

Quadcopter Stability and Circuit Analysis

November 5, 2018

Overview

- Quadcopter Stability
 - Moment of Inertia
 - Scaling
 - Ground Effect
- Electric Circuit Analysis

Moment of Inertia

- An important value that effects the movement of a quadcopter is the moment of inertia.
 - Moment of inertia gives an indication of an object's resistance to a torque about a rotation axis.
- Derived from Newton's second law of motion and the sum of moments:

$$\sum \boldsymbol{M} = \frac{d}{dt}(I\omega)$$

where I is the moment of inertia and ω is the angular velocity.

Moment of Inertia

• From the previous slide, the sum of the moments is:

$$\sum \mathbf{M} = \frac{d}{dt}(I\omega)$$

• Since the moment of inertia is a scalar and the angular velocity is a vector, the sum of the moments can be written as:

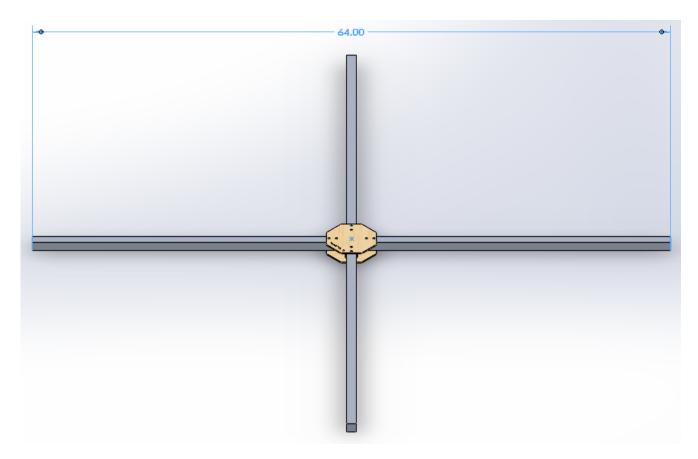
$$\sum \mathbf{M} = I \frac{d\omega}{dt} = I\alpha.$$

• The definition of the moment of inertia is:

$$I = \int r^2 \, dm$$

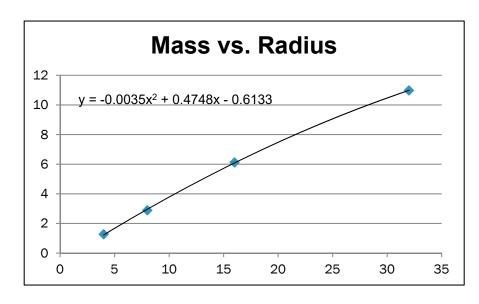
A decrease in the moment of inertia will result in a decrease in the moment required to reach a desired angular acceleration.

