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Review Adversarial (Game) Search 
Chapter 5.1-5.4 

• Minimax Search with Perfect Decisions (5.2) 
– Impractical in most cases, but theoretical basis for analysis 

• Minimax Search with Cut-off (5.4) 
– Replace terminal leaf utility by heuristic evaluation 

function 
• Alpha-Beta Pruning (5.3) 

– The fact of the adversary leads to an advantage in search! 
• Practical Considerations (5.4) 

– Redundant path elimination, look-up tables, etc. 



Games as Search 
• Two players: MAX and MIN 
• MAX moves first and they take turns until the game is over 

– Winner gets reward, loser gets penalty. 
– “Zero sum” means the sum of the reward and the penalty is a constant. 

 
• Formal definition as a search problem: 

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess. 
– Player(s): Defines which player has the move in a state. 
– Actions(s): Returns the set of legal moves in a state. 
– Result(s,a): Transition model defines the result of a move. 
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.) 
– Terminal-Test(s): Is the game finished?  True if finished, false otherwise. 
– Utility function(s,p): Gives numerical value of terminal state s for player p. 

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe. 
• E.g., win (+1), lose (0), and draw (1/2) in  chess. 

 

• MAX uses  search tree to determine “best” next move. 

 



An optimal procedure: 
The Min-Max method 

Will find the optimal strategy and best next move for Max: 
 
• 1. Generate the whole game tree, down to the leaves. 

 
• 2. Apply utility (payoff) function to each leaf. 

 
• 3.  Back-up values from leaves through branch nodes: 

– a Max node computes the Max of its child values 
– a Min node computes the Min of its child values 

 
• 4. At root: choose move leading to the child of highest value. 

 



Two-ply Game Tree 

MIN 

MAX 

3 12 8 2 4 6 14 5 2 

3 2 2 

3 The minimax decision 

Minimax maximizes the utility of the worst-case outcome for MAX 



Pseudocode for Minimax 
Algorithm 

function MINIMAX-DECISION(state) returns an action 
   inputs: state, current state in game 
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a)) 

function MIN-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← +∞ 
   for a  in ACTIONS(state) do 
      v ← MIN(v,MAX-VALUE(Result(state,a))) 
   return v 

function MAX-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← −∞ 
   for a  in ACTIONS(state) do 
      v ← MAX(v,MIN-VALUE(Result(state,a))) 
   return v 



Properties of minimax 
• Complete?    

– Yes (if tree is finite). 
 

• Optimal?  
– Yes (against an optimal opponent). 
– Can it be beaten by an opponent playing sub-optimally? 

• No.  (Why not?) 
 

• Time complexity? 
– O(bm) 

 
• Space complexity? 

– O(bm)   (depth-first search, generate all actions at once) 
– O(m)   (backtracking search, generate actions one at a time) 

 





Static (Heuristic) Evaluation Functions 

• An Evaluation Function: 
– Estimates how good the current board configuration is for a player. 
– Typically, evaluate how good it is for the player, how good it is for 

the opponent, then subtract the opponent’s score from the 
player’s. 

– Othello: Number of white pieces - Number of black pieces 
– Chess:  Value of all white pieces - Value of all black pieces 
 

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1]. 
 
• If the board evaluation  is X for a player, it’s -X for the opponent 

– “Zero-sum game” 





General alpha-beta pruning 
• Consider a node n in the tree --- 

 
• If player has a better choice at: 

– Parent node of n 
– Or any choice point further 

up 
 

• Then n will never be reached in 
play. 
 

• Hence, when that much is 
known about n, it can be 
pruned. 



Alpha-beta Algorithm 
• Depth first search 

– only considers nodes along a single path from root at any time 
 

 α =  highest-value choice found at any choice point of path for MAX 
  (initially, α =  −infinity) 
 β = lowest-value choice found at any choice point of path for MIN 
   (initially, β =  +infinity) 
 
•  Pass current values of α and β down to child nodes during search. 
• Update values of α and β during search: 

– MAX updates α at MAX nodes 
– MIN updates β at MIN nodes 

•  Prune remaining branches at a node when α ≥ β 



Pseudocode for Alpha-Beta Algorithm 

function ALPHA-BETA-SEARCH(state) returns an action 
   inputs: state, current state in game 
   v←MAX-VALUE(state, - ∞ , +∞) 
   return the action in ACTIONS(state) with value v 

function MAX-VALUE(state,α , β) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← - ∞ 
   for a in ACTIONS(state) do 
      v ← MAX(v, MIN-VALUE(Result(s,a), α , β)) 
     if v ≥ β then return v 
     α ← MAX(α ,v) 
   return v 

(MIN-VALUE is defined analogously) 



When to Prune?  

