
Topic 2:   Molecular Orbital Theory

Reading: Ch. 1 of your sophomore organic chemistry textbook
I. Fleming  Molecular Orbitals and Organic Chemical Reactions, Ch. 2 & 3

Bradley, J. D.; Gerrans, G. C. 
“Frontier molecular orbitals. A link between kinetics and bonding theory.” 
J. Chem. Educ. 1973, 50, 463.

Professor David L. Van Vranken
Chemistry 201: Organic Reaction Mechanisms I
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The Need For Orbitals

■ Heisenberg said we can't specify the location of electrons 

■ We need orbitals to describe where the pairs of electrons want to be

■ Orbital phases help us see how one electron avoids the other, even though they are in the same orbital

■ There are three basic types of orbitals
1. Atomic Orbitals
2. Hybrid Atomic Orbitals
3. Molecular Orbitals

Let's review them…



1. Atomic Orbitals  - Review

■ We can rationalize everything in this class using combinations of s and p orbitals
■ There are four types of atomic orbitals:     s, p, d, f 

■ p orbitals are way higher in energy than s orbitals
■ electronegativity decreases orbital energy
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2. Hybrid Atomic Orbitals - Review

■ Mixing Rule:            When you mix two orbitals, you get two orbitals
The reason you get two orbitals is because there are always two arbitrary phasing combinations

■ Three ways to mix one 2s and three 2p orbitals of 2nd row atoms to give non-bonding orbitals, n

Note:  electrons in 
higher energy orbitals 
are more reactiveignore 1s

■ Atom geometry correlates with hybridization (VSEPR 
theory). If you could force ammonia to be planar, the lone pair 
would end up in a super high energy p orbital.
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2. Hybrid Atomic Orbitals – Differences in Reactivity Based on p Character

■ Assess p character in 
molecular orbitals 
corresponding to every 
bond and every lone pair 
because it predicts the 
reactivity of the electrons.

■ The magnitude of the effect is 
less pronounced for oxygen, which 
is less reactive overall than 
nitrogen.

■ More p character  =  more basic and more nucleophilic

Eorb

2s

2p

sp
sp2
sp3

atomic
orbitals

hybrid
orbitals

more reactive

less reactive

pKa'

-10
~5
+10

50
67
75

%p

C N
C NH

C NH2

:

..

..

lone
pair

sp
sp2
sp3

relative basicity

0.000000000000001
1

100000 N N
H..
..

100,000x
more basic

sp2 sp3

O
O

..

1000x
more basic

sp2 ..
sp3



2. Quantitative Differences in Reactivity based on p Character

■ BIG CAUTION:   assign hybridization 
AFTER considering resonance. If you 
don’t consider resonance then you’re not 
really thinking about molecular orbitals.

■ More p character in C-H sigma bonds correlates with lower 
Bond Dissociation Energies.  (Compare only C-H bonds)
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3. Molecular Orbitals – Six Types of “Frontier” Molecular Orbitals

■ Arrows start from filled orbitals and end on un-filled 
orbitals. There are six canonical classes of frontier 
molecular orbitals that are used for arrow pushing. 

■ Commit these canonical orbitals, and 
their relative energies to memory.

■ Since there are only three types of filled FMOs and three types of unfilled FMOs, that means
that there are only 3x3= 9 types of non-concerted elementary chemical reactions.  We’ll spend the 
rest of this quarter talking about these nine types of interactions between filled and un-filled orbitals.
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(Aufbau principle).



3. Molecular Orbitals - M.O. Interaction Diagrams 

■ M.O. Interaction diagrams are used to graphically depict the energetic consequences that result from 
perturbation of molecular orbitals through pair-wise mixing.

■ Perturbation theory says 
that you get more orbital 
Interaction Energy, (I.E.) by 
mixing MOs that are closer 
in energy
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energy, then you could predict which reactions would be fast and which reactions would be slow. You’ll 
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3. Molecular Orbitals – FRONTIER Molecular Orbitals

■ When two reactants interact, 
most of the orbital interactions 
are not energetically favorable. 
The summed energy from 
orbital interactions usually 
comes from a single 
interaction: between the 
highest occupied molecular 
orbital (HOMO) in one reactant, 
and the lowest unoccupied 
molecular orbital (LUMO) in the 
other reactant. The HOMO and 
LUMO are the frontier 
orbitals.

■ When two reactants interact, every filled orbital in one reactant interacts with every filled orbital 
in the other reactant. We can quantify that with perturbation theory resulting in a mathematical 
equation with lots of terms.
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3. Molecular Orbitals - The Importance of Orbital Overlap

■ Correct symmetry is required for effective overlap.  Graphically, like phases lead to constructive 
interactions, but unlike phases lead to destructive interactions.

Bredt’s Rule: Bridgehead olefins are unstable

■ p orbitals overlap more effectively when they are closer together.
Longer bonds are  less stable and more nucleophilic

Capon, R. J.; Barrow, R. A. J. Org. Chem. 1998, 63, 75
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Intrinsic Reactivity of Canonical MOs Used for Arrow-Pushing: l.p., pi bonds, sigma bonds

■ Generally the reactivity of 
nucleophilic groups used for arrow 
pushing follows the order: l.p. > pi > 
sigma.

Based on MO energies calculated with B3LYP/6-31++G(d,p) versus the LUMO for H3CCH=O. Assumes equal orbital overlap.

■ Electronegativity plays an 
important role in determining 
nucleophilicity.

■ You usually won’t have a problem 
identifying the most reactive pair of 
electrons in a molecule.
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Intrinsic Reactivity of Canonical MOs Used for Arrow-Pushing

■ How accurate are the intrinsic reactivitivities of the 
canonical MOs?  Maybe ±105 ????
■ Lot’s of the lower energy FMOs will have similar 
reactivity, but usually, it won’t be difficult to identify 
the most reactive frontier orbital.

Gabriel, et al.
Chem. Ber. 1890, 2478
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■ Remember that generally: l.p. > pi > sigma



The Importance of Hybridization and p Character

■ p orbitals overlap more effectively when they 
are closer together.

Longer bonds are  less stable and more 
nucleophilic
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Effect of Bond Length on the Energy of Frontier Orbitals

■ Longer bonds are more nucleophilic.
■ Longer bonds are easier to break.

■ That is why: AlH4- is more nucleophilic than BH4-
■ That is why: SN2 reactions with R—I are faster than SN2 reactions with R-Cl
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The Effect of Conjugation on the Energy of Filled and Unfilled Frontier Orbitals

■ It is common for one molecule to be more stable than another, even though the frontier orbital 
is more reactive.

■ Pi conjugation raises the HOMO and lowers the LUMO
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Summary of FMO Trends
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