
Math 220A Fall 00 D.A. Martin

Mathematial Logi and Set Theory

1 Basi set theory

Iterative onept of set.

(a) Sets are formed in stages 0; 1; : : : ; s; : : : :

(b) For eah stage s, there is a next stage s+ 1.

() There is an \absolute in�nity" of stages.

(d) V

s

= the olletion of all sets formed before stage s.

(e) V

0

= ; = the empty olletion.

(f) V

s+1

= the olletion of (a) all sets belonging to V

s

and (b) all subol-

letions of V

s

not previously formed into sets.

Remarks. (1) A set is formed after its members. (2) V

s

itself is formed

as a set at stage s.

Formal language for talking about sets.

Symbols:

v

0

; v

1

; v

2

; : : : variables

= meaning \is idential with"

2 meaning \is a member of"

: meaning \not"

^ meaning \and"

9 meaning \there is a"

(

)

Formulas (indutive de�nition):

(i) If x and y are variables, then x = y and x 2 y are (atomi) formulas.

(ii) If x is a variable and ' and  are formulas, then :', (' ^  ), and

(9x)' are formulas .

(iii) Nothing is a formula unless (i) and (ii) require it to be.
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Free ourenes of a variable in a formula:

(i) All ourrenes of variables in atomi formulas x 2 y and x = y are

free.

(ii) An ourrene of x in :' is free in just in ase the orresponding

ourrene of x in ' is free.

(iii) An ourrene of x in (' ^  ) is free in just in ase the orresponding

ourrene of x in ' or in  is free.

(iv) An ourrene of x in (9y)' is free in just in ase x is not y and the

orresponding ourrene of x in ' is free.

Non-free ourrenes of a variable in a formula are alled bound ourrenes.

We write \'(x

1

; : : : ; x

n

)" for \'" to indiate that all variables ourring free

in ' are among the (distint, in the default ase) variables x

1

; : : : ; x

n

.

Abbreviations:

(' _  ) for :(:' ^ : )

('!  ) for (:' _  )

('$  ) for (('!  ) ^ ( ! '))

(8x) for :(9x):

x 6= y for :x = y

x =2 y for :x 2 y

We often omit parentheses, and we often write \x," \y," et., when when

we should be writing \v" with subsripts.

The Zermelo{Fraenkel (ZFC) Axioms. Below we list the formal ZFC

axioms. Following eah axiom, we give in parentheses an informal version

of it. Our oÆial axioms are the formal ones.

For all the axioms other those of the Comprehension and Replaement

Shema, let us use the following sheme of \abbreviation":

x for v

1

y for v

2

z for v

3

u for v

4

w for v

5

y

1

for v

6

y

2

for v

7

For the two shemata, the variables are arbitrary. I.e., there is an in-

stane of Comprehension for eah formula ' and sequene x; y; z; w

1

; : : : ; w

n

of distint variables that ontains all variables ourring free in ' plus the

variable y that does not so our.
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Axiom of Set Existene:

(9x)x = x

(There is a set.)

Axiom of Extensionality:

(8x)(8y) ((8z)(z 2 x$ z 2 y)! x = y)

(Sets that have the same members are idential.)

Axiom of Foundation:

(8x) ((9y) y 2 x! (9y)(y 2 x ^ (8z)(z =2 x _ z =2 y)))

(Every non-empty set x has a member that has no members in ommon

with x.)

Axiom Shema of Comprehension: For eah formula '(x; z; w

1

; : : : ; w

n

),

(8w

1

) � � � (8w

n

)(8z)(9y)(8x) (x 2 y $ (x 2 z ^ '))

(For any set z and any property P , there is a set whose members are those

members of z that have property P .)

Axiom of Pairing:

(8x)(8y)(9z)(x 2 z ^ y 2 z)

(For any sets x and y, there is a set to whih both x and y belong, i.e., of

whih they are both members.)

Axiom of Union:

(8x)(9y)(8z)(8w) ((w 2 z ^ z 2 x)! w 2 y)

(For any set x, there is a set to whih all members of members of x belong.)

The axioms of Pairing, Union, and Comprehension give us some opera-

tions on sets. For any x and y, fx; yg is the set whose members are exatly

x and y. (It exists by Pairing and Comprehension.) Let fx j '(x; : : :)g be

the set of all x suh that '(x; : : :) holds, if this is a set. For any set x,

U(x) = fz j (9y)(z 2 y ^ y 2 x)g:
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(U(x) exists by Union and Comprehension.) For any sets x and y, x[y is the

set U(fx; yg). For any sets x

1

; : : : ; x

n

, fx

1

; : : : ; x

n

g is the set whose members

are exatly x

1

; : : : ; x

n

. (To see that this set exists, note that fxg = fx; xg for

any set x and that fx

1

; : : : ; x

m+1

g = fx

1

; : : : ; x

m

g[fx

m+1

g for 0 � m < n.)

In the statement of the next axiom, \(9!y)" is short for the obvious way

of expressing \there is exatly one y."

Axiom Shema of Replaement: For eah formula '(x; y; z; w

1

; : : : ; w

n

),

(8w

1

) � � � (8w

n

)(8z) ((8x)(x 2 z ! (9!y)')

! (9u)(8x)(x 2 z ! (9y)(y 2 u ^ ')))

(For any set z and any relation R, if eah member x of z bears R to at

exatly one set y

x

, then there is a set to whih all these y

x

belong.)

Remark. by Comprehension, Replaement an be strengthened to give

(8w

1

) � � � (8w

n

)(8z) ((8x)(x 2 z ! (9!y)')

! (9u)(8y)(y 2 u$ (9x)(x 2 z ^ '))) :

De�ne S(x) = x [ fxg. Note that ; exists by Set Existene and Com-

prehension.

Axiom of In�nity:

(9x) (; 2 x ^ (8y)(y 2 x! S(y) 2 x))

(There is a set that has the empty set as a member and is losed under the

operation S.)

Let \z � x" abbreviate \(8w)(w 2 z ! w 2 x)."

Axiom of Power Set.

(8x)(9y)(8z)(z � x! z 2 y)

(For any set x, there is a set to whih all subsets of x belong.)

Let P(x) = fz j z � xg. (It exists by Power Set and Comprehension.)

Let x \ y = fz j z 2 x ^ z 2 yg. (It exists by Comprehension.)
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Axiom of Choie:

(8x) ((8y

1

)(8y

2

) ((y

1

2 x ^ y

2

2 x)! (y

1

6= ; ^ (y

1

= y

2

_ y

1

\ y

2

= ;)))

! (9z)(8y)(y 2 x! (9!w)w 2 y \ z)))

(If x is a set of non-empty sets no two of whih have any members in ommon,

then there is a set that has exatly on member in ommon with eah member

of x.)

