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In publications, presentations, and popular media, scientific results are predominantly communicated
through graphs. But are these figures clear and honest or misleading? We examine current practices in
data visualization and discuss improvements, advocating design choices which reveal data rather than
hide it.
Visualizations are vital tools for neurosci-

entists of every discipline, affording the

ability to reveal relationships in large data

sets and communicate information to

a broad audience. But with the great

power of graphs, one might say, comes

great responsibility. Graphs can be funda-

mentally misleading about underlying

data, and design choices can skew

viewers’perceptions, leading themtoward

incorrect conclusions (Jones, 2006). For

example, recent studies suggest that

results rendered on aesthetically pleasing

brain images are perceived as more

persuasive and credible than identical

information presented in other formats

(Keehner et al., 2011;McCabe andCastel,

2008). Beyond the attractiveness of

displays, readers may also be misled by

the frequent errors that plague scientific

figures (Cleveland, 1984) or a lack of suffi-

cient information. In the words of statisti-

cian and graphic design expert Howard

Wainer, effective data visualization must

‘‘remind us that the data being displayed

do contain some uncertainty’’ and ‘‘char-

acterize the size of that uncertainty as it

pertains to the inferences we have in

mind’’ (Wainer, 1996). It is our impression

that such descriptions (along with more

basic elements) are often lacking from

published figures. In this NeuroView, we

perform a survey of figures from leading

neuroscience journals with an eye toward

clarity and the portrayal of uncertainty.

Based on survey results, we discuss

methods to improve graphics (particularly
for large data sets in which visualization

poses a challenge) and propose a set of

figure guidelines in the form of a checklist

(Table 1). We hope these recommenda-

tions, compiled fromanumber of excellent

resources on data visualization (Lane and

Sándor, 2009; Tufte, 2001; Wainer, 1996),

may be used by both internal and external

reviewers to help evaluate figures for

clarity and completeness.

Surveying the Field
Wesampled288articlespublished in2010

from six neuroscience journals (Frontiers

in Systems Neuroscience, Human Brain

Mapping, Journal of Neuroscience,Nature

Neuroscience, NeuroImage, and Neuron)

and examined the 1,451 figures therein.

We surveyed four basic features that

were applicable to nearly all graphs and

addressed Wainer’s points above. The

survey asked the following questions: (1)

Is the dependent variable or quantity of

interest labeled? (2) Is the scale of the

dependent variable indicated? (3) Where

applicable, is a measure of uncertainty

displayed? (4) Is the type of uncertainty

(e.g., standard error bars or confidence

intervals) defined in the figureor accompa-

nying legend? Examples of these graph-

ical features are shown in Figure 1A for

two-dimensional (2D) and 3D data sets.

Survey results, shown in Figure 1B,

overwhelmingly suggest that graphical

displays become less informative as

the dimensions and complexity of data

sets increase. Compared to graphs of
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2D data, 3D displays provide poorer

descriptions of the outcome of interest

and rarely provide an indication of uncer-

tainty. Only 43% of 3D graphics label the

dependent variable (meaning that if you

were asked, ‘‘What is being plotted

here?’’ you would be able to answer less

than half of the time) and only 20%portray

the uncertainty of reported effects. Even

for 2D data, the proportion of graphs

displaying uncertainty is lower when

explanatory variables are continuous

(and typically take on many values) than

when they are categorical (and typically

represent a few conditions; Figure 1C).

Of 2D figures that do indicate uncertainty,

nearly 30% fail to define the type of uncer-

tainty or variability being portrayed. Given

the plurality of interpretations connoted

by an error bar (e.g., a standard deviation

[SD] of the sample, a standard error of the

mean [SEM], a range, a parametric confi-

dence interval [CI] of the mean, a boot-

strap CI, a Bayesian probability interval,

a prediction interval, etc.), it is unclear

how including it without a proper label

would offer readers any further under-

standing of the data; in contrast, the

poor labeling or omission of error bars

has been shown to encourage misinter-

pretation (Cumming and Finch, 2005;

Vaux, 2004; Wainer, 1996).

A breakdown of results by journal (see

supplementary analysis at http://mialab.

mrn.org/datavis) further highlights the

issue of data dimensionality in visualiza-

tion: journals with lower proportions of
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Table 1. When Evaluating a Figure for Clarity and Completeness, Consider the Following Questions

Questions Examples/Suggestions

Design/Organization

Is the display consistent with the model or hypothesis being tested? If data have been residualized or transformed for statistical 
analysis they should also be transformed in the graph.

If data are paired between conditions, the graph should reveal 
the pairwise differences rather than differences at the group 
level.

