CS-171, Intro to A.I., Fall Quarter, 2018—Quiz # 2—20 minutes

NAME:		UCI NetID:		
Your ID:	ID TO RIGHT:	ROW:	_ SEAT:	

1. (10 pts total) Probability. Use the definition of conditional probability to show that $P(a | b \land a) = 1$. Show your work!

 $P(a | b \land a) =$

2. (10 pts total) Bayes'Rule. Write down the expression that results from applying Bayes' Rule to P(H | D).

 $P(H \mid D) =$

3. (10 pts total) $P(H \land D)$ [1]. Write down the expression for $P(H \land D)$ in terms of P(H), P(D), and $P(H \lor D)$.

 $P(H \land D) =$

4. (10 pts total) $P(H \land D)$ [2]. Write down the expression for $P(H \land D)$ in terms of P(D) and P(H | D).

 $P(H \land D) =$

5. (30 pts total, 10 pts each) Consider the following joint distribution (R&N Fig. 13.3; t = toothache, d = dental pick catches, c = cavity). An arithmetic expression contains only numbers, parentheses, and +, -, *, and /. Write an arithmetic expression for each of the following expressions.

	t		−t	
	d	−d	d	$\neg d$
с	0.108	0.012	0.072	0.008
$\neg c$	0.016	0.064	0.144	0.576

5.a. (10 pts) $P(t \land \neg d \land c) =$

5.b. (10 pts) $P(\neg t \lor \neg c) =$

5.c. (10 pts) $P(c | t \land d) =$

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

6. (30 pts total, 10 pts each) BAYESIAN NETWORKS.

6.a. (10 pts) ______ Write down directly the factored conditional probability expression corresponding to this network:

6.b. (10 pts) Draw the Bayesian Network corresponding to this factored conditional probability expression:

 $P(A \mid C, D) P(B \mid C, E) P(C \mid E) P(D \mid E, F, G) P(E \mid H) P(F \mid G, H) P(G) P(H \mid G)$

6.c. (10 pts) Shown below is the Bayesian network corresponding to the Burglar Alarm problem, i.e., P(J,M,A,B,E) = P(J | A) P(M | A) P(A | B, E) P(B) P(E). This is Fig. 14.2 in your R&N textbook.

Write down an expression that will evaluate to $P(J=f \land M=t \land A=t \land B=t \land E=f)$. Express your answer as a series of <u>numbers (numerical probabilities) separated by multiplication symbols.</u> You do not need to carry out the multiplication to produce a single number (probability). <u>SHOW YOUR WORK, first as the symbolic conditional</u> probabilities from the graphs, then as the corresponding numeric probabilities from the tables above.

P(J=f \land M=t \land A=t \land B=t \land E=f)

[put symbolic here]

[put numeric here]

Scratch Paper (1) Please Do Not Detach From Test

Scratch Paper (2) Please Do Not Detach From Test