• Prune whenever α ≥ β. 
 

– Prune below a Max node whose alpha value becomes greater than or 
equal to the beta value of its ancestors. 

• Max nodes update alpha based on children’s returned values. 
 

– Prune below a Min node whose beta value becomes less than or equal 
to the alpha value of its ancestors. 

• Min nodes update beta based on children’s returned values. 



α/β Pruning vs. Returned Node Value 

• Some students are confused about the use of 
α/β pruning vs. the returned value of a node 

• α/β are used ONLY FOR PRUNING 
– α/β have no effect on anything other than pruning 
– IF (α >= β) THEN prune & return current node value 

• Returned node value = “best” child seen so far 
– Maximum child value seen so far for MAX nodes 
– Minimum child value seen so far for MIN nodes 
– If you prune, return to parent “best” child so far 

• Returned node value is received by parent 



Alpha-Beta Example Revisited 

α, β, initial values 
Do DF-search until first leaf 

α=−∞ 
β =+∞ 

α=−∞ 
β =+∞ 

α, β, passed to kids 

Review Detailed Example of Alpha-Beta 
Pruning in lecture slides. 



Alpha-Beta Example (continued) 

MIN updates β, based on kids 

α=−∞ 
β =+∞ 

α=−∞ 
β =3 



Alpha-Beta Example (continued) 

α=−∞ 
β =3 

MIN updates β, based on kids. 
No change. 

α=−∞ 
β =+∞ 



Alpha-Beta Example (continued) 

MAX updates α, based on kids. 
α=3 
β =+∞ 

3 is returned 
as node value. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =2 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =2 

α ≥ β, 
so prune. 

α=3 
β =+∞ 



Alpha-Beta Example (continued) 

2 is returned 
as node value. 

MAX updates α, based on kids. 
No change. α=3 

β =+∞ 



Alpha-Beta Example (continued) 

, 
α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

, 

α=3 
β =14 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

, 

α=3 
β =5 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 2 is returned 

as node value. 
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Alpha-Beta Example (continued) 

Max calculates the same 
node value, and makes the 
same move! 
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Review Detailed Example of Alpha-Beta 
Pruning in lecture slides. 



Review Constraint Satisfaction 
R&N 6.1-6.4 (except 6.3.3) 

• What is a CSP? 
 

• Backtracking search for CSPs 
• Choose a variable, then choose an order for values 
• Minimum Remaining Values (MRV), Degree 

Heuristic (DH), Least Constraining Value (LCV) 
 

• Constraint propagation 
• Forward Checking (FC), Arc Consistency (AC-3) 

 
• Local search for CSPs 

• Min-conflicts heuristic 



Constraint Satisfaction Problems 
• What is a CSP? 

– Finite set of variables, X1, X2, …, Xn  
– Nonempty domain of possible values for each: D1, ..., Dn  
– Finite set of constraints, C1, ..., Cm 

• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2 

– Each constraint Ci is a pair:  Ci = (scope, relation) 
• Scope = tuple of variables that participate in the constraint 
• Relation = list of allowed combinations of variables 
 May be an explicit list of allowed combinations 
 May be an abstract relation allowing membership testing & listing 

 

• CSP benefits 
– Standard representation pattern 
– Generic goal and successor functions 
– Generic heuristics (no domain-specific expertise required) 

 



CSPs --- what is a solution? 
 

• A state is an assignment of values to some variables. 
– Complete assignment 

• = every variable has a value.  
– Partial assignment 

• = some variables have no values. 
– Consistent assignment 

• = assignment does not violate any constraints 

 
• A solution  is a complete and consistent assignment. 
 



CSP example: map coloring 

• Variables: WA, NT, Q, NSW, V, SA, T 
• Domains: Di={red,green,blue} 
• Constraints: Adjacent regions must have 

different colors, e.g., WA ≠ NT.   