Are there "empty dimensions" in the display that could be removed? A 3D pie chart for 2D categorical data

Extraneous colors that do not encode meaningful information
Does the display provide an honest and transparent portrayal of the 
data?

Hiding, smoothing, or modifying data has been avoided

Actual data points are emphasized over idealized models
Axes

Are axes scales defined as linear, log, or radial?
Does each axis label describe the variable and its units? For quantities with units: "Time to peak (ms)"

For arbitrary units (a.u.): "BOLD signal intensity (a.u.)"

For unitless quantities: "Spearman rank correlation"
Are axes limits appropriate for the data? The graphic should not be bounded at zero if the data can 

take on both positive and negative values.
Is the aspect ratio appropriate for the data? When x and y axes contrast the same variable under different 

conditions the graphic should be square.
Color mapping

Is a color bar provided?
Is the color map sensible for the data type? Use when data is bipolar, and map zero to green

Use when data is unipolar, and map zero to black

Use when data is circular, and map − , + to red
Does the color bar axis indicate the quantity, units, and scale?

Uncertainty

Does the display indicate the uncertainty of estimated parameters?
Is the type of error surface appropriate for the data? Standard deviations or prediction intervals are useful to 

describe variability in the population.

Standard errors or confidence intervals are useful to make 
inferences about parameters estimated from a sample.

Parametric confidence intervals should only be used if data 
meet the assumptions of the underlying model.

Are the units of uncertainty defined? "Error bands indicate non-parametric 95% confidence intervals 
of the median"

Color

Are contrasting colors consistent with a natural interpretation? Red for increases, blue for decreases
Can features be discriminated when printed in grayscale? Group A ---●

●
---

Group B ― ―
Has red/green contrast been avoided to accommodate common forms of colorblindness?

Annotation 

Information necessary to understand the display should be shown on the figure itself. Details & definitions may be relegated to the legend.

Are all symbols defined, preferably by directly labeling objects?
Is the directionality of a contrast between conditions obvious? "Patients − Controls"
Is the number of samples or independent experiments indicated? "Each point represents the mean over 23 subjects"
Are statistical procedures and criteria for significance described? For a single test: “A repeated-measures ANOVA showed a 

significant effect of treatment (F[2, 10] = 12.53, p = 0.002)"

For several tests: "Asterisks denote correlations different from 
zero (p < 0.01, two-tailed t tests, Bonferroni corrected for 10 
tests)."

Are uncommon abbreviations avoided or clearly defined?
Are abbreviations consistent with those used in the text?
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2D and 3D graphical features are those

that primarily publish neuroimaging and

systems-level findings, in which results

are often distilled from very large data

sets using a hierarchy of models. That

the so-called ‘‘curse of dimensionality’’

extends to the realm of data visualization
604 Neuron 74, May 24, 2012 ª2012 Elsevier
is not surprising. Dependent variables

aremore difficult to label when they repre-

sent abstract parameter estimates rather

than directly measured quantities; uncer-

tainty is more challenging to render when

data sets require error surfaces rather

than error bars. However, these results
Inc.
are undesirable. As data sets become

more complex, displays should become

increasingly informative, elucidating rela-

tionships that would be inaccessible

from tables or summary statistics. In the

next section, we provide examples of

creating more informative displays for
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Figure 1. Survey Results
(A) Definitions and examples of graphical features for 2D (left) and 3D (right) data sets. (B) Mean proportion of 2D (white) and 3D (dark gray) figures displaying each
feature. Error bars denote 95% nonparametric confidence intervals (10,000 resamples). (C) Mean proportion of 2D figures indicating uncertainty, separated by
categorical (white) and continuous (light gray) data. Left panel considers all figures; right panel considers only figures with both categorical and continuous data.
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simple and complex data sets by making

design choices that reveal data, rather

than hide it.

Show More, Hide Less
Consider a simple experiment in which

a researcher investigates the effect of

different conditions on a single response

variable. Having collected 50 samples of

the responsevariableundereachcondition

1,2, and3,howshould the researcher visu-

alize the data to best inform themselves

and their audience of the results? Figure 2

provides three possible designs. In panel

A, a bar plot displays the sample mean

and SEM under each condition. With no

distributional information provided, the

data density is quite low and the same

information could be provided in a single

sentence, e.g., ‘‘Mean response ± SEM

for conditions 1, 2, and 3 were 4.9 ± 0.4,

5.0 ± 0.4, and 5.2 ± 0.4, respectively.’’

