CS-171, Intro to A.I., Fall Quarter, 2018—Quiz # 4—20 minutes

 NAME:_________UCI NetID: _______

 YOUR ID#: _______ID# TO RIGHT: _______ID# TO LEFT: _______ ROW: ______SEAT: ______

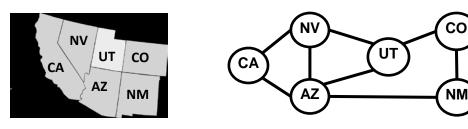
1. (50 pts total) Decision Tree Classifier Learning. You are a robot in a lumber yard, and must learn to discriminate Oak wood from Pine wood. You choose to learn a Decision Tree classifier. You are given the following examples:

Example	Density	Grain	Hardness	Class
Example #1	Heavy	Small	Hard	Oak
Example #2	Heavy	Large	Hard	Oak
Example #3	Heavy	Small	Hard	Oak
Example #4	Light	Large	Soft	Oak
Example #5	Light	Large	Hard	Pine
Example #6	Heavy	Small	Soft	Pine
Example #7	Heavy	Large	Soft	Pine
Example #8	Heavy	Small	Soft	Pine

.

1a. (10 pts) Which attribute would information gain choose as the root of the tree?

Classify these new examples as Oak or Pine using your decision tree above.


1c. (10 pts) What class is [Density=Light, Grain=Small, Hardness=Hard]?

1d. (10 pts) What class is [Density=Light, Grain=Small, Hardness=Soft]?

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

¹b. (20 pts) Draw the decision tree that would be constructed by recursively applying information gain to select roots of sub-trees, as in the Decision-Tree-Learning algorithm.

2. (50 points total, 10 pts each) Constraint Satisfaction Problems.

You are a map-coloring robot assigned to color this Southwest USA map. Adjacent regions must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

2.a. (10 pts total, -5 each wrong answer, but not negative) FORWARD CHECKING. Cross out all values that would be eliminated by Forward Checking, after variable AZ has just been assigned value R as shown:

ſ	CA	NV	AZ	UT	CO	NM
	RGB	RGB	R	RGB	RGB	RGB

2.b. (10 pts total, -5 each wrong answer, but not negative) ARC CONSISTENCY.

CA and AZ have been assigned values, but no constraint propagation has been done. Cross out all values that would be eliminated by Arc Consistency (AC-3 in your book).

			, (
CA	NV	AZ	UT	CO	NM
В	RGB	R	RGB	RGB	RGB

2.c. (10 pts total, -5 each wrong answer, but not negative) MINIMUM-REMAINING-VALUES

HEURISTIC. Consider the assignment below. NV is assigned and constraint propagation has been done. List all unassigned variables that might be selected by the Minimum-Remaining-Values (MRV) Heuristic:

CA	NV	AZ	UT	CO	NM
R B	G	R B	R B	RGB	RGB

2.d. (10 pts total, -5 each wrong answer, but not negative) DEGREE HEURISTIC. Consider the assignment below. (It is the same assignment as in problem 2.c above.) NV is assigned and constraint propagation has been done. List all unassigned variables that might be selected by the Degree Heuristic (note: ignore MRV for this problem):

CA	NV	AZ	UT	CO	NM
R B	G	R B	R B	RGB	RGB

2.e. (10 pts total) MIN-CONFLICTS HEURISTIC. Consider the complete but inconsistent assignment below. AZ has just been selected to be assigned a new value during local search for a complete and consistent assignment. What new value would be chosen below for AZ by the Min-Conflicts Heuristic?.

CA	NV	AZ	UT	CO	NM
В	G	?	G	G	В

Scratch Paper (1) Please Do Not Detach From Test

Scratch Paper (2) Please Do Not Detach From Test