(WA) 

(NT) 

(SA) 

(Q) 

(NSW) 
(V) 
(T) 



Example: Map coloring solution 
All variables assigned, all constraints satisfied. 

(WA) 

(NT) 

(SA) 

(Q) 

(NSW) 

(V) 

(T) 



Example: Map Coloring 
• Constraint graph 

– Vertices: variables 
– Edges: constraints 
 (connect involved variables) 

 
 

• Graphical model 
– Abstracts the problem to a canonical form 
– Can reason about problem through graph connectivity 
– Ex: Tasmania can be solved independently (more later) 

 

• Binary CSP 
– Constraints involve at most two variables 
– Sometimes called “pairwise” 

 



Backtracking search 
• Similar to depth-first search 

– At each level, pick a single variable to expand 
– Iterate over the domain values of that variable 

 

• Generate children one at a time, 
– One child per value 
– Backtrack when no legal values left 

 
• Uninformed algorithm 

– Poor general performance 
 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Minimum remaining values 
(MRV) 

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

 
• A.k.a. most constrained variable heuristic 

 
• Heuristic Rule: choose variable with the fewest legal moves 

– e.g., will immediately detect failure if X has no legal values 
 



Degree heuristic for the initial 
variable 

• Heuristic Rule: select variable that is involved in the largest number of constraints on 
other unassigned variables. 
 

• Degree heuristic can be useful as a tie breaker. 
 

• In what order should a variable’s values be tried? 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Least constraining value for 
value-ordering 

• Least constraining value heuristic 
 

• Heuristic Rule: given a variable choose the least constraining value 
–  leaves the maximum flexibility for subsequent variable assignments 

 
 



Look-ahead: Constraint propagation 
• Intuition:  

– Some domains have values that are inconsistent with 
the values in some other domains 

– Propagate constraints to remove inconsistent values 
– Thereby reduce future branching factors 

• Forward checking  
– Check each unassigned neighbor in constraint graph 

• Arc consistency (AC-3 in R&N) 
– Full arc-consistency everywhere until quiescence 
– Can run as a preprocessor 

• Remove obvious inconsistencies 
– Can run after each step of backtracking search 

• Maintaining Arc Consistency (MAC) 
42 



Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

43 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

Assign {WA = red} 
Effect on other variables (neighbors of WA): 

• NT can no longer be red 
• SA can no longer be red 

Red 

Not red 

Not red 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Assign {Q = green} 
Effect on other variables (neighbors of Q): 

• NT can no longer be green 
• SA can no longer be green 
• NSW can no longer be green 

Red 

Not red 
Not green 

Green 

Not red 
Not green 

Not green 

(We already have failure, but FC 
is too simple to detect it now) 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Forward checking has detected that this partial assignment is inconsistent 
with any complete assignment 

Assign {V = blue} 
Effect on other variables (neighbors of V): 

• NSW can no longer be blue 
• SA can no longer be blue   (no values possible!) 

Red 

Not red 
Not green 

Green 

Not red 
Not green 
Not blue 

Not green 
 
 

Not blue 
Blue 



Arc consistency (AC-3) algorithm 
• An Arc X → Y is consistent iff   for every value x of X 

there is some value y of Y that is consistent with x 
• Put all arcs X → Y on a queue 

– Each undirected constraint graph arc is two directed arcs 
– Undirected X Y becomes directed X → Y  and Y → X  
– X → Y  and Y → X both go on queue, separately 

• Pop one arc X → Y and remove any inconsistent 
values from X 

• If any change in X, put all arcs Z → X back on queue, 
where Z is any neighbor of X that is not equal to Y 

• Continue until queue is empty 
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Arc consistency (AC-3) 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff (iff = if and only if) 
         for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– SA →  NSW is consistent because 
 SA = blue and NSW = red satisfies all constraints on SA and NSW 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
         for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– NSW → SA consistent if  
 NSW = red  and  SA = blue 
 NSW = blue and SA = ??? 

 
 

=>  NSW = blue can be pruned 
No current domain value for SA is consistent 

If X loses a value, 
neighbors of X need to 
be rechecked 



50 

Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 

 
• Enforce arc consistency:  

– arc can be made consistent by removing blue from NSW 

• Continue to propagate constraints: 
– Check V → NSW : not consistent for V = red; remove red from V 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 

 
 

• Continue to propagate constraints 
• SA  →   NT not consistent:  

– And cannot be made consistent!  Failure! 