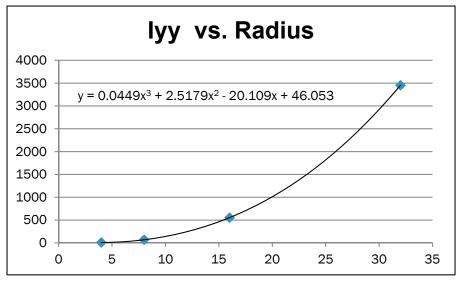
Moment of Inertia

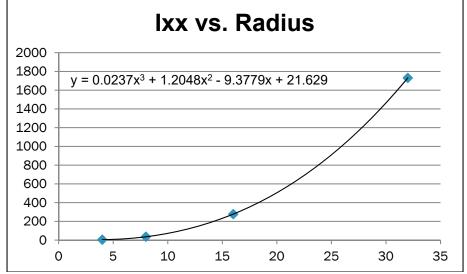


z G h y $Cone$	$\overline{z} = \frac{3h}{4}$	$\begin{split} I_{yy} &= \frac{3}{20}mr^2 + \frac{3}{8}mh^2 \\ I_{y_1y_1} &= \frac{3}{20}mr^2 + \frac{1}{10}mh^2 \\ I_{zz} &= \frac{3}{10}mr^2 \\ \bar{I}_{yy} &= \frac{3}{20}mr^2 + \frac{3}{80}mh^2 \end{split}$
2 Give y Hemisphere	$\overline{x} = \frac{3r}{8}$	$\begin{split} I_{xx} &= I_{yy} = I_{zz} = \frac{2}{8}mr^2 \\ \bar{I}_{yy} &= \bar{I}_{zz} = \frac{83}{320}mr^2 \end{split}$
zSphere	-	$I_{zz} = \frac{2}{6}mr^2$
$z = \frac{l}{2} + $	_	$\begin{split} I_{xx} &= \frac{1}{12}m(a^2 + l^2) \\ I_{yy} &= \frac{1}{12}m(b^2 + l^2) \\ I_{zz} &= \frac{1}{12}m(a^2 + b^2) \\ I_{y_1y_1} &= \frac{1}{12}mb^2 + \frac{1}{3}ml^2 \\ I_{y_2y_2} &= \frac{1}{3}m(b^2 + l^2) \end{split}$
$\begin{array}{c} \frac{l}{2} + \frac{l}{2} \\ \frac{l}{2} \\ \frac{1}{x} \\ \frac{1}{x_{1}} \\ \frac{1}{x} \\ \frac{1}{x} \end{array}$ Semicylinder	$\overline{x} = \frac{4r}{3\pi}$	$\begin{split} I_{xx} &= I_{yy} \\ &= \frac{1}{4}mr^2 + \frac{1}{12}ml^2 \\ I_{x_1x_1} &= I_{y_1y_1} \\ &= \frac{1}{4}mr^2 + \frac{1}{3}ml^2 \\ I_{zz} &= \frac{1}{2}mr^2 \\ \bar{I}_{zz} &= \left(\frac{1}{2} - \frac{16}{9\pi^2}\right)mr^2 \end{split}$
$z = \begin{bmatrix} l & l & l \\ 2 & l & l \\ 0 & c \\ x_1 & x \end{bmatrix}$ Circular Cylinder	_	$\begin{split} I_{xx} &= \frac{1}{4}mr^2 + \frac{1}{12}ml^2 \\ I_{x_1x_1} &= \frac{1}{4}mr^2 + \frac{1}{3}ml^2 \\ I_{zz} &= \frac{1}{2}mr^2 \end{split}$

- Scaling the size of the quadcopter alters the mass and moment of inertia.
 - The moment of inertia is affected more dramatically.

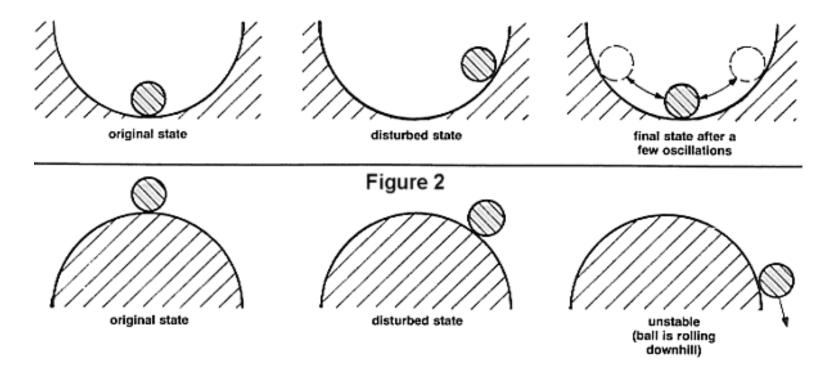

- Scaling the size of the quadcopter alters the mass and moment of inertia.
 - The moment of inertia is affected more dramatically.


Radius (in)	Mass (lbs.)	lxx (lbs*in^2)	lyy (lbs*in^2)	lzz (lbs*in^2)
4	1.27	4.91	8.78	4.91
8	2.89	35.84	69.34	35.84
16	6.12	277.02	553	277.02
32	10.98	1731.28	3453.76	1731.28


Scaling

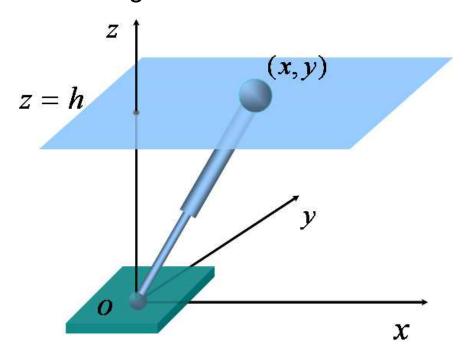
- Scaling the size of the quadcopter alters the mass and moment of inertia.
 - The moment of inertia is affected more dramatically.