Remark. For all the axioms exept Comprehension and Replaement, the

formal and informal versions are equivalent. But the formal Comprehension

and Replaement Shemata are prima faie weaker than the informal ver-

sions. The formal shemata apply, not to arbitrary properties and relations,

but only to properties and relations haraterizable by formulas of the for-

mal language. (Warning: We shall later use the word \relation" in a preise

tehnial sense quite di�erent from the intuitive way we used the word in

stating the informal version of Replaement.)

Justi�ations of the axioms. The ZFC axioms are supposed to be

true of the iterative onept of set. Following is an axiom-by-axiom attempt

to explain why.

Set Existene. ; belongs to V

1

.

Extensionality. It follows from the notion of identity for olletions.

Foundation. Assume x 6= ;. Let w be the olletion of all sets formed

before any member of x is formed. Some member of x is formed at some

stage s. Sine w is a subolletion of V

s

, lause (f) of the iterative onept

implies that w is formed as a set at some stage s

1

no later than s. No y 2 x

an be formed at a stage s

2

before s

1

, for then w would be a subolletion

of V

s

2

and so would be formed at or before s

2

. If no y 2 x were formed at

s

1

, then V

s

1

+1

would be inluded in w, and so w would belong to itself, an

impossibility. Any y 2 x formed at s

1

has the right properties.

Comprehension. The desired y is a subolletion of z and so of V

s

, where

z is formed at s.

Pairing. If x and y are formed at or before s, then they belong to V

s+1

,

whih therefore works as z.

Union. If x is formed at s, then all members of x, and so all members

of members of x, belong to V

s

. Hene V

s

works as y.

Replaement. For eah x 2 z, let s

x

be the stage at whih the unique y

suh that '(x; y; z; w

1

; : : : ; w

n

) is formed. The olletion of all these s

x

is no
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larger than the set z, so \absolute in�nity" demands that there be a stage

s later than all the s

x

. Then V

s

works as u.

In�nity. By absolute in�nity, there is an in�nite stage s. Let x be the

olletion of all y in V

s

that are formed at �nite stages. Then x has the

required properties and is formed at or before s.

Power Set. If x is formed at s and if z � x, then z � V

s

and so z 2 V

s+1

.

Thus V

s+1

works for y.

Choie. If x is formed at s, then we are looking for a z that might as

well be a subolletion of U(x) � V

s

. What we have to onvine ourselves

is that suh a subolletion exists.

The ordered pair hx; yi of sets x and y is ffxg; fx; ygg. Note that

hx; yi = hz; wi $ (x = z ^ y = w):

Exerise 1.1. Write a formula of the formal language expressing the state-

ment that w = hx; yi.

The Cartesian produt u� v of sets u and v is fhx; yi j x 2 u ^ y 2 vg.

Theorem 1.1. u� v always exists.

Proof 1. Let x 2 u . Then (8y2v)(9!w)w = hx; yi. Here, and later, we use

obvious abbreviations, suh as \(8y 2 v) : : : ;" without expliit mention. By

Replaement and Comprehension, let z

x

= fw j (9y 2 v)w = hx; yig. Then

(8x 2 u)(9!z) z = z

x

. (Note that there is a formula  (x; z; u; v) expressing

the statement that z = z

x

.) By Replaement and Comprehension, let q =

fz

x

j x 2 ug. The Cartesian produt of u and v is U(q). �

Proof 2. P(P(u [ v)) exists by Power Set and Comprehension. If x 2 u

and y 2 v, then hx; yi 2 P(P(u [ v)). Thus u� v exists by Comprehension.

�

Remark. Proof 1 used Replaement but not Power Set. Proof 2 used

Power Set but not Replaement.

A relation is a set of ordered pairs. A funtion is a relation f suh that

(8x)(8y

1

)(8y

2

)((hx; y

1

i 2 f ^ hx; y

2

i 2 f)! y

1

= y

2

):
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The de�nitions of a one-one funtion, the domain of a funtion, and the

range of a funtion are the obvious ones. The notation f : x! y means, as

usual, that f is a funtion whose domain is x and whose range is � y.

A set r is a linear ordering of a set x if r is a relation in x (i.e., r �

x� x) and r linearly orders x in the usual strit sense (i.e., we require that

hy; yi =2 r).

A relation r is wellfounded if

(8x)(x 6= ; ! (9y 2 x)(8z 2 x) hz; yi =2 r):

Example. Let u be a set. Let

2�u = fhz; yi 2 u� u j z 2 yg:

The Axiom of Foundation says that 2�u is wellfounded for every u.

We say that r is a wellordering of x if r is a linear ordering of x and r

is wellfounded. We say that r wellorders x if r is a relation and r \ (x� x)

is a wellordering of x.

A set x is transitive if U(x) � x.

An ordinal number is a set x suh that

(1) x is transitive;

(2) 2�x wellorders x.

Remark. Foundation implies that (2) is equivalent with the assertion

that 2�x linearly orders x.

Exerise 1.2. Let x and y be ordinal numbers. Show, without using Foun-

dation, that

x 2 y _ y 2 x _ x = y:

Hint. Let z = x \ y. Show that z is an ordinal number. Next show

that z 2 x or z = x and also that z 2 y or z = y. For the �rst of

these, assume that z 6= x. Sine z � x, Extensionality implies that the set

xnz = fw2x j w =2 zg is non-empty and so has an 2-least member u. Prove

that z and u have the same members.

The set ! is de�ned as follows:

x 2 ! $ (8y)((; 2 y ^ (8z)(z 2 y ! S(z) 2 y)) ! x 2 y):
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! exists by In�nity and Comprehension. Note that

; 2 ! ^ (8z)(z 2 ! ! S(z) 2 !):

The members of ! are alled natural numbers.

Remark. In preparation for metamathematial results in 220C, we shall

make note of all uses of Foundation or Choie in proving theorems, and we

shall avoid using these axioms unneessarily. In partiular, we avoid using

Foundation in the following proofs, although using it would simplify matters.

Theorem 1.2. ! is a set of ordinal numbers; i.e., every natural number is

an ordinal number.

Proof. Let y = fn 2 ! j n is an ordinal numberg; y exists by Comprehen-

sion. It is easy to see that ; 2 y. Let n 2 !. We assume that n 2 y and

show that S(n) 2 y. This will prove that ! � y, and so that y = !.

By the de�nition of S(n),

(8u)(u 2 S(n)$ (u 2 n _ u = n)):

Hene, for any v, v 2 U(S(n)), (v 2 U(n) _v 2 n)) (sine n is transitive)

v 2 n ) v 2 S(n). Hene S(n) is transitive.

n =2 n, sine otherwise 2�n is not wellfounded, indeed is not even a linear

ordering of n. Moreover n does not belong to any u 2 n, sine otherwise

transitivity gives n 2 n. Thus the relation 2 �S(n) is just the wellordering

2 �n with n stuk on at the end. It is easy to prove that 2 �S(n) is a

wellordering, using the fat that 2�n is wellordering. �

Remark. The method used to prove the last theorem is mathematial

indution. To prove that every natural number has a property (suh as being

an ordinal number), we prove that ; has the property and that if n 2 ! has

the property then so does S(n). By the de�nition of !, this implies that

the set of all natural numbers with the property is all of !, i.e., that every

natural number has the property.