• Arc consistency detects failure earlier than FC 
– But requires more computation: is it worth the effort? 



Local search: min-conflicts heuristic 
• Use complete-state representation 

– Initial state = all variables assigned values 
– Successor states = change 1 (or more) values 

 
• For CSPs 

– allow states with unsatisfied constraints (unlike backtracking) 
– operators reassign variable values 
– hill-climbing with n-queens is an example 

 

• Variable selection: randomly select any conflicted variable 
• Value selection: min-conflicts heuristic 

– Select new value that results in a minimum number of conflicts with 
the other variables 



Local search: min-conflicts heuristic 
function MIN-CONFLICTS(csp, max_steps) return solution or failure 
 inputs: csp, a constraint satisfaction problem 
  max_steps, the number of steps allowed before giving up  
 
 current ←   a (random) initial complete assignment for csp 
 for i = 1 to max_steps do 
  if current is a solution for csp then return current 
  var ←  a randomly chosen, conflicted variable from   

  VARIABLES[csp] 
  value  ←  the value v for var that minimize 

CONFLICTS(var,v,current,csp) 
  set var = value in current 
 return failure 

 



Min-conflicts example 1 

Use of min-conflicts heuristic in hill-climbing. 

h=5 h=3 h=1 



Summary 
• CSPs  

–  special kind of problem: states defined by values of a fixed set of variables, 
goal test defined by constraints on variable values 

 

• Backtracking = depth-first search, one variable assigned per node 
 

• Heuristics: variable order & value selection heuristics help a lot 
 

• Constraint propagation  
– does additional work to constrain values and detect inconsistencies 
– Works effectively when combined with heuristics 

 

• Iterative min-conflicts is often effective in practice. 
 

• Graph structure of CSPs determines problem complexity 
– e.g., tree structured CSPs can be solved in linear time. 

 



Review Intro Machine Learning 
Chapter 18.1-18.4 

• Understand Attributes, Target Variable, Error (loss) function, 
Classification & Regression, Hypothesis (Predictor) function 

• What is Supervised Learning? 
• Decision Tree Algorithm 
• Entropy & Information Gain 
• Tradeoff between train and test with model complexity 
• Cross validation 



Importance of representation 
• Definition of “state” can be very important 

 

• A good representation 
– Reveals important features 
– Hides irrelevant detail 
– Exposes useful constraints 
– Makes frequent operations easy to do 
– Supports local inferences from local features 

• Called “soda straw” principle, or “locality” principle 
• Inference from features “through a soda straw” 

– Rapidly or efficiently computable 
• It’s nice to be fast 

} Most important 



Terminology 

• Attributes 
– Also known as features, variables, independent 

variables, covariates 
 

• Target Variable 
– Also known as goal predicate, dependent variable, … 
 
 

• Classification 
– Also known as discrimination, supervised 

classification, … 
 

• Error function 
– Also known as objective function, loss function, … 



59 

Inductive or Supervised learning 
• Let x = input vector of attributes (feature vectors) 
 
• Let f(x) = target label 

– The implicit mapping from x to f(x) is unknown to us 
– We only have training data pairs, D = {x, f(x)} available 

 
• We want to learn a mapping from x to f(x) 

• Our hypothesis function is h(x, θ) 
• h(x, θ) ≈ f(x) for all training data points x 
• θ are the parameters of our predictor function h 

 
• Examples: 

– h(x, θ) = sign(θ1x1 + θ 2x2+ θ 3) (perceptron) 
– h(x, θ) = θ0  + θ1x1 + θ2x2 (regression) 
–  ℎ𝑘(𝑥) = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ ¬𝑥4) 
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Empirical Error Functions 
• E(h) = Σx distance[h(x, θ) , f(x)] 
Sum is over all training pairs in the training data D 
 

Examples: 
distance = squared error if h and f are real-valued  

(regression) 
distance = delta-function if h and f are categorical  

(classification) 
 

In learning, we get to choose  
 
 1. what class of functions h(..) we want to learn  
          – potentially a huge space!  (“hypothesis space”) 
 