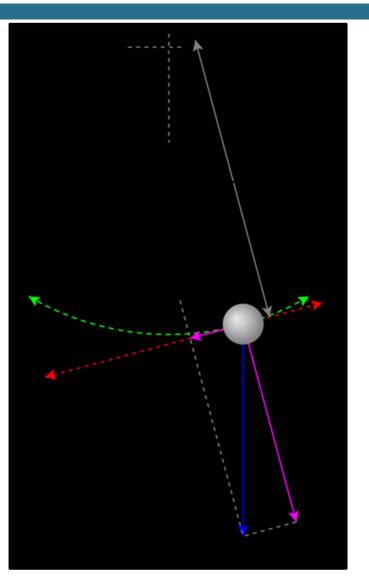
Scaling



- A larger quadcopter will require larger moments to maneuver
 - Less likely to be affected by outside perturbations.
- A smaller quadcopter will require smaller moments to maneuver
 - More likely to be affected by outside perturbations.

Stability


- Stability is the property of a system that determines if a system will return to an original state after a disturbance.
 - Stable: system returns to original equilibrium state after a disturbance


Stability

• Quadcopter can be modeled as an inverted pendulum, or a pendulum, based on the COG along the z-axis.

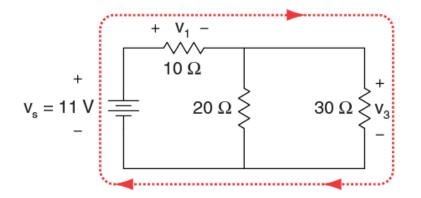
https://www.youtube.com/watch?v=8Ys2ixV BYXU

Ground Effect

<u>In Ground Effect</u>: Extra pressure occurs below the propeller
 → Causes a "ram" effect, improving the thrust
 → Can cause bouncing near the ground, using "air cushion"

https://www.youtube.com/watch?v=DWDdh1-B4Io

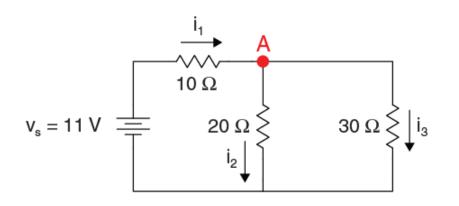
Electric Circuit Analysis


- Learning the language of circuits
- Ohm's Law and Kirchhoff's Law
- Basic circuit analysis (series, parallel)

Kirchhoff's Voltage Law

• Conservation of Energy

KVL:
$$V_1 + V_3 - V_s = 0$$


- Voltages sum to zero around any closed path
 - Can be applied to any closed loop in circuit
 - Pay attention to signs and polarity!

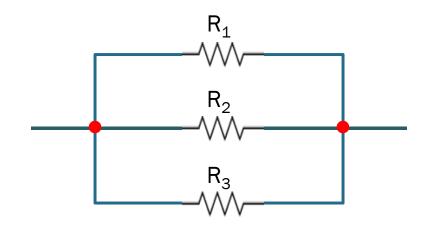
Kirchhoff's Current Law

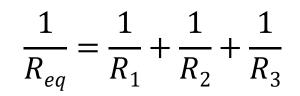
• Conservation of charge

KCL A:
$$i_2 + i_3 - i_1 = 0$$

- Currents coming out of any part of circuit must sum to zero
 - Can be applied at any point (node) in circuit
 - Pay attention to signs and polarity!