Theorem 1.3. ! is an ordinal number.

Proof. Let y = fn 2 ! j n � !g. To prove that ! is transitive, we must

show that y = !. We use mathematial indution. Trivially ; 2 y. Suppose

n 2 y. Then u 2 S(n) , (u 2 n _ u = n) ) u 2 !. Hene S(n) � !. But

also S(n) 2 !, so S(n) 2 y.
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Theorem 1.2 and its proof show that 2�! is irreexive (n =2 n for n 2 !)

and asymmetri (m 2 n ! n =2 m for m and n elements of !). The fat

that every member of ! is transitive implies diretly that 2�! is a transitive

relation (k 2 m 2 n! k 2 n for for k, m, and n elements of !). Exerise 1.2

and Theorem 1.2 imply that 2�! is onneted (m 2 n_ n 2m_m = n for

m and n elements of !). Thus 2�! is a linear ordering of !.

To show that 2�! is wellfounded, we prove that eah non-empty subset

of ! has a (2 �!)-least element. Let v � ! with v 6= ;. Let n 2 v. If

n \ v = ;, then n is the (2 �!)-least element of v. Suppose then that

n \ v 6= ;. By Theorem 1.2, the set n \ v has an (2 �n)-least element m.

The transitivity of n implies that m is also the (2�!)-least element of v. �

Sometimes we shall want to assert theorem shemata rather than simple

theorems: we shall want to assert that, for every formula ', some sentene

derived from ' is a theorem. A onvenient way to do this is to speak of

lasses. We shall speak of fx j '(x; : : :)g as a lass whether or not there is

a set fx j '(x; : : :)g. When the set exists, we identify the set and the lass.

When the set does not exist, we all fx j '(x; : : :)g a proper lass. Lower

ase letters will be used only for sets. Upper ase letters will be used mostly

for lasses.

Terms like relation, funtion, domain, wellfounded, et. are de�ned for

lasses just as they are for sets. In lass language, the Comprehension

Shema says that the intersetion of a lass and a set is a set.

Let V = fx j x = xg. V is a proper lass, sine otherwise Comprehension

would yield the self-ontraditory Russell set fx j x =2 xg.

An example of a proper lass relation is 2= fhx; yi j x 2 yg. In the hint

to Exerise 1.2, we wrote \2" instead of 2 �x and 2 � y. Retroatively this

notation is now explained.

Exerise 1.3. Prove that 2 is a proper lass.

If F is a lass funtion and A is a lass, then F �A = fhx; yi2F j x 2 Ag.

Theorem 1.4 (Shema of De�nition by Reursion). Let F : V ! V .

There is a unique (set) g : ! ! V suh that

(8n 2 !) g(n) = F (g � n):

Proof. We �rst show that

(8n 2 !)(9!g)(g : n! V ^ (8m 2 n) g(m) = F (g �m)):
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For n = ;, the empty g (i.e., ;) works. Suppose g : n! V is the unique fun-

tion with the property (8m 2 n) g(m) = F (g �m). Let g

0

= g [ fhn; F (g)ig.

Clearly g

0

: S(n)! V and (8m 2 S(n)) g

0

(m) = F (g

0

�m). If h : S(n)! V

satis�es (8m 2 S(n))h(m) = F (h � m), then h � n = g by the uniqueness

property of g. But then h(n) = F (h � n) = F (g) = g

0

(n), and so h = g

0

.

Our onlusion follows by indution.

By Replaement and Comprehension, let

z = fy j (9n 2 !)(y : n! V ^ (8m 2 n) y(m) = F (y �m))g:

Suppose y

1

and y

2

belong to z. Let y

1

: n

1

! V and y

2

: n

2

! V .

If n

1

= n

2

then the uniqueness part of the assertion proved in the last

paragraph gives y

1

= y

2

. If n

1

2 n

2

then uniqueness gives y

1

= y

2

� n

1

; if

n

2

2 n

1

then uniqueness gives y

2

= y

1

� n

1

. Thus y

1

� y

2

or y

2

� y

1

. Let

g = U(z). It is easy to see that g is a funtion and that domain (g) � !.

To see that ! � domain (g), use the existene part of the assertion of the

last paragraph to get, for eah n 2 !, a y 2 z with y : S(n) ! V . It

is easy to see that (8n 2 !) g(n) = F (g � n). For uniqueness, assume that

(8n 2 !)h(n) = F (h � n). For eah n 2 !, g � S(n) = h � S(n), and so

g(n) = h(n). �

Remark. We needed Replaement only to get that g is a set (rather than

a proper lass).

Theorem 1.5. (8x)(9y)(y is transitive ^ x � y).

Proof. De�ne F : V ! V by

F (z) = u $

�

z is not a funtion and u = ;

or z is a funtion and u = x [ U(U(range (z))):

Let g be given by Theorem 1.4. Let y = U(range (g)). Suppose v 2 y. Then

v 2 g(n) for some n 2 !. Hene v 2 U(range (g � S(n))). Therefore

v � U(U(range (g � S(n)))) � F (g � S(n)) = g(S(n)) � y:

Sine x = g(0), it follows that x � y. �

For any lass A, let

\

A = fz j (8y 2A) z 2 yg:
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Comprehension gives that

T

A is a set if A is non-empty. Note that ! =

T

fy j ; 2 y ^ (8z 2 y)S(z) 2 yg. The operation dual, in a natural sense, to

T

is the operation U . We shall hene sometimes write

S

x for U(x).

For any set x let

trl (x) =

\

fy j y is transitive ^ x � yg:

Theorem 1.5 implies that trl (x), the transitive losure of x, is always a set.

Theorem 1.6. Let

ON = fx j x is an ordinal numberg:

The (lass) relation 2 �ON is a wellordering of ON. Indeed 2 �ON is well-

founded in the strong sense that every non-empty sublass of ON has an

2-minimal element. Furthermore ON is transitive.

Proof. The proofs that 2 �ON is irreexive, asymmetri, transitive, and

onneted are just like the orresponding parts of the proof of of Theo-

rem 1.3.

Suppose that A � ON is a non-empty lass. Let x 2 A. If x \ A = ;,

then we are done. Otherwise apply the fat that x 2 ON to x \ A. This

gives a y 2 x\A with y \x\A = ;. If z 2 y \A then z 2 y 2 x 2 ON, and

so z 2 x.

To prove that ON is transitive, suppose x 2 y 2 ON. By the transitivity

of y, we have that x � y. The fat that 2 �x is a wellordering thus follows

easily from the fat that 2� y is a wellordering. To show that x is transitive,

and so that x is an ordinal number, let z 2 w 2 x. We have that w, and

hene z, belongs to y. Sine 2� y is a transitive relation, we get that z 2 x.

�

When we talk of ; in its role as an ordinal number, we shall all it 0.