Panel B offers some improvement, with

box plots displaying the range and quar-

tiles of each sample. This design reveals

that response variables may take on both

positive and negative values (hidden in

panel A) and that condition 2 may be right

skewed. Distributional differences are

better understood in panel C when using

violin plots to display kernel density esti-

mates (smoothed histograms) of each

data set (Hintze and Nelson, 1998). Violin

plots make the skew in condition 2 more

apparent and reveal that responses in

condition 3 are bimodal (hidden in panels

A and B). Although the additional distribu-

tional information in panel C does not
change our initial inference that sample

means are similar between conditions,

we are certainly not likely to make the

misinterpretation that condition has no

effect on the response. Distributional

differences also suggest that assumptions

of the ANOVA (or other parametricmodels)

may not be met and that the mean may

not be the most interesting quantity to

investigate.

This example is not meant to imply that

bar plots should always be avoided in

favor of more complex designs. Bar plots

have numerous merits: they are easy to

generate, straightforward to comprehend,

andcanefficiently contrast a largenumber

of conditions in a small space. They are

particularly effective for displaying

frequencies or proportions (as in Figure 1),

in which binary data samples are trans-

formed into a height that intuitively reflects

the fraction of ‘‘successes.’’ Yet, bar plots

are also commonly used in scenarios in

which the distance from zero is not mean-

ingful and in which distributional informa-

tion would be of great benefit to readers.

In roughly the same amount of space

required by a bar plot, one can portray

the full shape of distributions and overlay

descriptive statistics, inferential statistics

related to hypothesis testing, or even

individual data points, creating a so-

called ‘‘bean plot’’ (Kampstra, 2008). By

increasing the amount of information

available to the viewers, we allow them

to assess the appropriateness of related

statistical analyses and make their own

inferences.
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InFigure3,weapply theguidingprinciple

of ‘‘show more, hide less’’ to high-dimen-

sional electroencephalographic (EEG) and

functional magnetic resonance imaging

(fMRI) data sets. We portray the results

using a common design (panel A) and

a modified design (panel B), in which

each change is arrived at by following the

guidelines in Table 1.

Figures 3Aa and 3Ba present data from

an EEG visual flanker task. Subjects were

asked to indicate the direction of a visual

target which appeared shortly after the

presentation of flanking distracters. For

each participant, multichannel EEG time

series were decomposed using indepen-

dent component analysis, and a single

component best matching the expected

frontocentral topography for a perfor-

mance monitoring process was selected

for further analysis (Eichele et al., 2010).

Here, we ask how the extracted event-

related potential (ERP) differs according

to the subject’s response (i.e., correct or

incorrect). Panel A provides a typical

portrayal of results, in which mean ERPs

are displayed for each condition. As Table

1 recommends, the axes are labeled, vari-

able units are indicated, and experimental

conditions are distinguished by line color

with direct annotation on the plot. While

this panel is clear, it is not complete: there

is no portrayal of uncertainty. In panel B,

we add 95% confidence bands around

the average ERPs. The confidence bands

are made slightly transparent to highlight

overlap between conditions and to main-

tain the visual prominence of the means.
74, May 24, 2012 ª2012 Elsevier Inc. 605
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Figure 2. Comparison of Graphical Designs
The same synthetic data is summarized in a bar plot (A), box plot (B), and violin plot (C). Box plots in (B) and (C) also show the mean ± SEM and are drawn with
a maximumwhisker length of 1.53 the interquartile range. Data points (n = 50 for each condition) were sampled from a normal distribution (condition 1), a gener-
alized c2 distribution with 2 degrees of freedom (2), and an equal mixture of two normal distributions with different means (3).
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Confidence intervals clarify that there is

greater uncertainty in the error response

than the correct response (because

subjects make few errors) and that there

is insufficient evidence to conclude

a response difference after �800 ms. In

panel B, we also add verbal descriptions

and additional annotation to the graphic

(Lane and Sándor, 2009; Tufte, 2001).

Labels indicate that the timeline is relative

to the presentation of the target stimulus

andspecifyour null andalternativehypoth-

eses as well as the alpha level (type I error

rate) chosen to determine statistical signif-

icance. Integrating descriptions into the

figure (rather than the legend) discourages

misinterpretation and permits readers to

understand the display more quickly. Of

course, annotation must be used judi-

ciously and should not overwhelm or

detract from the data visualization itself.

Figures 3Ab and 3Bb portray results

from an auditory oddball event-related

fMRI experiment. Participants responded

to target tones presented within a series

of standard tones and novel sounds.Blood

oxygenation level-dependent (BOLD) time

series at each brain voxel were regressed

onto activation models for the target,

novel, and standard stimuli (Kiehl et al.,

2001). Here, we ask what brain regions

might be involved in the novelty processing

of auditory stimuli and compare beta

parameters between novel and standard

conditions. Panel A presents voxelwise

differences between beta coefficients

using a widely reproduced design: func-

tional-imaging results are thresholded

based on statistical significance and over-
606 Neuron 74, May 24, 2012 ª2012 Elsevier
laid on a high-resolution structural image.

