

Quadcopter Overview, Moment & Center of Gravity

October 15, 2018

Quadcopter

- A multi-rotor helicopter that is lifted and propelled by four rotors.
- Unmanned Aerial Vehicle (UAV)
- o Drones
- Characteristic
 - Rotorcraft vs. Fixed Wing Aircraft
 - Control of the vehicles motion is done by altering the rotation rate of one or more rotors at the same time, thus changing its torque load and thrust.
- Options
 - Remotely piloted
 - Autonomous (follow a fixed flight plan)

- History of Multirotor copter (piloted)
 - A solution to vertical flight
 - Counter-rotation and the relatively short blades for ease of construction.
 - Breguet-Richet Gyroplane (1907)
 - Oehmichen No.2 (1920)
 - de Bothezat helicopter (1922)
 - Convertawings Model A Quadrotor (1956)
 - Curtiss-Wright VZ-7 (1958)
 - Ehang 184 (2016)

- Early appearances in "Maker Faire"
- Commercial Usage
 - Aerial Photography and Video
 - o Delivery
 - Entertainment
- Military Function
 - Surveillance
 - Search and Rescue
- Quadcopter Products
 - o DJI
 - Phantom
 - Horizontal flight speed up to 52.5 ft/s
 - Vertical flight speed up to 16.4 ft/s
 - o Parrot
 - Controlled by an App from tablet or mobile phone
 - o Walkera
 - o Hubscan

Quadcopter for aerial photography.

Advancement in Technology

- Wearable format
- Drivable Quadcopter
- Foldable Format

Expandable drones (various brands)

DJI Mavic

Nixie

• Anatomy of Quadcopter

Propeller (Prop) Motor Motor Mount Landing Gear Boom Main Body Electronic Speed Controller (ESC) Flight Controller Receiver Battery

Optional: GPS Module Antenna Gimbal and Gimbal Motor Camera

Moment

Moment is the tendency of a force to twist or rotate an object.

$$M = Fd$$

- F, force (N), F=ma (m: mass, a: acceleration)
- d, distance between the location where the force is applied and a reference point (m)
- **Direction** of moment is demonstrated with right-hand rule.
 - Positive Counter Clockwise motion
 - Negative Clockwise motion
- For a balanced not spinning object, the moments of all forces should be equal to zero, $\sum M_i = 0$

Moment

Moment is the tendency of a force to twist or rotate an object.

$$M = Fd$$

$$M = Fd = -(160N)(0.25m) = -40Nm$$

The rotation is clockwise in reference to the bolt

- Anatomy of Quadcopter
 - Examples: Side view of a quadcopter with camera system
 - Configurations

4 Rotors: 2 clockwise (CW) and 2 counter-clockwise (CCW)

Pitch

Moment Produces Pitching

Roll

• Moment Produces Rolling

$$M_{r} = \sum M = (F_{1} + F_{4})(\frac{L}{2}) - (F_{2} + F_{3})(\frac{L}{2})$$

Moment Produces Yawing

Pitch, Roll, Yaw

Moment Produces Movements of the X Configured Quadcopter

Pitch, Roll, Yaw

• Moment Produces Movements of the Plus Configured Quadcopter

• Practical Tips on Propeller

- How do you know whether the propeller is up or down?
 - Letters (writings) are on top
 - "Concave down", side profile from the tip of the propeller

• Practical Tips on Propeller

- Same design of propeller
 blades as a pair placed across
 from each other
- Same color propellers often come as one clockwise and one counter-clockwise
- Blade will turn toward the direction of leading edge of the airfoil

Control System

- Electronic Measurement systems are used in two types of process control
 - Open Loop Control (Manual, Remote Control)
 - Close Loop Control (Autonomous)

- Advancement in Technology
 - Quadcopters in Formation

Center of Gravity (COG)

• Center of gravity is the weighted average location of all the mass in a body or group of bodies.

• The calculation of COG is important for Quadcopter design.

COG in Action

• Demo

Center of Mass

- An object can be divided into many small particles
 - Each particle will have a specific mass and specific coordinates
- The x coordinate of the center of mass will be

$$\boldsymbol{x}_{CM} = \frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{\sum_{i} m_{i}}$$

• Similar expressions can be found for the y coordinates

COG Calculation

 All the various gravitational forces acting on all the various mass elements are equivalent to a single gravitational force acting through a single point called the center of gravity (CoG)

$$Mg_{CG}x_{CG} = (m_1 + m_2 + m_3 + \cdots)g_{CG}x_{CG}$$

= $m_1g_1x_1 + m_2g_2x_2 + m_3g_3x_3 + \cdots$
If
 $g_1 = g_2 = g_3 = \cdots$
• then

$$x_{CG} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots} = \frac{\sum m_i x_i}{\sum m_i}$$
$$y_{CG} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \dots}{m_1 + m_2 + m_3 + \dots} = \frac{\sum m_i y_i}{\sum m_i}$$

COG in Action

Shape	Figure	\bar{x}	$ar{y}$	Area
Right-triangular area	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline \\ & & & \\ \hline \\ \\ \\ & & \\ \hline \\ \\ \\ \hline \\ \\ \\ \\$	$\frac{-b}{3}$	$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$

http://en.wikipedia.org/wiki/List_of_centroids

Divide complicated shapes into a combination of easy to calculate shapes

COG Example

0.5m

Find the x and y coordinators of the center of gravity on the following platform.

$$m_1 = 100 \text{ g}, \text{ d} = 0.1 \text{ m}$$

COG Example

• Find the x and y coordinators of the center of gravity on the following platform.

 $m_1 = 100 \text{ g}, d = 0.1 \text{m}; m_2 = 200 \text{ g}, 0.1 \text{m} \times 0.05 \text{m};$ $m_3 = 200 \text{ g}, 0.1 \text{ m} \times 0.1 \text{m}$

$$\begin{aligned} x_{CG} &= \frac{\sum m_i x_i}{\sum m_i} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} \\ &= \frac{100g(0.1m) + 200g(0.15m) + 200g(0.4m)}{100g + 200g + 200g} = 0.24m \\ &\sum m_i y_i - m_1 y_1 + m_2 y_2 + m_3 y_3 \end{aligned}$$

$$y_{CG} = \frac{\sum m_i y_i}{\sum m_i} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3}$$
$$= \frac{100g(0.15m) + 200g(0.375m) + 200g(0.25m)}{100g + 200g + 200g} = 0.28m$$

Reading Assignment for Week 3

"Introduction to Engineering Design" Book 11

Engineering Skills and Quadcopter Missions 4th Edition 2017

Chapter 6 "Dynamics and Control of Quadcopters" Chapter 16 "Generation and Selection of Design Concepts"