We denote 2 �ON by <. For ordinals � and �, we write the natural � < �

to mean that h�; �i 2 <, i.e., that � 2 �.

Exerise 1.4. Show, for any ordinal number �, that S(�) is the immediate

suessor of � with respet to <.

Exerise 1.5. Let x be any set of ordinal numbers. Prove that U(x) is an

ordinal number.
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Theorem 1.6 makes possible proof by trans�nite indution. If we want

to show that all ordinal numbers have some property expressed by a formula

', it is enough to show that, for every ordinal number �,

(8� < �)'(�; : : :) ! '(�; : : :):

For then Theorem 1.6 implies that the lass of � 2 ON suh that :'(�; : : :)

annot be non-empty. The following theorem gives us a useful division into

ases when we are using trans�nite indution.

Theorem 1.7. If � is an ordinal number, then one of the following holds:

(1) (9� < �)� = S(�);

(2) � = U(�).

Proof. Let � be an ordinal number, and assume that (1) fails. Sine

U(�) � � for any ordinal �, we need only show that � � U(�). Let � 2 �.

By Exerise 1.4, S(�) is an ordinal number � �. Sine (1) fails, we must

have S(�) < �. But then � 2 S(�) 2 �, so � 2 U(�). �

Ordinals satisfying (1) are alled suessor ordinals. Non-zero ordinals

satisfying (2) are alled limit ordinals.

Theorem 1.8 (Shema of De�nition by Trans�nite Reursion). Let

F : V ! V . There is a (unique) G : ON! V suh that

(8� 2ON)G(�) = F (G � �):

Proof. We �rst show that

(8� 2ON)(9!g)(g : �! V ^ (8� < �) g(�) = F (G � �)):

We argue by trans�nite indution. Let � be an ordinal and assume that

the statement holds for all smaller ordinals. The ase � = 0 is trivial. If

� = S(�) for some ordinal �, then we argue as in the proof of Theorem 1.4.

If � is a limit ordinal, then we use Replaement as for the speial ase � = !

in the last part of the proof of Theorem 1.4 to get a z that is the set of all

g

0

that work for ordinals � < �. We let g = U(z).

Let

G = U(fg j (9� 2ON)(g : �! V ^ (8� < �) g(�) = F (g � �))g:

It is easy to hek that G, and only G, has the required property. �

12



Remark. Note that the proof gives an expliit de�nition of G from a

de�nition of F . Thus the theorem really is a theorem shema, and the

quanti�ation over proper lasses in its statement ould be avoided.

Theorem 1.9. There is a unique V : ON ! V suh that (where we write

V

�

for V(�))

(a) V

0

= ;;

(b) V

S(�)

= P(V

�

);

() V

�

= U(fV

�

j � < �g) if � is a limit ordinal.

Proof. Let F (x) = ; if x = ; or x is not a funtion whose domain is an

ordinal number. If � an ordinal and x : S(�)! V , then let F (x) = P(x(�)).

If � is a limit ordinal and x : �! V , let F (x) = U(range (x)). The desired

funtion is given by Theorem 1.8. �

Exerise 1.6. Show that � < � ! V

�

� V

�

.

Theorem 1.10. (Uses Foundation) (8x)(9�)x 2 V

�

.

Proof. Suppose x belongs to no V

�

. Let

z = fu 2 trl (x) [ fxg j (8� 2ON)u =2 V

�

g:

Sine z 6= ;, Foundation gives a u 2 z suh that u \ z = ;. Every member

of u belongs to trl (x), and so every member of u belongs to some V

�

.

For y 2 u, let �

y

be the least � suh that y 2 V

�

. By Replaement and

Comprehension, let � = U(f�

y

j y 2 ug). By Exerise 1.5, � 2 ON. By

Exerise 1.6, u � V

�

. This gives the ontradition that u 2 V

S(�)

. �

By tran�nite reursion, one an de�ne addition, multipliation, and ex-

ponentiation of ordinal numbers as follows:

�+ 0 = � ;

�+ S(�) = S(�+ �) ;

�+ � = U(f� + � j � < �g) if � is a limit ordinal:

� � 0 = 0 ;

� � S(�) = � � � + � ;

�+ � = U(f� � � j � < �g) if � is a limit ordinal:

13



�

0

= 1 (= S(0)) ;

�

S(�)

= �

�

� � ;

�

�

= U(f�

�

j � < �g) if � is a limit ordinal:

The way this is done is as follows: Consider the de�nition of +. We an

de�ne a funtion F : ON � V ! V , so that, e.g., if � and � are ordinals

and x : S(�) ! V , then F (h�; xi) = S(x(�)). If we de�ne F

�

: V ! V

by F

�

(x) = F (h�; xi), then Theorem 1.8 applied to F

�

gives a funtion

+

�

: ON! ON. Sine the proof of Theorem 1.8 gives us a de�nition of the

+

�

from the parameter �, we get an expliit de�nition of +.

Note that �+ 1 = S(�) for every ordinal �. We shall often write �+ 1

instead of S(�). For the rest of this setion, however, we shall ontinue to

write S(�) in order to avoid onfusion with the di�erent kind of addition

that we shall shortly de�ne.

We now turn to the subjet of ardinal numbers. If x and y are sets, let

us say that x � y if there is a one-one f : x ! y. By x � y we mean that

there is a one-one onto f : x! y.

Theorem 1.11 (Shr�oder{Bernstein Theorem). If x � y and y � x

then x � y.

Proof. Let f : x! y and g : y ! x be one-one. Using Theorem 1.4, de�ne

h : x� ! ! x by

h(z; 0) = z ;

h(z;S(n)) = g(f(h(z; n))) :

Let

u = fz 2 x j (9v 2 x)(9n 2 !)(h(v; n) = z ^ v =2 range (g))g:

Note that if z =2 u then z 2 range (g). Let k : x! y be given by

k(z) =

�

f(z) if z 2 u;

g

�1

(z) if z =2 u:

(If r is any relation, r

�1

= fhw;w

0

i j hw

0

; wi 2 rg. Sine g is a one-one

funtion, we have that g

�1

: range (g)! y.)

14



To see that k is one-one, assume that k(z

1

) = k(z

2

). Exhanging z

1

and

z

2

if neessary, we may assume that either z

1

= z

2

or else z

1

2 u and z

2

=2 u.

Assume for a ontradition that the latter is the ase. Then f(z

1

) = g

�1

(z

2

),

and so g(f(z

1

)) = z

2

. Let v and n witness that z

1

2 u. Sine h(v; n) = z

1

,

we get that g(f(h(v; n))) = g(f(z

1

)) = z

2

. This means that h(v;S(n)) = z

2

,

ontraditing the fat that z

2

=2 u.

Assume that z 2 y n range (k). Then g(z) 2 u, sine otherwise k(g(z)) =

g

�1

(g(z)) = z. Let v and n witness that g(z) 2 u. Obviously n 6= 0. Thus

n = S(m) for somem. We have then that g(z) = h(v;S(m)) = g(f(h(v;m)).

