
	

	

INF221	Project	–	Phase	II	
Architecture-Based	Development	with	Java	9	

	
	
A. Case	Study:	
In	the	first	phase	of	this	project,	you	migrated	a	Java	application	to	Java	Platform	Module	

System	(provided	by	Java	9+),	through	which	the	Java	application’s	components	and	their	
dependencies	are	explicitly	specified	in	terms	of	Java	modules	and	their	module-info	files.	
Java	modules	are	intended	to	make	it	easier	for	developers	to	improve	the	encapsulation,	
security,	and	maintainability	of	large	Java	applications.	Software	designers	and	developers	
can	achieve	strong	encapsulation	and	high	maintainability	by	modularizing	Java	applications	
which	 allows	 them	 to	 explicitly	 specify	 which	 of	 a	 Java	 module’s	 public,	 protected,	 and	
private	 are	 accessible	 or	 inaccessible	 by	 other	modules.	 It	 reduces	 the	 complexity	 of	 the	
system’s	architecture,	enhances	its	encapsulation	and	increases	its	maintainability.		
JPMS	has	added	more	refined	accessibility	control—allowing	architects	and	developers	to	
decrease	 accessibility	 to	 packages,	 reduce	 the	 points	 at	which	 a	 Java	 application	may	 be	
susceptible	to	security	attacks,	and	design	more	elegant	and	logical	architectures.	
In	the	second	phase	of	this	project,	you	need	to	take	the	Java	application	you	chose	for	the	

first	 phase	 and	 provide	 the	 scenario	 of	 a	 possible	 issue,	 bug,	 or	 vulnerability	within	 the	
application	before	migration	which	is	fixed	by	modularizing	the	application	and	specifying	
its	dependencies	and	accessibilities.	
The	scenario	could	be	of	a	maintenance	issue	regarding	the	encapsulation	of	the	modules,	

for	 instance,	 where	 a	 possible	 change	 within	 the	 system	 that	 propagates	 across	 the	
components	 introduces	 some	 errors	 or	 faults.	 Alternatively,	 the	 scenario	 could	 explain	 a	
security	issue	caused	by	the	internal	APIs	of	a	system	being	accessed	or	modified	by	other	
components.	The	detailed	description	of	the	second	phase	of	this	project	is	as	follows.	
	
• Provide	the	scenario	of	a	possible	issue	or	bug	that	may	arise	within	the	Java	

application	and	explain:	
1. The	proposed	issue,	bug,	or	vulnerability	
2. The	concrete	and	detailed	scenario	in	which	the	proposed	issue	occurs	
3. What	has	changed	within	the	Java	application	regarding	the	proposed	

scenario	after	migration	to	Java	9+	
4. How	the	change,	mentioned	in	3,	resolve	the	issue,	specified	in	1		
	

Tip:	Explore	the	issues	on	the	application’s	GitHub	repositories	to	find	the	scenario	of	an	
existing	bug	or	issue	that	is	fixed	after	your	migration.	

	
	 	



	

	

	

B. Architectural	Inconsistencies	
In	the	process	of	migrating	a	Java	application	to	Java	9+,	the	descriptive	architecture	of	

the	implemented	system	may	be	inconsistent	with	the	prescriptive	architecture	provided	
in	its	module-info	files.	Such	inconsistencies	may	arise	due	to	a	misunderstanding	of	a	
software	systems’	architectures	(e.g.	mistakenly	specifying	a	more	accessible	interface	than	
intended)	or	intentionally	for	possible	uses	of	the	application.	A	report	of	some	possible	
architectural	inconsistencies	within	the	Java	application,	which	you	migrated	in	the	
previous	section,	is	shared	with	you	through	Canvas.	Provide	short	answers	for	the	
following	questions	regarding	each	inconsistency	detected	in	your	Java	application.	(If	
there	were	no	inconsistencies	identified	in	your	application,	you	may	skip	this	part	of	the	
project.)	
	

1. Is	the	identified	inconsistency	correct?	
2. Why	is	the	excess	dependency	specified	in	the	module-info	file?	

	
	
Note	that	each	group	has	to	present	their	project,	both	phase	I	and	II	on	Dec	5th,	and	15%	of	
the	grade	for	phase	II	is	the	presentation	of	your	work.	