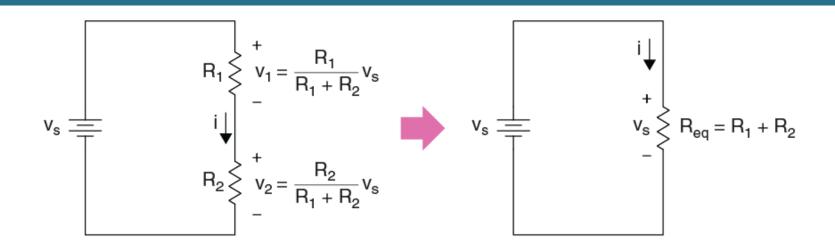
Resistors in Series and Parallel




• Series

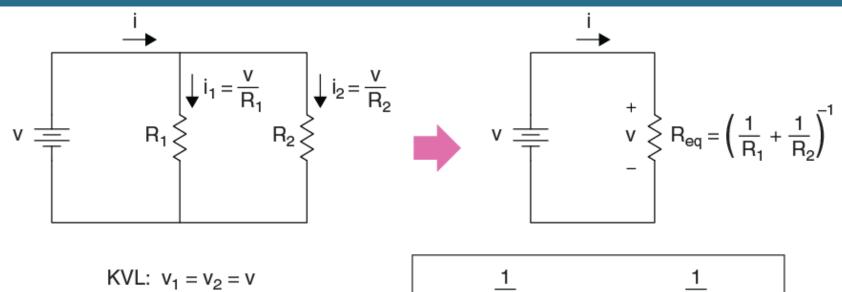
$$R_1 \quad R_2 \quad R_3$$

$$R_{eq} = R_1 + R_2 + R_3$$

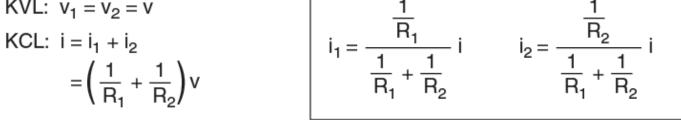

• Parallel

Series (Voltage Divider)

KCL:
$$i_1 = i_2$$
 (= i)

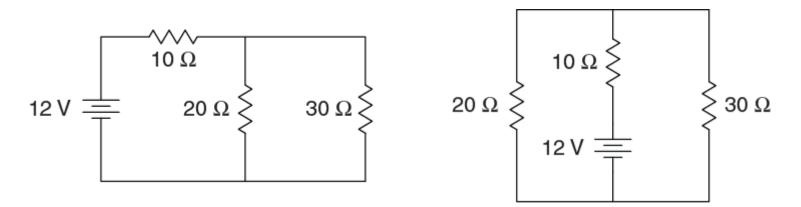

KVL:
$$v_s = v_1 + v_2$$

= i(R₁ + R₂)


WHEN RESISTORS ARE CONNECTED IN SERIES:

- Equivalent resistance: $R_{eq} = R_1 + R_2$
- Currents are the same in R_1 , R_2 and R_{eq}
 - Voltage divides in proportion to R

Parallel (Current Divider)


WHEN RESISTORS ARE CONNECTED IN PARALLEL:

- Equivalent resistance: $1/R_{eq} = 1/R_1 + 1/R_2$
 - Voltages are the same in R₁, R₂ and R_{eq}
 - Current divides in proportion to 1/R

Circuit Schematics

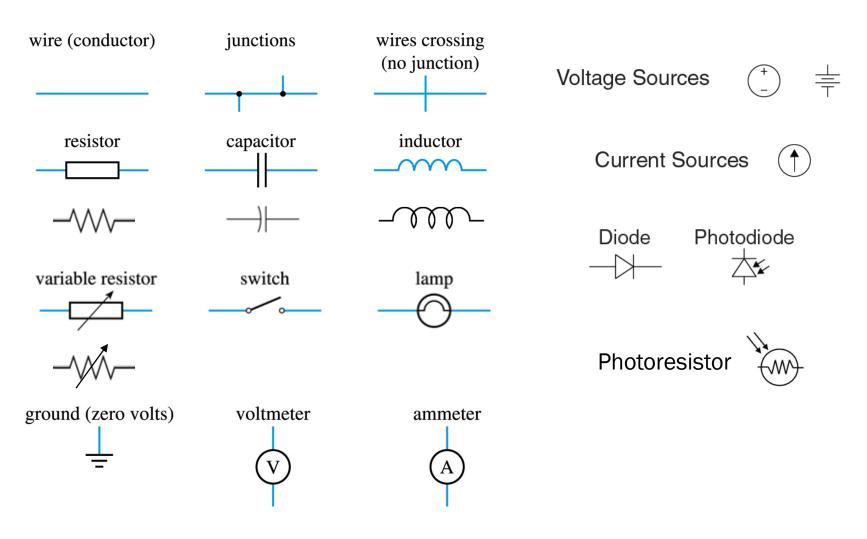
• Show how things are connected

- Many equivalent ways to draw the same circuit
- Length of wire (line) has no meaning in schematic diagram
- Circuit schematic does not show:
 - Where the components are physically placed on circuit board
 - Relative orientation of elements
 - Location of solder joints or connections

