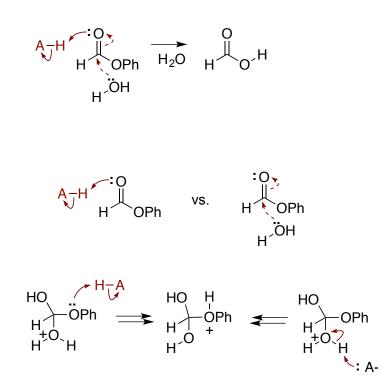
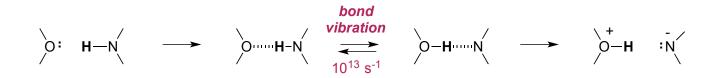
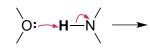

Chemistry 201: Organic Reaction Mechanisms


Topic 5: Addition to σ* Proton Transfers and Acid-Base Equilibrium

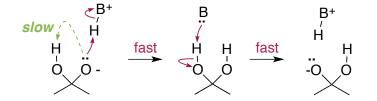

Addition to σ^{*} orbital leads to bond cleavage

Hydrogen atoms are always attached to something.

Read: Fleming 4.1-4.2 C&S 4.1.2, 4.2.1, 4.2.2 ■ What is the mechanism for this reaction?

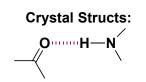


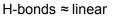
■ 3-Step Eigen mechanism: Step 1 = hydrogen bond



Eigen, M. in "Fast Reactions and Primary Processes in Chemical Kinetics" Nobel Symposium 1967, 5, 245.

Arrow-pushers: draw proton transfers as one step. $0:-H - N \longrightarrow$ (You can't push arrows with H-bonds.)




Linear proton transfers are favored. Transfer protons in 2 steps in tetrahedral intermediates.

Evidence for linear T.S. (versus bent T.S.)

- 1. H-bonds are close to linear in most crystal structures
- Largest kinetic isotope effect when proton transfer is linear

Isotope FX:

B---H---A VS. B---D---A

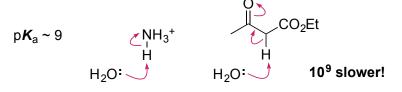
slows most when T.S. = linear

Taylor, R.; Kennard, O. "Hydrogen-bond geometry in organic crystals." Acc. Chem. Res. 1984, 17, 320.

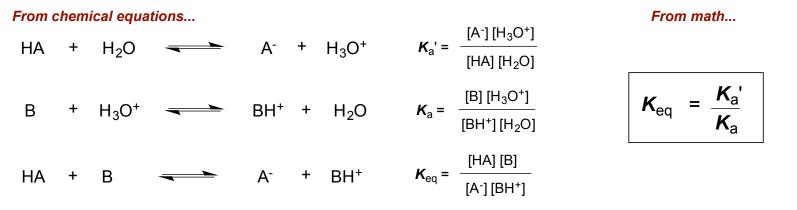
Proton Transfer - Kinetics

Look at this data	H ₂ O + H-A	$\frac{k_1}{k_1}$	→ +H ₂ O-H	
Crooks, J. E. "Proton Transfer to and From	H-A	рК _а	k ₁ (M ⁻¹ s ⁻¹)	k₋₁ (M ⁻¹ s ⁻¹)
Atoms Other Than Carbon." <i>Comprehensive Chemical Kinetics</i> 1977, 8, 197.	HF	3.2	10 ⁸	10 ¹¹
	CH ₃ CO ₂ H	4.7	10 ⁶	10 ¹¹
	H_2S	7.2	10 ⁴	10 ¹¹
	MeCOCH ₂ CO ₂ Et	9.0	10 ⁻³	6 x10 ⁷
	NH_4^+	9.3	25	~10 ¹¹
	H ₃ CNO ₂	10.2	10 ⁻⁸	6 x10 ²

Proton transfers to and from heteroatoms are usually fast

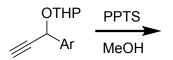

An exception in DMSO: Ritchie, C. D.; Lu, S. J. Am. Chem. Soc. 1989, 111, 8542.

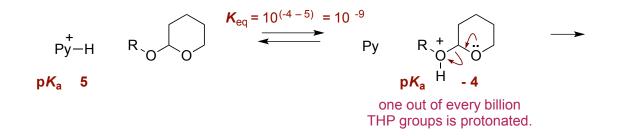
■ For N, O, S: Acids protonate bases at diffusion-controlled rate if $\Delta p K_a > 3$

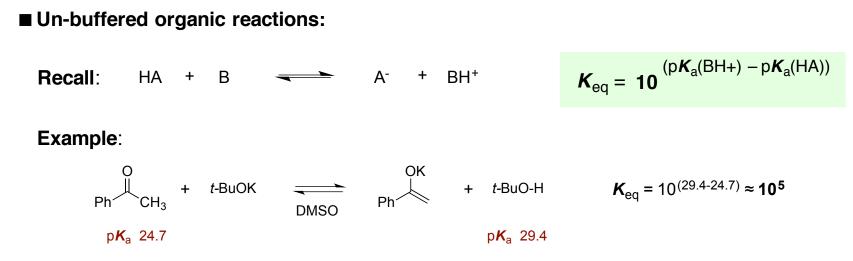

AcO:	H-OH ₂	H ₃ N	`H−NMe ₃
p K a' = 5	p K a = -1.7	p K a' = 9.3	p K a = 9.8
diffusio	n controlled	n o	t
10 ¹¹	M ⁻¹ s ⁻¹	10 ⁷ M⁻	¹ s ⁻¹

This is one of the few cases that where you can predict rate constants.

