CS-171, Intro to A.I., Fall Quarter, 2018-Quiz \# 2-20 minutes

NAME: \qquad UCI NetID: \qquad

YOUR ID: \qquad ID TO RIGHT: \qquad ROW: \qquad SEAT: \qquad

1. ($\mathbf{1 0}$ pts total) Probability. Use the definition of conditional probability to show that $P(a \mid b \wedge a)=1$. Show your work!

$$
P(a \mid b \wedge a)=P(a \wedge b \wedge a) / P(b \wedge a)=P(b \wedge a) / P(b \wedge a)=1
$$

R\&N Ex. 13.1, p. 506
2. (10 pts total) Bayes'Rule. Write down the expression that results from applying Bayes' Rule to $\mathrm{P}(\mathrm{H} \mid \mathrm{D})$.

$$
\mathrm{P}(\mathrm{H} \mid \mathrm{D})=\mathrm{P}(\mathrm{D} \mid \mathrm{H}) \mathrm{P}(\mathrm{H}) / \mathrm{P}(\mathrm{D})
$$

3. (10 pts total) $\mathbf{P}(\mathbf{H} \wedge \mathbf{D})$ [1]. Write down the expression for $\mathrm{P}(\mathrm{H} \wedge \mathrm{D})$ in terms of $\mathrm{P}(\mathrm{H}), \mathrm{P}(\mathrm{D})$, and $\mathrm{P}(\mathrm{H} \vee \mathrm{D})$.

$$
\mathrm{P}(\mathrm{H} \wedge \mathrm{D})=\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{D})-\mathrm{P}(\mathrm{H} \vee \mathrm{D})
$$

Class HW Ch. 13, 1b-d
4. (10 pts total) $\mathbf{P}(\mathbf{H} \wedge \mathbf{D})$ [2]. Write down the expression for $\mathrm{P}(\mathrm{H} \wedge \mathrm{D})$ in terms of $\mathrm{P}(\mathrm{D})$ and $\mathrm{P}(\mathrm{H} \mid \mathrm{D})$.

$$
\mathrm{P}(\mathrm{H} \wedge \mathrm{D})=\mathrm{P}(\mathrm{H} \mid \mathrm{D}) \mathrm{P}(\mathrm{D})
$$

5. (30 pts total, 10 pts each) Consider the following joint distribution (R\&N Fig. 13.3; $\mathrm{t}=$ toothache, $\mathrm{d}=$ dental pick catches, $\mathrm{c}=$ cavity). An arithmetic expression contains only numbers, parentheses, and,+- , *, and $/$.
Write an arithmetic expression for each of the following expressions.

	t		$\neg \mathrm{t}$	
	d	$\neg \mathrm{d}$	d	$\neg \mathrm{d}$
C	0.108	0.012	0.072	0.008
$\neg \mathrm{C}$	0.016	0.064	0.144	0.576

5.a. (10 pts) $\mathrm{P}(\mathrm{t} \wedge \neg \mathrm{d} \wedge \mathrm{c})=$ \qquad
5.b. (10 pts) $P(\neg t \vee \neg c)=$ \qquad $0.072+0.008+0.144+0.576+0.016+0.064$
5.c. $(10$ pts) $P(c \mid t \wedge d)=$ \qquad $0.108 /(0.108+0.016)$
6. (30 pts total, 10 pts each) BAYESIAN NETWORKS.
6.a. (10 pts) Write down directly the factored conditional probability expression corresponding to this network:


```
See Section 14.1-4.
```

$P(A \mid B, C) P(B \mid D, E) P(C \mid B, D, F) P(D \mid F) P(E \mid G, H) P(F \mid H) P(G) P(H)$
6.b. (10 pts) Draw the Bayesian Network corresponding to this factored conditional probability expression:
$P(A \mid C, D) P(B \mid C, E) P(C \mid E) P(D \mid E, F, G) P(E \mid H) P(F \mid G, H) P(G) P(H \mid G)$

6.c. (10 pts) Shown below is the Bayesian network corresponding to the Burglar Alarm problem, i.e., $\mathrm{P}(\mathrm{J}, \mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{E})=\mathrm{P}(\mathrm{J} \mid \mathrm{A}) \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{E})$. This is Fig. 14.2 in your R\&N textbook.

Write down an expression that will evaluate to $P(J=f \wedge M=t \wedge A=t \wedge B=t \wedge E=f)$. Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number (probability). SHOW YOUR WORK, first as the symbolic conditional probabilities from the graphs, then as the corresponding numeric probabilities from the tables above.

$$
P(J=f \wedge M=t \wedge A=t \wedge B=t \wedge E=f)
$$

[put symbolic here] $=P(J=f \mid A=t) * P(M=t \mid A=t) * P(A=t \mid B=t \wedge E=f) * P(B=t) * P(E=f)$
[put numeric here] $=.10 * .70 * .94 * .001 * .998$

Note:
$P(E=f)=[1-P(E=t)]=[1-.002)]=.998$
$P(J=f \mid A=t)=[1-P(J=t \mid A=t)]=.10$