    2. what error function/distance we want to use 
          - should be chosen to reflect real “loss” in problem 
          - but often chosen for mathematical/algorithmic 
    convenience 
 
 



Decision Tree Representations 
•Decision trees are fully expressive 

–Can represent any Boolean function (in DNF) 
–Every path in the tree could represent 1 row in the truth table 
–Might yield an exponentially large tree 

•Truth table is of size 2d, where d is the number of attributes 
 
 

 

A xor B = ( ¬ A ∧ B ) ∨ ( A ∧ ¬ B )  in DNF 
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Pseudocode for Decision tree learning 



Choosing an attribute 

• Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative" 

 
 
 
 
 
 
 
 
 
 
• Patrons? is a better choice 

– How can we quantify this? 
– One approach would be to use the classification error E directly (greedily) 

• Empirically it is found that this works poorly 
– Much better is to use information gain (next slides) 
– Other metrics are also used, e.g., Gini impurity, variance reduction 

– Often very similar results to information gain in practice 



• “Entropy” is a measure of randomness 
    = amount of disorder 

 

Entropy and Information 

https://www.youtube.com/watch?v=ZsY4WcQOrfk 

Low 
Entropy 

High 
Entropy 



Entropy, H(p), with only 2 outcomes 

Consider 2 class problem: 
 p = probability of class #1, 
 1 – p = probability of class #2 
 
In binary case: 
 H(p) = − p log p  −  (1−p) log (1−p) 
 

 
 
 

 

H(p) 

0.5 1 0 

1 

p 

high entropy, 
high disorder, 
high uncertainty 

Low entropy, low disorder, low uncertainty 



Entropy and Information 
• Entropy H(X) = E[ log 1/P(X) ] = ∑ x∈X P(x) log 1/P(x) 
  = −∑ x∈X P(x) log P(x) 

– Log base two, units of entropy are “bits” 
– If only two outcomes:  H(p) = − p log(p) − (1−p) log(1−p) 

• Examples: 

 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 + 
              .25 log 4 + .25 log 4 
        =  log 4 = 2 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4 
        = 0.8133 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1 
         = 0 bits 

Max entropy for 4 outcomes Min entropy 



Information Gain 

• H(P) = current entropy of class distribution P at a particular node, 
 before further partitioning the data 

 
• H(P | A) = conditional entropy given attribute A 
 = weighted average entropy of conditional class distribution, 
 after partitioning the data according to the values in A 

 
• Gain(A) = H(P) – H(P | A) 

– Sometimes written IG(A) = InformationGain(A) 
 

• Simple rule in decision tree learning 
– At each internal node, split on the node with the largest 

information gain [or equivalently, with smallest H(P|A) ] 
 

• Note that by definition, conditional entropy can’t be greater than 
the entropy, so Information Gain must be non-negative 
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Choosing an attribute 

IG(Patrons) = 0.541  bits IG(Type) = 0  bits 
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Overfitting and Underfitting 

X 

Y 
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A Complex Model 

X 

Y 

Y = high-order polynomial in X 
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A Much Simpler Model 

X 

Y 

Y = a X  + b  +  noise 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 

Ideal Range 
for Model Complexity 

Overfitting Underfitting 

Too-Simple Models Too-Complex Models 
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Training and Validation Data 

Full Data Set 

Training Data 

Validation Data 

Idea: train each 
model on the 
“training data” 
 
and then test 
each model’s 
accuracy on 
the validation data 
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 The k-fold Cross-Validation Method 

• Why just choose one particular 90/10 “split” of the data? 
– In principle we could do this multiple times 
 

• “k-fold Cross-Validation” (e.g., k=10) 
– randomly partition our full data set into k disjoint subsets (each 

roughly of size n/k, n = total number of training data points) 
•for  i = 1:10  (here k = 10) 

–train on 90% of data, 
–Acc(i) =  accuracy on other 10% 

•end 

•Cross-Validation-Accuracy =  1/k  Σi  Acc(i) 
– choose the method with the highest cross-validation accuracy 
– common values for k are 5 and 10 
– Can also do “leave-one-out” where k = n 
 



75 

Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

Validation  
Data 

1st partition 2nd partition 

3rd partition 4th partition 5th partition 
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