Hene z = f(h(v;m)). But h(v;m) 2 u, and so we get the ontradition

that

k(h(v;m)) = f(h(v;m)) = z:

�

A ardinal number is an ordinal number � suh that (8� < �)� 6� �.

Theorem 1.12. Every natural number is a ardinal number. ! is a ardinal

number.

Proof. For the �rst assertion, we show that

(�) (8n 2 !)(8f)((f : n! n ^ f one-one) ! f onto).

The ase n = 0 is trivial. Let f : S(n) ! S(n) be one-one. We must have

that n 2 range (f), sine otherwise f � n : n! n is not onto. Let a = f(n)

and let f(b) = n. De�ne g : n! n by

g(m) =

�

f(m) if m 6= b;

a if m = b.

By the indution hypothesis, range (g) = n. Thus

range (f) = fng [ range (g) = S(n):

For the seond assertion, note that if n 2 ! and f : ! ! n is one-one,

then f � S(n) : S(n)! n ontradits (�). �

Theorem 1.13. Let � 2 ON n !. Then S(�) is not a ardinal number.

15



Proof. De�ne f : S(�)! � by

f(�) =

8

<

:

S(n) if n < !;

� if ! � � < �;

0 if � = �:

�

Let ard (x) (= jxj) be the least ardinal number � suh that x � �, if

it exists. Note that ard (�) exists for all ordinals �. The following theorem

implies that that ard (x) exists if x an be wellordered, i.e., if there is a

wellordering of x.

Theorem 1.14. Let r be a wellordering of x. Then there is an ordinal

number � suh that hx; ri is isomorphi to h�;2��i, i.e., there is a one-one

onto f : �! x suh that

� <  < �! hf(�); f()i 2 r:

Furthermore, both � and the isomorphism f are unique.

Proof. Note that � and f must satisfy

(8� < �) f(�) is the r-least element of x n range (f � �).

De�ne F : V ! V as follows. Let F (z) be the r-least element of xnrange (z)

if (9� 2ON)( z : � ! x ^ range (z) 6= x), and let F (z) = ; otherwise. Let

G be given by Theorem 1.8.

For eah ordinal �, if range (G � �) ( x then G(�) 2 x n range (G � �).

Suppose that range (G � �) ( x for every ordinal �. Then G : ON ! x

and G is one-one. By Replaement (and Comprehension), we get that ON

is a set. By Theorem 1.6, this implies that ON 2 ON, whih ontradits

Theorem 1.6.

Thus there is a � 2 ON suh that range (G��) is not a proper subset of x.

Let � be the least suh ordinal. If � is a limit ordinal, then range (G��) � x

and so range (G � �) = x. This follows also if � = S(�), sine G(�) 2 x. In

both ases is it easy to see that G � � is the desired isomorphism. �

For ardinal numbers � and Æ, we de�ne the ardinal sum �+ Æ of � and

Æ by

�+ Æ = ard (f0g � �) [ (f1g � Æ));

16



if it exists. Our notation is ambiguous; we use the same symbol \+" both

for the ardinal sum and for the ordinal sum, i.e., for the + operation on

ordinal numbers de�ned on page 13. For the rest of this setion, we shall

avoid onfusion by writing �+

ON

� for the ordinal sum of � and �.

Theorem 1.15. (a) For all ardinal numbers � and Æ, �+ Æ exists.

(b) For m and n 2 !, m+ n = m+

ON

n 2 !.

() If either of � and Æ does not belong to !, then � + Æ = maxf�; Æg

(= U(f�; Æg)).

Proof. (a) De�ne an ordering r

�;Æ

of (f0g��) [ (f1g�Æ) by plaing hi; �i

before hj; �i if and only if

� < � _ (� = � ^ i < j):

It is easy to show that r

�;Æ

is a wellordering. Let f

�;Æ

: �

�;Æ

! (f0g � �) [

(f1g � Æ) be given by Theorem 1.14. Then �+ Æ = ard (�

�;Æ

).

(b) For �xed m 2 !, we prove by indution on n that m+

ON

n 2 ! and

m+

ON

n � (f0g�m) [ (f1g�n). By de�nition, m+

ON

0 = m 2 !, and we

an de�ne a one-one onto f : m! f0g�m by setting f(k) = h0; ki for eah

k < m. Assume that m +

ON

n 2 ! and that f : m +

ON

n ! (f0g �m) [

(f1g � n) is one-one and onto. Then m+

ON

S(n) = S(m+

ON

n) 2 !. Let

f

0

= f [ fhm+

ON

n; h1; niig:

It is easy to see that f

0

: m+

ON

S(n)! (f0g�m) [ (f1g�S(n)) is one-one

and onto.

() It is enough to prove that �+� = � for every ardinal number � =2 !.

Assume that this is false, and let � be the <-least ounterexample. Note

that r

�;�

is a wellordering of 2� �, where 2 = f0; 1g. We have that

� < �+ � � �

�;�

:

Let f

�;�

(�) = hi; �i. Thus

� � fhj; i j hj; i r

�;�

hi; �ig � (2� �) [ fh0; �ig � S(ard (�) + ard (�)):

If � 2 !, then we would also have � 2 !. Hene the minimality of � gives

that � � S(ard (�)), and Theorems 1.11 and 1.13 then give the ontradi-

tion that � � ard (�). �

For ardinal numbers � and Æ, we de�ne the ardinal produt � � Æ of �

and Æ by

� � Æ = ard (�� Æ);
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if it exists. Our notation is one more ambiguous, so for the rest of this

setion we shall write �

ON

for the ordinal produt de�ned on page 13.

Theorem 1.16. (a) For all ardinal numbers � and Æ, � � Æ exists.

(b) For m and n 2 !, m � n = m �

ON

n 2 !.

() If either of � and Æ does not belong to ! and neither of � and Æ is 0,

then � � Æ = maxf�; Æg.

Exerise 1.7. Prove Theorem 1.16.

Hint: (a) De�ne an ordering s

�;Æ

of �� Æ as follows:

h�; �i s

�;Æ

h�

0

; �

0

i $

8

<

:

maxf�; �g < maxf�

0

; �

0

g _

maxf�; �g = maxf�

0

; �

0

g ^ � < �

0

_

maxf�; �g = maxf�

0

; �

0

g ^ � = �

0

^ � < �

0

:

Show that s

�;Æ

is a wellordering. Let f

�

�;Æ

: �

�

�;Æ

! � � Æ be given by

Theorem 1.14. Then � � Æ = ard (�

�

�;Æ

).

(b) For �xed m 2 !, prove by indution that, for all n 2 !, m �

ON

n 2 !

and m �

ON

n � m� n. The ase n = 0 is trivial. Assume that m �

ON

n 2 !

and that f : m �

ON

n ! m � n is one-one and onto. Then m �

ON

S(n) =

m �

ON

n+

ON

m 2 !. Let

f

0

= f [ fhm �

ON

n+ k; hk; nii j k < mg:

Show that f

0

: m �

ON

S(n)! m� S(n) is one-one and onto.