Following Table 1, the variable of interest

is labeled, the color map is sensible for

the data and is mapped with symmetric

endpoints, andannotationclearly indicates

the directionality of the contrast (i.e.,

‘‘Novel–Standard’’). This design provides

excellent spatial localization for functional

effects but is not without problems. The

display does not portray uncertainty and

has a remarkably low data-ink ratio due

to the prominent (nondata) structural

image and sparsity of actual data (Habeck

and Moeller, 2011). More crucially, the

design encourages authors to hide results

not passing a somewhat arbitrary statis-

tical threshold. Given numerous correction

methodsand littleconsensusontheappro-

priate family-wise type I error rate (Lieber-

man and Cunningham, 2009), authors

may arrive at a ‘‘convenient’’ threshold to

reveal visually appealing and easily ex-

plained results. This design reduces a rich

and complex data set to little more than

a dichotomous representation (i.e., ‘‘signif-

icant or not?’’) that suffers from all the limi-

tations of all-or-none hypothesis testing

(Harlow et al., 1997).

Rather than threshold results, we

suggest a dual-coding approach to repre-

sent uncertainty (Hengl, 2003). As shown

in panel B, differences in beta estimates

are mapped to color hue, and associated

paired t statistics (providing a measure of

uncertainty) are mapped to color trans-

parency. Compared to panel A, no infor-

mation is lost. Transparency is sufficient

to determine structural boundaries and

statistical significance is indicated with
Inc.
contours. However, substantial informa-

tion is gained. The quality of the data is

now apparent: large and consistent differ-

ences in betas are wholly localized to gray

matter, while white matter and ventricular

regions exhibit very small or very uncer-

tain differences. In addition, isolated

blobs of differential activation in panel A

are now seen as the peaks of larger

contiguous activations (often with bilat-

eral homologs) that failed to meet signifi-

cance criteria. The modified display also

reveals regions in lateral parietal cortex,

medial prefrontal cortex, and posterior

cingulate cortex with reduced activation

to novel stimuli compared to standard

tones. These brain areas coincide with

the so-called ‘‘default-mode network,’’

a system preferentially active when

subjects engage in internal rather than

external processes (Buckner et al., 2008).

We hope to impress upon the reader the

wealth of findings that can be revealed

simply by unhiding data. To encourage

the use of this approach, we provide

sampleMATLABscripts for hue and trans-

parency coding on our website (http://

mialab.mrn.org/datavis).

Along with increased annotation, panel

B also displays the beta parameters for

individual subjects, averaged over clus-

ters of voxels passing significance

(Figures 3Bb1 and 3Bb2). The 2D plots re-

move dependence on color mapping

(which is more difficult for viewers to

decode than position along an axis;

Cleveland and McGill, 1985) and allow

us to access the data in greater detail.

Scatter plots indicate the beta estimates
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Figure 3. Redesigning Figures
Conventional (A) and modified (B) designs. Captions describe panel (B). (a) EEG flanker data. ERPs for error trials (red) and correct trials (blue) averaged over ten
subjects. Error bands are 95% nonparametric CIs (1,000 bootstraps). Asterisks indicate significantly different ERPs at p < 0.001 (nonparametric randomization
test, 10,000 randomizations, and implicit correction for multiple comparisons). (b) FMRI auditory oddball data. Axial slices show the difference between novel
and standard beta weights averaged over 28 subjects. Beta difference is mapped to color hue; t statistic magnitude is mapped to transparency. Contours
denote significantly different betas at p < 0.001 (two-tailed paired t tests corrected with false discovery rate). (b1 and b2) Scatter plots of standard versus novel
betas for select regions. Beta weights are averaged over clusters of contiguous voxels passing significance (b1 = 2,426 voxels; b2 = 1,733 voxels). Dotted lines
indicate y = x.
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for each condition (rather than just the

difference), reveal the degree of variability

across subjects (and the absence of

outliers), and validate our ‘‘paired’’ statis-

tical approach, because beta values co-

vary across conditions.

Conclusion
A single figure may portray experimental

data painstakingly collected over months

or even years. Rather than use standard
designs such as bar plots and thresh-

olded maps that hide these data, we,

as authors, peer reviewers, and editors,

can establish new standards for visu-

alizations that reveal data and inform

readers.
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