Electronic Components

- Passive Components
 - > Resistors
 - Capacitors
 - Inductors
 - Diodes
 - Interface components
- Circuits
 - Kirchhoff's Laws
 - Series
 - Parallel

- Active Components
 - Transistors
 - Integrated circuits
 - Analog
 - Digital
 - Microcontroller (e.g. Arduino)

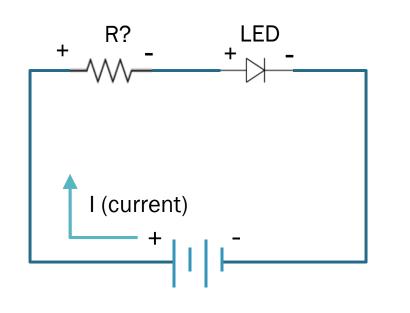


Electronic Components

• Symbols

• A Practical Example: Light up a LED with a 9V battery

• A Practical Example: Light up a LED with a 9V battery

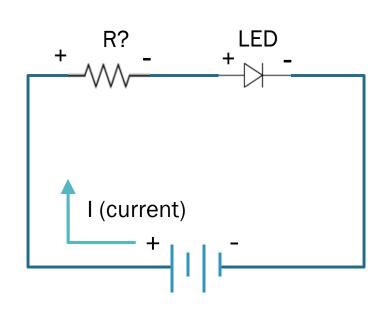

TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS $(T_A = 25^{\circ}C)$

Characteristics	Color	Symbol	Condition	Unit	Minimum	Typical	Maximum
Forward Voltage	Red	V _F	I _F = 20 mA	V		2.1	2.6
	Blue/Green	V _F	$I_F = 20 \text{ mA}$	V		3.4	4.0
Reverse Current	Red	I _R	$V_{R} = 5 V$	μA			100
	Blue/Green	I _R	$V_{R} = 5 V$	μA			100
Dominant Wavelength	Red	λ _D	$I_F = 20 \text{ mA}$	nm	619	621	624
	Green	λ _D	I _F = 20 mA	nm	520	527	535
	Blue	λ _D	$I_F = 20 \text{ mA}$	nm	460	470	475
	C5SMF - Red	I _v	$I_F = 20 \text{ mA}$	mcd	1100	2200	
	C5SME - Red	Iv	$I_F = 20 \text{ mA}$	mcd	770	1100	
	Green	I _v	I _F = 20 mA	mcd	2130	4400	
	Blue	I _v	$I_F = 20 \text{ mA}$	mcd	550	1100	

http://www.digikey.com/product-detail/en/C5SMF-RJS-CT0W0BB2/C5SMF-RJS-CT0W0BB2CT-ND/1987481

• A Practical Example: Light up a LED with a 9V battery

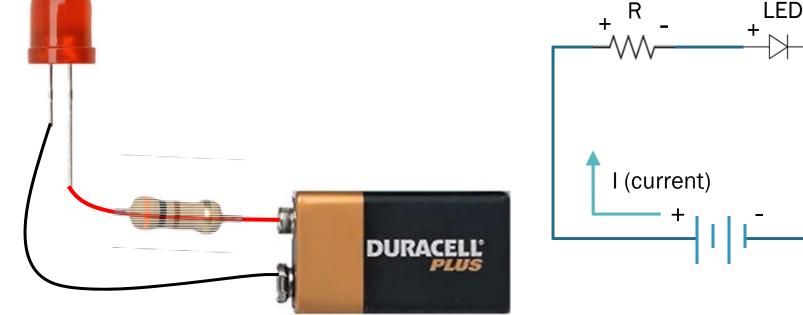
Battery, V = 9.35V (measured) Operating Voltage of LED: V $_{LED}$ = 2.1 V


LED Steady current: I = 20mA

Which resistor to use?

