

Quadcopter Electrical System

November 14, 2018

Outline

- Brushless Motors
- Pulse Width Modulation
- Electronic Speed Controller
- Transmitter and Receiver
- Flight Controller
- Lithium Polymer Battery
 - Flight Time Estimation
- Assembly Procedures
- Flight Safety Procedures
- Final Competition Course

Brushless Motors

Rotor – Rotating Outer Structure

Permanent magnets

Stator – Stationary Inner Structure

Electromagnets

Electromagnets quickly alternating polarity causes permanent magnets to move.

Brushless Motors

- Permanent magnets: Constant polarity
- Electromagnets: Current direction determines polarity

- Electromagnets initially
 configured to repel magnet
 → causes rotation
- Current switches to pull magnet
 - \rightarrow continues rotation

Brushless Motors

Three motor wires used to alternate electromagnet charges <u>At one given moment:</u>

- Two wires: positive or negative charge
- One wire: inactive Current goes IN the positive wire, and OUT the negative wire

Imitate an ANALOG signal from a DIGITAL source

Analog: Continuous, variable (e.g. sine wave, sloping line) Digital: Discrete (e.g. on/off, high/low, 1/0)

 Duty Cycle – amount of time that the signal is on high

•

Given: 5 volt digital source

What analog voltages do these PWM signals imitate?

50% Duty Cycle 5 V * (0.50) = 2.5 V

75% Duty Cycle 5 V * (0.75) = 3.75 V

25% Duty Cycle 5 *V* * (0.25) = 1.25 *V*

Quadcopter components that use PWM:

Electronic Speed Controller (ESC)

<u>Signal from NAZA</u> White: Signal (PWM) Red: 5 Volts Black: Ground (0 Volts)

To Motor

Max Current: 30 A

Electronic Speed Controller (ESC) SCHOOL

Throttle Calibration Required BEFORE ASSEMBLY

"Throttle Range Setting"

Set minimum and maximum throttle speeds for each ESC.

Procedure: See Instructions in ESC packaging,

or Electrical Fabrication, Calibration, & Assembly PowerPoint, or ESC Calibration Video Tutorial

Transmitter and Receiver

Transmitter Pilot Input \rightarrow Radio Signal \rightarrow Receiver PWM Signal \rightarrow NAZA

Six Channel Transmitter and Receiver

- Four channels correspond with the sticks (A, E, T, R)
- Two channels associated with the switches

ENGR 7: Use first 5 channels 5th Channel: "Fail Safe" Fail Safe ON = Car In Park Fail Safe OFF = Ready to Drive

FAIL SAFE <u>ALWAYS</u> ON WHEN PEOPLE ARE NEAR THE QUADCOPTER.

FAIL SAFE OFF <u>ONLY</u> WHEN READY TO FLY. FAIL SAFE ON WHEN DONE FLYING.

DO <u>NOT</u> TURN ON FAILSAFE WHEN FLYING! \rightarrow YOU LOSE ALL MOVEMENT CONTROL

Flight Controller

Translates pilot input into motor control.

Attitude (orientation) control with a collection of sensors:

- Pressure Sensor (altitude)
- 3 axis gyroscope (roll, pitch, yaw)
- 3 axis accelerometer (linear acceleration)
- Magnetometer (compass)
- GPS (not included in this course)

Pressure Sensor

Pressure sensor measures relative altitude from a reference value

Pressure decreases as altitude increase

Used for Altitude Hold:

→ Flight controller measures pressure when enabled, and adjusts motors to maintain it

Altitude Hold not used in this class.

Mechanical Gyroscope

A mechanical gyroscope uses angular momentum to <u>maintain</u> or <u>manipulate</u> orientation

<u>http://www.youtube.com/watch?v=n_6p-1J551Y</u>

MEMS Gyroscope

- MEMS (<u>Microelectromechanical Systems</u>) are used in the flight controller to <u>measure</u> angular displacement
- Rotation causes a displacement of a mechanical device (3 separate axes)
 - Displacement converted to output voltage signal
 - Signal interpreted by NAZA and translated to motor control

Accelerometer

Measures the acceleration along the three axes.

- A mass-spring system reacts to changes in velocity
- The moving mass on a piezoelectric material changes the measured voltage.

"Piezo" = Greek for "squeeze" or "press"

• Voltage interpreted by NAZA, translated to motor control

Summary of Flight Control

Battery Safety

- 3 Cell, Lithium Polymer (LiPo) battery
- Cutoff (minimum) voltage: 3.0 V/cell (9 V total)
- Nominal Voltage: 3.7 V/cell (11.1 V total)
- Peak Voltage: 4.2 V (12.6 V total)

Discharging battery too much will permanently damage the battery.

Recommended minimum voltage: 9.9 V

Battery Safety

- Only TAs will be responsible for charging batteries.
- Monitor for a hot battery or flames.
- Never let the battery's positive and negative wires touch
 → Short Circuit = uncontrolled energy release = fire
- Always inspect the battery for damage or deformity before use.
- Always check the battery voltage before use.
- Disconnect battery when not in use.
 - Do not store batteries in your team containers.
- Always keep batteries away from water.
 - Do not fly on wet grass, near puddles, in wet weather.