() It is enough to prove that � � � = � for every ardinal number � =2 !.

Assume that this is false, and let � be the <-least ounterexample. Let

f

�

�;�

: �

�

�;�

! �� � be de�ned as in the hint for part (a). Then

� < � � � � �

�

�;�

:

Let h�; �i = f

�

�;�

(�). Let � = maxf�; �g. Use the de�nition of s

�;�

, the

minimality of �, and Theorem 1.15 to dedue the ontradition that � �

ard (�) � � < �.

For sets x and y, let

x

y = ff j f : x ! yg. (Note that

x

y is ontained

in the set P(x � y).) Sine we to not have a onvenient speial notation

for the ordinal exponentiaton de�ned on page 14, we defer de�ning ardinal

exponentiation until after the next theorem, whih onerns ordinal expo-

nentiation.
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Theorem 1.17. For m and n 2 !,

m

n � n

m

2 !, where n

m

is as de�ned

on page 14.

Proof. Fix n 2 !. For the ase m = 0, note that

0

n = f;g = 1 = n

0

.

Assume that n

m

2 ! and that n

m

�

m

n. Then n

S(m)

= n

m

�

ON

n 2 !.

Moreover

n

m

�

ON

n = n

m

� n � n

m

� n �

m

n� n �

S(m)

n:

(For the last �, de�ne a one-one onto f by setting f(hg; ki) = g [ fhm; kig

for g : m! n and k < n.) �

We now de�ne ardinal exponentiation by setting �

�

= ard (

�

�), if it

exists, for ardinal numbers � and �. We shall make no more use of ordinal

exponentiation in this setion.

Theorem 1.18. If 0 6= n 2 ! and � =2 ! is a ardinal number, then �

n

= �.

Proof. Fix a ardinal number � =2 !. For n 2 !, de�ne f

n

:

S(n)

�!

n

���

by setting f

n

(g) = hg � n; g(n)i. The funtions f

n

are one-one and onto.

Clearly

1

� � �. Assume that n > 0 and that

n

� � �. Then

S(n)

� �

n

�� � � �� � � �. �

For ordinal numbers � and sets y, let

<�

y = ff j (9� < �) f : � ! yg.

For ardinal numbers � and �, let �

<�

= ard (

<�

�), if it exists.

Theorem 1.19. If � =2 ! is a ardinal number, then �

<!

= �.

Proof. The theorem is an easy onsequene of Theorem 1.18 and the Axiom

of Choie, but we wish to avoid the latter. Let f

n

be as in the proof of

Theorem 1.18. Let h : �� �! � be one-one and onto.

De�ne g

n

:

S(n)

� ! � and g

�

n

:

S(n)

� � � ! � � � simultaneously by

reursion as follows. Let g

0

be given by h. Given g

n

, let

g

�

n

(hq; �i) = hg

n

(q); �i:

Now let

g

S(n)

= h Æ g

�

n

Æ f

S(n)

;

where Æ means omposition. (It is easy to justify this method of de�nition

via Theorem 1.4.) By indution we see that eah g

n

is one-one and onto.

Next de�ne a one-one p : ! � � !

<!

� by setting p(n; �) = g

n

�1

(�).

(Here we write p(n; �) for p(hn; �i).) Sine

<!

� = range (p) [ f1g, we get

that

<!

� � (! � �) [ f1g � �. �

19



Theorem 1.20. For every set x, x �

x

2, i.e., x �

x

2 and x 6�

x

2.

Proof. Fix x. It is easy to see that

x

2 � P(x). We show that x � P(x).

To show that x � P(x) de�ne a one-one f : x ! P(x) by setting

f(y) = fyg for all y 2 x.

Suppose that f : x ! P(x) is onto. Let z = fy 2 x j y =2 f(y)g. Let

z = f(y). Then y 2 f(y) , y =2 z , y =2 f(y). �

Theorem 1.21. There is no greatest ardinal number.

Proof. Let � be a ardinal number. Let

a = fhx; ri j x � � ^ r is a wellordering of xg:

For hx; ri 2 a, let g(x; r) be the unique � suh that h�;2 ��i is isomorphi

to hx; ri. If � is an ordinal number and � � �, then there is an hx; ri 2 a

with � = g(hx; ri). (Let f : � ! � be one-one; let x = range(f); let

hf(�); f()i 2 r , � < .) Let Æ = U(range(g)). Then Æ 2 ON and � � Æ.

Indeed, Æ is the least ardinal number > �. �

For any set x suh that ard (x) exists, let x

+

be the least ardinal

number greater than ard (x).

By trans�nite reursion de�ne

�

0

= ! ;

�

S(�)

= �

�

+

;

�

�

=

[

f�

�

j � < �g for limit ordinals �:

It is easy to see that the �

�

, � 2 ON, are all the ardinal numbers � !.

Theorem 1.22. (Uses Choie) Every set an be wellordered.

Proof. Fix a set x. For y ( x, let a

y

= fyg� (x n y). Let u = fa

y

j y ( xg.

Let v be given by Choie. De�ne F : V ! V as follows. Let F (z) be the

unique w suh that hrange (z); wi 2 v if (9� 2ON)( z : � ! x ^ range (z) 6=

x), and let F (z) = ; otherwise. Let G be given by trans�nite reursion.

Just as in the proof of Theorem 1.14, one an show that there is an ordinal

� suh that G � � is a one-one onto funtion from � to x. �

Corollary 1.23. (Uses Choie) For every set x, ard (x) exists. For all

ardinals � and �, both �

�

and �

<�

are de�ned.

By Theorems 1.20, we have that 2

�

�

> �

�

for every ordinal �. The

Continuum Hypotheses (CH) asserts that 2

�

0

= �

1

, and the Generalized

Continuum Hypothesis (GCH) asserts that 2

�

�

= �

S(�)

for all ordinals �.
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2 Models, ompatness, and ompleteness

Informally we shall onsider a language to be a set of symbols, the union of

the following:

(1) a set of onstant symbols;

(2) for eah n, 0 < n 2 !, a set of n-plae funtion symbols;

(3) for eah n, 0 < n 2 !, a set of n-plae relation symbols.

Sine we want to use theorems of set theory in doing model theory (and for

other reasons onerning 220C), we adopt the following purely set theoreti

de�ntion as our oÆial one.

A language is a pair hf; pi where

(a) f : ! ! V ;

(b) p : ! n f0g ! V ;

() (8m 2 !)(8n 2 !)(f(m) \ p(n) = ; ^ (m 6= n ! (f(m) \ f(n) = ; =

p(m) \ p(n)))) ;

(d) eah f(n) and eah p(n) is disjoint from f2�n j n 2 !g[f1; 3; 5; 7; 9; 11g;

(e) no funtion whose domain is in ! n f;g belongs to any f(n) or p(n).

