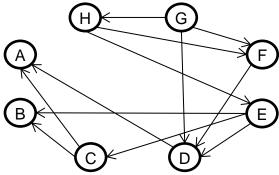

CS-171, Intro to A.I., Fall Quarter, 2018—Quiz # 2—20 minutes		
NAME:	UCI NetID:	
YOUR ID:	_ ID TO RIGHT:	_ ROW: SEAT:
1. (10 pts total) Probability. Use the definition of conditional probability to show that $P(a \mid b \land a) = 1$. Show your work!		
$P(a \mid b \wedge a) = P(a \wedge b \wedge a)$	$(a) / P(b \wedge a) = P(b \wedge a) / P(b \wedge a) = 1$	R&N Ex. 13.1, p. 506
2. (10 pts total) Bayes'Rule. Write down the expression that results from applying Bayes' Rule to P(H D).		
$P(H \mid D) = P(D \mid H) P(H) / P(D)$		
3. (10 pts total) $P(H \land D)$ [1]. Write down the expression for $P(H \land D)$ in terms of $P(H)$, $P(D)$, and $P(H \lor D)$.		
$P(H \land D) = P(H) + P(I$	$D) - P(H \lor D)$	Class HW Ch. 13, 1b-d
4. (10 pts total) $P(H \land D)$ [2]. Write down the expression for $P(H \land D)$ in terms of $P(D)$ and $P(H \mid D)$.		
$P(H \land D) = P(H \mid D) P(D)$		
5. (30 pts total, 10 pts each) Consider the following joint distribution (R&N Fig. 13.3; $t = toothache$, $d = dental pick$ catches, $c = cavity$). An arithmetic expression contains only numbers, parentheses, and $+$, $-$, $*$, and $/$. Write an arithmetic expression for each of the following expressions.		
	t ¬t	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	$\neg c \mid 0.016 \mid 0.064 \mid 0.144 \mid 0.576$	
5.a. (10 pts) $P(t \land \neg d \land c) = $	0.012	
5.b. (10 pts) $P(\neg t \lor \neg c) = \underline{\hspace{1cm}}$	0.072 + 0.008 + 0.144 + 0.576 + 0.016 -	+ 0.064

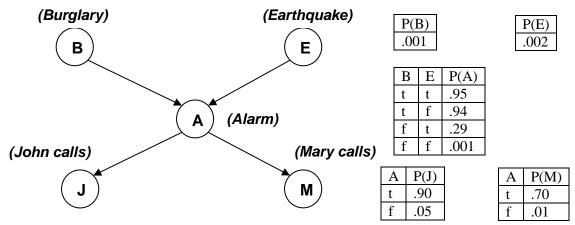
5.c. (10 pts) $P(c \mid t \land d) = \frac{0.108 / (0.108 + 0.016)}{0.108 / (0.108 + 0.016)}$

6. (30 pts total, 10 pts each) BAYESIAN NETWORKS.

6.a. (10 pts) Write down directly the factored conditional probability expression corresponding to this network:



See Section 14.1-4.


P(A | B, C) P(B | D, E) P(C | B, D, F) P(D | F) P(E | G, H) P(F | H) P(G) P(H)

6.b. (10 pts) Draw the Bayesian Network corresponding to this factored conditional probability expression:

P(A | C, D) P(B | C, E) P(C | E) P(D | E, F, G) P(E | H) P(F | G, H) P(G) P(H | G)

6.c. (10 pts) Shown below is the Bayesian network corresponding to the Burglar Alarm problem, i.e., $P(J,M,A,B,E) = P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E)$. This is Fig. 14.2 in your R&N textbook.

Write down an expression that will evaluate to $P(J=f \land M=t \land B=t \land B=t \land E=f)$. Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number (probability). SHOW YOUR WORK, first as the symbolic conditional probabilities from the graphs, then as the corresponding numeric probabilities from the tables above.

$$P(J=f \land M=t \land A=t \land B=t \land E=f)$$

[put symbolic here] = $P(J=f | A=t) * P(M=t | A=t) * P(A=t | B=t \land E=f) * P(B=t) * P(E=f)$

[put numeric here] = .10 * .70 * .94 * .001 * .998

Note: P(E=f) = [1 - P(E=t)] = [1 - .002)] = .998 P(J=f | A=t) = [1 - P(J=t | A=t)] = .10