*Resistor doesn't have polarity, the + - signs are used to show the direction of voltage drop

• A Practical Example: Light up a LED with a 9V battery



$$V_R = V - V_{LED}$$

 $V_R = 9.35V - 2.1V = 7.25V$
 $I = 20 \text{ mA} = 0.02A$
 $R = V/I = 7.25V/0.02A = 362.5 \Omega$

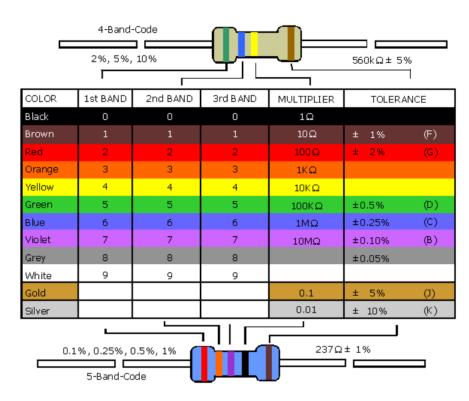
$$R_{LED} = V/I - R = 105 \Omega$$

Total resistance 467.5 Ω

- DEMO: Light up a LED with a 9V battery
 - \circ One 360 Ω
 - Two 180 Ω resistors in series
 - \circ Two 720 Ω resistors in parallel

Convention: Black wire for ground

Electronic Components

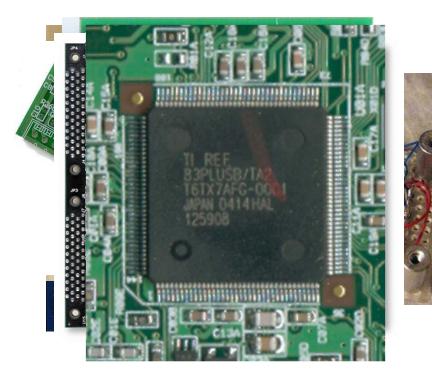


Resistors

Europe USA, Japan

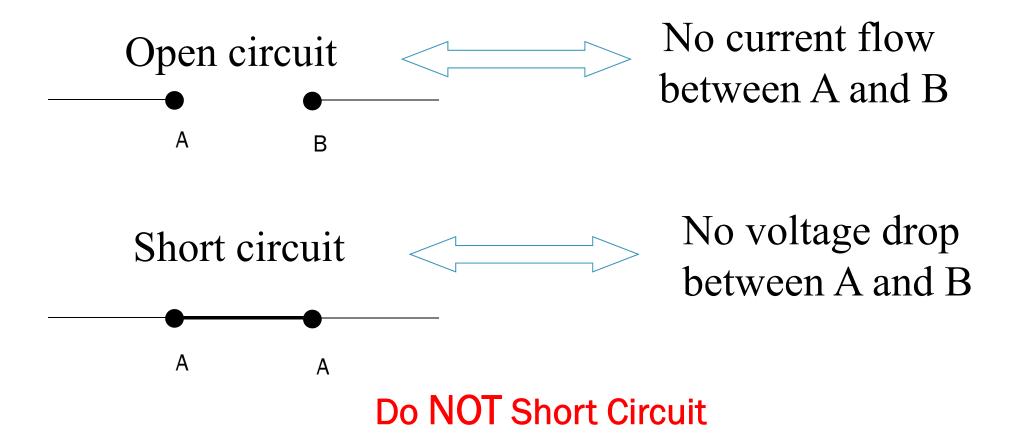
Resistor Color Code Guide

http://www.resistorguide.com/ Or Measure with multimeter


Building Circuits

- From Prototype to Product
 - Solderless breadboard
 - Soldered perfboard
 - Wire wrapping
 - Printed circuit board (PCB)
 - Microprocessor / DSP / FPGA
 - ASIC (application-specific integrated circuit)

Images taken from:


http://itp.nyu.edu/physcomp/Tutorials/ http://www.sas.org/ http://www.home.aone.net.au/ http://arduino.cc/ http://www.innovative-dsp.com/ http://www.datamath.org/ http://prt.fernuni-hagen.de/

Important Items in Lab

• Open Circuit and Short Circuit

Battery Energy

<u>SunnySky 1500KV</u> Max Current / Motor = 20 A

Full Throttle Flight Time cur = $\frac{3Ah}{20A * 4} = 0.0375 hrs = 2.25 mins$

Total Capacity: 3000 mA-h

Energy [mA – h] = Current[mA] * Time[hrs]

3000 mAh = 3Ah

→ Will run 1 hour on 3 amp current draw

 \rightarrow 30 minutes on 6 amp current draw

Reading Assignment for Week 6

"Introduction to Engineering Design" Book 11 Engineering Skills and Quadcopter Missions 4th Edition 2017

Chapter 3 "Flight Dynamics" Sections 3.6 until the end of the chapter

Announcement

Due to Veteran's Day, next week's lecture is moved to Wednesday 11/14/2018 to 5 pm (EH 1200)