If L = hf; pi, then f(0) is the set of onstant symbols of L; for n > 0,

f(n) is the set of n-plae funtion symbols of L; for n > 0, p(n) is the set of

n-plae relation symbols of L. Clause () says that no symbol has two uses.

Logial symbols. The following symbols will be used with every language:

Informal OÆial

v

0

; v

1

; v

2

; : : : 0; 2; 4; : : :

( 1

) 3

= 5

: 7

^ 9

9 11

The symbols v

0

; v

1

; v

2

; : : : (oÆially 0; 2; 4; : : :) are variables.

Terms. Informally we an desribe the terms of a language L as onsti-

tuting the smallest set suh that

(i) all variables and onstant symbols are terms;
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(ii) if F is an n-plae funtion symbol and t

1

; : : : ; t

n

are terms, then the

expression F (t

1

: : : t

n

) is a term.

More informally, we shall often add ommas for larity: F (t

1

; : : : ; t

n

).

OÆially terms of L are �nite sequenes of symbols, where a �nite se-

quene is a funtion whose domain is a natural number. To give the oÆial

set-theoreti de�nition we �rst de�ne some operations on �nite sequenes.

If g : m ! V and h : n ! V are �nite sequenes, let g

_

h : m+ n ! V

be given by

(g

_

h)(k) =

�

g(k) if k < m ;

h(j) if k = m+ j with j < n :

If h is a �nite sequene of �nite sequenes, we de�ne onat (h), the on-

atenation of h, by reursion on domain (h) as follows:

onat (h) =

�

; if domain (h) = 0 ;

(onat (h � n))

_

h(n) if domain (h) = n+ 1 :

For �nite sequenes f , let `h(f) = domain (f). For any a, let hai be the

unique element of

1

fag, i.e., let it be fh0; aig.

Now let

Term

L

0

= fhai j a is a variable or a onstant symbolg :

For n 2 !, let Term

L

n+1

be the set of all onat (h) suh that, for some

k 2 ! n f0g,

(a) h : k + 3! V ;

(b) h(0) 2

1

(f(k)), where L = hf; pi;

() h(1) = h(i (i.e., h(1) = h1i);

(d) h(k + 2) = h)i ;

(e) (8j < k)h(2 + j) 2

S

fTerm

L

m

j m � ng .

A term of L is any member of

S

fTerm

L

n

j n 2 !g.

Exerise 2.1. (a) Prove unique readability for terms. That is, show that

if t is a term of a language L not belonging to Term

L

0

, then there are unique

k 2 ! and h : k + 3 ! V suh that t = onat (h) and (a){(e) above hold

of k and h, with (e) modi�ed by replaing \m � n" by \m 2 !." You may

(informally) prove the informal version of this fat.

(b) Would unique readabilty for terms still hold if we dropped the paren-

theses? Prove your answer.
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Formulas. Informally we an desribe the formulas of L as forming the

the smallest set satisfying the onditions

(i) if t

1

and t

2

are terms, then t

1

= t

2

is a formula;

(ii) if P is a a k-plae relation symbol and t

1

; : : : ; t

k

are terms, then

P (t

1

: : : t

k

) is a formula;

(iii) if ' is a formula, then so is :';

(iv) if ' and  are formulas, then so is (' ^  );

(v) if ' is a formula and x is a variable, then (9x)' is a formula.

OÆially we take formulas, like terms, to be �nite sequenes of symbols.

We let Formula

L

0

be the set of all atomi formulas, i.e., the set of all �nite

sequenes orresponding to lauses (i) and (ii) above. For n 2 !, we let

Formula

L

n+1

be the set of all the sequenes gotten from

S

fFormula

L

m

j m �

ng via lauses (iii), (iv) and (v). We omit the oÆial de�nition, whih is

similar to that of the sets Term

n

.

Exerise 2.2. (a) Prove unique readability for formulas. That is, show

that every formula either is atomi or else has a unique analysis via (iii),

(iv), or (v).

(b) Would unique readabilty for formulas still hold if we dropped the

parentheses? Prove your answer.

OÆially let us de�ne an ourrene of a variable x in a formula ' to be

hm;'i for any m < `h(') suh that '(m) = x. Similarly de�ne the notion

of an ourrene of a variable in a term.

By the omplexity of a formula ', we mean the least n suh that ' 2

Formula

L

n

. By reursion on omplexity of formulas, we de�ne the free our-

renes of a variable in a formula. Every ourrene of a variable in an atomi

formula is free. An ourrene hm+1;:'i is free just in ase the orrespond-

ing ourrene hm;'i is free. An ourrene hm+1; ('^ )i withm < `h(')

is free just in ase hm;'i is free. An ourrene h`h(') +m + 2; (' ^  )i

is free just in ase hm; i is free. An ourrene h2; (9x)'i is not free. An

ourrene hm+4; (9y)'i of x is free just in ase hm;'i is free and x and y

are di�erent variables.

Models. A model A for a language L is a an ordered pair onsisting of

(a) a non-empty set A = jAj, the universe or domain of the model, and (b)

a funtion assigning

(1) to eah onstant symbol , an element 

A

of A ;
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(2) to eah k-plae funtion symbol F , a funtion F

A

:

k

A! A ;

(3) to eah k-plae relation symbol P , a subset P

A

of

k

A.

As a onvention, when we denote a model by a Fraktur letter, then we denote

the universe of the model by the orresponding itali Roman letter.

In order to de�ne the notions of satisfation and truth, let us �x a

language L and a model A for L.

The omplexity of term t is the least n suh that t 2 Term

L

n

. For terms

t and for s 2

<!

A suh that all variables ourring in t belong to fv

i

j i <

`h(s)g, we de�ne, by reursion on the omplexity of t, an element t

s

A

of A:



s

A

= 

A

for  a onstant;

v

i

s

A

= s(i) ;

(F (t

1

: : : t

n

))

s

A

= F

A

(t

1

s

A

; : : : t

n

s

A

) ;

where \F

A

(t

1

s

A

; : : : t

n

s

A

)" is an abbreviation for \F

A

(q), where q : n! A and

q(i) = t

i+1

s

A

for all i < n." Note that t

s

A

is independent of s if no variables

our in t.

Satisfation. We de�ne, by reursion, for eah n 2 ! a relation

Sat

A

n

� Formula

L

n

�

<!

A:

If h'; si 2 Sat

A

n

, then the variables having free ourrenes in ' must be

among fv

i

j i < `h(s)g. Also ' must of ourse belong to Formula

L

n

. We

shall omit mentioning these two requirements below.

(i) ht

1

= t

2

; si 2 Sat

A

0

$ t

1

s

A

= t

2

s

A

.

(ii) hP (t

1

: : : t

k

); si 2 Sat

A

0

$ q 2 P

A

, where q : k ! A and q(i) = t

i+1

s

A

for eah i < k .

(iii) h:'; si 2 Sat

A

n+1

$ h'; si =2

S

fSat

A

m

j m � ng.