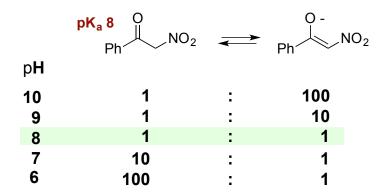
■ Proton transfers to and from carbon are usually slow; recall Eigen mechanism involves hydrogen bonding and C-H bonds usually aren't very good at hydrogen bonding.




• You can estimate K_{eq} from pK_as . pK_as are readily available because it is easy to perform titrations.


(Equilibria and kinetics of proton transfers) Fersht, A. *Enzyme Structure and Mechanism.* 2nd Ed. W. H. Freeman, 1985. Pp. 148-149.

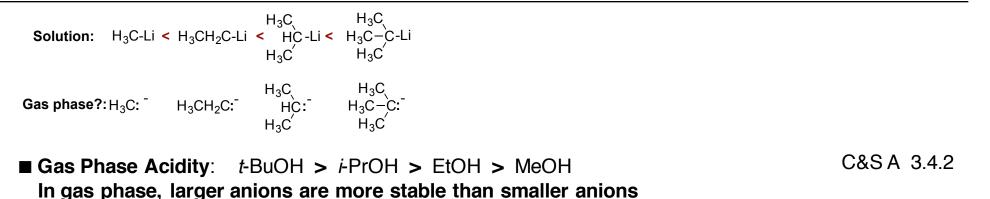
Acid-base equilibria usually precede important rate determining steps.
<u>Always</u> try to estimate ratios of relative concentrations of rxn intermediates


In organic solvents, the equation is approximate since we rarely know pK_as , but don't be afraid to approximate.

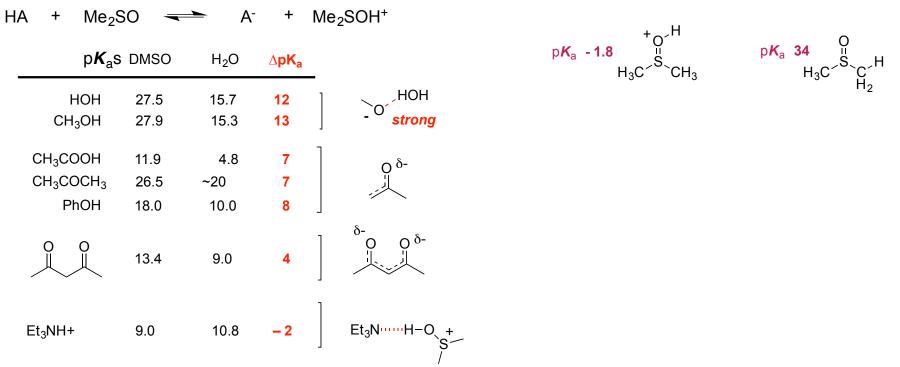
Caveat: You rarely know pK_a s in typical organic solvents.

The equation gives **useful** estimates, even when you apply *aqueous* pK_as to *organic* solvents. Don't be afraid to estimate.

■ **Buffered aqueous solution**. The most common buffered condition is the physiological pH range of 7.2-7.4 (approximately pH 7). You need to be able to estimate ratios of protonated to deprotonated species at pH 7.


When $pH = pK_a \dots$ the ratio of [HA] / [A-] = 1:1 \blacksquare p*K*_as of acids are easy to measure (by titration), there are millions of tables. Unfortunately, organic chemists are usually interested in the conjugate base (the nucleophilic form).

■ Aqueous p*K*_as you should know...


1. Electronegativity	2. Resonance	3. Hybridization
CH ₃ -CH ₃ 50		CH ₃ -CH ₃ 50
CH ₃ -NH ₂ ~ 36	H_{CH_3} 41 H_{CH_3} ~	CH ₂ =CH ₂ 41
CH ₃ -OH 16	$M_{\rm NH_2} \sim 28$ $M_{\rm NH_2} \sim 28$	- 17 CH≡CH 24
		5
5. Row	4. Charge	6. Polar
5. Row H-F 3		6. Polar HOCH ₂ OH 13.4
	$\begin{array}{c} +H_{2} \\ +N_{2} \\ +NH_{2} \end{array} \sim 11 \qquad \begin{array}{c} +H \\ -4 \\ +OH \end{array} \qquad -4$	-
H-F 3	$^+N^{\sim}$ ~11 $^+N^{\sim}$ -4	HOCH ₂ OH 13.4
H-F 3 H—CI – 8	$\begin{array}{c} +H_{2} \\ +N_{2} \\ +NH_{2} \end{array} \sim 11 \qquad \begin{array}{c} +H \\ -4 \\ +OH \end{array} \qquad -4$	HOCH ₂ OH 13.4 H ₃ CCO ₂ H 4.8

 pK_a of H₂C=CHOH = 10.5 JACS **1987**, 109, 4000. pK_a of *i*-PrCH=NHMe+ = 6.9 JACS **1970**, 92, 5194.

Solvent Effects on Acid-Base Equilibria

■ DMSO vs. water: DMSO tolerates more basic anions than water

Water is better than DMSO at stabilizing anions with localized negative charges (A-)
 DMSO is better than water at stabilizing protonated ammonium ions (BH+)

Frederick G. Bordwell Acc. Chem. Res. 1988, 21(12); 456-463.