Battery Safety

Electric Energy = Controlled release of high energy reactions

Bad idea to release all that energy at once...

Smoke, gaseous fumes, fire...

https://www.youtube.com/watch?v=aEK-IYtf-t8

One of the first signs of a damaged battery is bloating... https://www.youtube.com/watch?v=BLc74Qpvweg

Battery Energy

<u>SunnySky 1500KV</u> Max Current / Motor = 20 A

Full Throttle Flight Time cur = $\frac{3Ah}{20A * 4} = 0.0375 hrs = 2.25 mins$

Total Capacity: 3000 mA-h

Energy [mA – h] = Current[mA] * Time[hrs]

3000 mAh = 3Ah

→ Will run 1 hour on 3 amp current draw

 \rightarrow 30 minutes on 6 amp current draw

Calculate the flight time for your quadcopter:

$$T = 2\left(\frac{sa}{16}\left[\sqrt{1 + \frac{64}{3sa}\theta} - 1\right]\right)^2 \rho(\Omega R)^2 A$$

Known:

Maximum Thrust Maximum Current Quadcopter Weight

 \leftarrow This is the same as thrust force when hovering

$$\boldsymbol{T} = 2\left(\frac{sa}{16}\left[\sqrt{1 + \frac{64}{3sa}\theta} - 1\right]\right)^2 \rho(\Omega R)^2 A$$

T = ThrustΩ = RPM

All other values are constant!

 $T = constant * (\Omega)^2$

 $T = constant * (\Omega)^2$

Motor KV Rating: KV = RPM / Volt = Ω / V Ohm's Law: V = IR Solving for Ω :

 $\Omega = (KV \ Rating) * V$ = (KV \ Rating) * (IR) $\Omega = constant * (I)$ Combine the constants & plug into top equations: $T = constant * (I)^2$

$$T = constant * (I)^{2}$$
$$constant = \frac{T}{I^{2}}$$

<u>State 1: Maximum</u> T_{max} , $I_{max} \leftarrow$ From thrust test data <u>State 2: Hover</u> $T_{hover} = W_{quad}$, I_{hover} unknown

$$\frac{T_{max}}{I_{max}^2} = \frac{W}{I_{hover}^2} = constant$$

Solve for $I_{hover} \rightarrow 3000 \ mA - h = I_{hover} * t_{flight}$

Connect the servo-type connectors to the flight controller ports labeled A, E, T, R, U.

- A: Aileron
- E: Elevator
- T: Throttle
- R: Rudder
- U: Failsafe switch

GROUND WIRE ON TOP

Connect <u>LED</u> above receiver connections

Light color and frequency indicates battery life, fail safe mode, etc.

Contains USB connection for calibration

Connect the voltage regulator to the X3 port GROUND WIRE ON TOP

Provides a regulated 5v supply voltage to flight controller

 \rightarrow Other two leads connect to the battery.

Connect flight controller A, E, T, R, U to receiver 1, 2, 3, 4, 5

For connection instructions: See Electrical Fabrication, Calibration, & Assembly PowerPoint

Connect ESC's to the M1-M4 ports on the flight controller

<u>Motor numbers matter!</u> Orientation indicated in NAZA computer software

Plus – Configuration

X – Configuration

Recommended Procedure

- 2. Connect receiver, LED, voltage regulator, and NAZA flight controller
- 3. Plug in ESCs to NAZA in correct M1 M4 sequence
- 4. Assemble electronics onto quadcopter
- 5. Plug in battery wiring harness to ESCs and voltage regulator
- 6. ASK TA TO CHECK WIRING \rightarrow Battery
- 7. Check and change motor spin direction as needed
- 8. Calibrate NAZA
- 9. ASK TA TO CHECK MOTOR RESPONSE \rightarrow Propellers

Flight Procedure

- 1. Check that all connections are correct, secure and insulated
- 2. Verify clearance for all propellers
- 3. Make sure failsafe switch is ON
- 4. Turn on transmitter
- 5. Connect Battery
- 6. Turn OFF failsafe
- 7. Set the motors to idle
- 8. Verify propeller direction
- 9. Take off, flight, landing.
- 10. Stop motors
- 11. Turn ON Failsafe
- 12. Unplug battery
- 13. Turn off transmitter

Final Competition Course

- Timed Event
- 10ft H x 10ft W x 30ft L netted area
- Course consists of a series platforms and gates set at different locations and elevations
 - Goal is to land on each platform in a specific sequence
- Time stops after landing and propellers stop spinning.

Frame Grading Criteria

Frame fabrication is due by 5:00 pm Friday, 11/16/2018

The frame grade will be dependent on:

- Motor Distance (to be within the max limit)
- Symmetry (equal weight distribution)
- Quality and Completeness of Fabrication
- Structural Rigidity
- Creativity

Upcoming Schedule

Structure deadline – Friday, November 16 at 5 pm

Sign up for Open Labs

No more office hours. For questions, come to open hours.

Next lecture – Monday 11/19/2017 Iris Adam will teach Communication and Leadership development

Weeks 9 and 10 we have guest lecturers who will only present on Mondays. Students from Wed sections, please, attend the Monday 5 pm lectures instead of Wed 5 pm lectures during weeks 8 and 9.

There will be no lectures during week 10 – we'll start final presentations.