$
\frac{厶_{1} \vee \cdots \vee h_{k}, m_{1} \vee \cdots \vee m_{n}}{\left(G_{1} \vee \cdots \vee f_{i-1} \vee \int_{i+1} \vee \cdots \vee k_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

where Unify $\left(反_{i}, \neg m_{j}\right)=\theta$.

- The two clauses are assumed to be standardized apart so that they share no variables.
- For example,

$$
\begin{aligned}
& \neg \operatorname{Rich}(x) \vee \text { Unhappy }(x) \\
& \text { Rich }(\text { Ken })
\end{aligned}
$$

with $\theta=\{x / K e n\}$

- Apply resolution steps to $\operatorname{CNF}(\mathrm{KB} \wedge \neg \alpha)$; complete for FOL

Example knowledge base

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example knowledge base (Horn clauses)

... it is a crime for an American to sell weapons to hostile nations: American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$
Nono ... has some missiles, i.e., $\exists x$ Owns(Nono,x) ^Missile(x): Owns $\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West Missile (x) \wedge Owns(Nono, x) \Rightarrow Sells(West, x, Nono)

Missiles are weapons:
Missile $(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy (x,America) \Rightarrow Hostile((x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Resolution proof:

Forward chaining proof: (Horn clauses)

Forward chaining proof (Horn clauses)

Enemy (x, America) \Rightarrow Hostile((x)
$\operatorname{Missile}(x) \wedge$ Owns(Nono, $x) \Rightarrow$ Sells(West, x, Nono)
Missile $(x) \Rightarrow$ Weapon (x)

Forward chaining proof (Horn clauses)

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$

Forward chaining proof (Horn clauses)


```
    *American(x) ^ Weapon(y) ^ Sells(x,y,z) ^Hostile(z) # Criminal(x)
    *Owns(Nono,M1) and Missile(M1)
    *Missile(x) ^Owns(Nono,x) => Sells(West,x,Nono)
    *Missile(x) = Weapon(x)
    *Enemy(x,America) = Hostile(x)
    *American(West)
    *Enemy(Nono,America)
```


Backward chaining example (Horn clauses)

Criminal(West)

Backward chaining example (Horn clauses)

Summary

- First-order logic:
- Much more expressive than propositional logic
- Allows objects and relations as semantic primitives
- Universal and existential quantifiers
- Syntax: constants, functions, predicates, equality, quantifiers
- Nested quantifiers
- Translate simple English sentences to FOPC and back
- Semantics: correct under any interpretation and in any world
- Unification: Making terms identical by substitution
- The terms are universally quantified, so substitutions are justified.