(iv) h(' ^  ); si 2 Sat

A

n+1

$ (h'; si 2

S

fSat

A

m

j m � ng ^ h ; si 2

S

fSat

A

m

j m � ng) .

(v) h(9v

j

)'; si 2 Sat

A

n+1

$ (9s

0

)(s

0

� s�domain (s)nfjg^ j 2 domain (s

0

)^

h'; s

0

i 2

S

fSat

A

m

j m � ng) .

We let Sat

A

=

S

fSat

A

n

j n 2 !g. We say that A satis�es '[s℄ (in symbols,

A j= '[s℄) if h'; si 2 Sat

A

. If only v

i

1

; : : : ; v

i

n

have free ourrenes in ',

then we may indiate this by writing '(v

i

1

; : : : ; v

i

n

) for '. Moreover we

write A j= '[a

1

; : : : ; a

n

℄ to mean that, for some (or equivalently, every) s

suh that s(i

j

) = a

j

for eah j, A j= '[s℄.
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If a term t has ontains no variables, then we write t

A

for t

s

A

. If a formula

� has no free ourrenes of variables (� is a sentene), then we write A j= �

for A j= �[s℄. If � is a sentene and A j= � then we say that A is a model of

� and that � is true in A.If � is a set of sentenes then we de�ne

A satis�es � $ A j= � $ A is a model of � $ (8� 2 �)A j= �:

Exerise 2.3. Theorem 1.4 shows that the de�nition above of Sat

A

yields

an expliit de�nition of Sat

A

from the parameter A and so gives us a proper

lass funtion A 7! Sat

A

. Consider the language L of set theory, whih

(informally) is the set f\2"g. Think of V as giving a \model" V with

jVj = V and with \2"

V

=2. Can Theorem 1.4 be used de�ne, via lauses

like (i){(v) above, a proper lass Sat

V

� Formula

L

�

<!

V ? Explain.

A sentene or a set of sentenes of a language L is valid in L if every

model A for L satis�es it. A sentene or a set of sentenes of L is onsistent

(satis�able) in L if some model A for L satis�es it. It is easy to see by indu-

tion that validity and onsisteny in L of a sentene � or set � of sentenes

is independent of L (for L ontaining all symbols in � or � respetively),

so we shall usually omit \in L." A sentene � logially implies a sentene

� in L (in symbols, � j=

L

�) if every model for L that is a model of � is a

model of � . Similarly de�ne � logially implies � in L (� j=

L

�) for sets �

of sentenes and sentenes � . It is easy to see that � j=

L

� and � j=

L

� are

independent of L, so we shall usually omit the subsript \L" and the phrase

\in L."

A set � of sentenes has Henkin witnesses if whenever (9x)'(x) 2 �

then there is a onstant symbol  suh that '() 2 �, where '() is the

result of substituting  for the free ourrenes of x in '(x).

Theorem 2.1 (Henkin Models). (Uses Choie) Let � be a set of sen-

tenes of a language L. Suppose that

(1) every �nite subset of � is onsistent in L;

(2) � has Henkin witnesses;

(3) for eah sentene � of L, either � 2 � or :� 2 �.

Then � has a model A suh that ard (A) � the ardinal number of the set of

onstant symbols of L, where we mean by \ard (A)" not the literal ard (A)

(namely 2) but rather ard (A).

(The model A will be onstruted without using Choie. We need Choie

to guarantee that the set of all onstant symbols of L has a ardinal number.)
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We all a set x �nite (e.g., in hypothesis (1)), if ard (x) 2 !.

Proof. In preparation for the proof of the Completeness Theorem, we shall

expliitly reord all fats about logial impliation needed for the proofs

of Theorem 2.1 and Theorem 2.8. (We shall later see that all these fats

orrespond to fats about a proof-theoreti notion of impliation.)

Note that

� onsistent $ :(9�)(� j= � ^ � j= :�):

For the purpose of listing fats about j=, let us take this as the de�nition of

onsisteny.

f�g j= �(I)

(�

1

j= � ^ �

1

� �

2

) ! �

2

j= �(II)

Lemma 2.2. Assume that � � � is �nite and suh that � j= � . Then

� 2 �.

Proof. Otherwise hypothesis (3) gives that :� 2 �. By (I) and (II),

� [ f:�g j= :� ^ � [ f:�g j= �:

This ontradits hypothesis (1). �

Let us all a formula ' prime if ' is either atomi or of the form (9x) .

The formulas of L onstitute the smallest set ontaining the prime formulas

of L and losed under the operations ' 7! :' and h'; i 7! (' ^  ). This

gives rise to a variant notion of omplexity of formulas, with respet to whih

we may use indution and de�nition by reursion.

A valuation for L is a funtion v from the set of prime formulas of L to

f0; 1g. Given any valuation v for L we an de�ne by reursion a anonial

v

�

: Formula

L

! f0; 1g suh that v

�

extends v :

v

�

(') = v(') for ' prime;

v

�

(:') = 1� v

�

(') ;

v

�

((' ^  )) = minfv

�

('); v

�

( )g :

(For n � m 2 !, m�n is the k suh that n+ k = m. It is easy to show the

existene and uniquness of suh a k.)
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A formula ' of L is true under a valuation v if v

�

(') = 1. We say that

a set � of formulas of L truth-funtionally implies in L a formula ' of L if,

for every valuation v for L, if eah member of � is true under v then ' is

true under v. A tautology of L is a formula true under every valuation for L.

It is easy to show by indution that truth-funtional impliation and being

a tautology are, in the natural sense, independent of L, so we shall usually

omit \in L"and \of L." We write � j=

tf

' to mean that � truth-funtionally

implies '.

Lemma 2.3. Suppose that � is a set of sentenes of L and that � is a

sentene of L. If � j=

tf

� then � j= � .

Proof. Suppose that A is a model for L suh that A j= � but A 6j= � .

De�ne a valuation v for L as follows:

v(') =

8

<

:

0 if ' is not a sentene;

0 if ' is a sentene and A 6j= ' ;

1 if ' is a sentene and A j= ' .

It is easy to prove by indution on omplexity that, for any sentene � of L,

� is true under v if and only if A j= �. Hene v witnesses that � 6j=

tf

� . �

Our the next fat in our list is a weakening of Lemma 2.3.

(� �nite ^ � j=

tf

�) ! � j= �(III)

The reason for not taking the full lemma as (III) will be explained later.

Let us write j= � to mean that ; j= �, i.e., that � is valid.

For onstants (onstant symbols) 

1

and 

2

of L, set



1

� 

2

$ 

1

= 

2

2 � :

Lemma 2.4. � is an equivalene relation.

Proof. Note that

j=  =  for  a onstant.(IV)

By Lemma 2.2, this gives  � .

Assume that 

1

� 

2

.

j= (t

1

= t

2

! ('(t

1

)! '(t

2

))

for '(x) atomi, t

1

and t

2

terms without variables

(V)
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Here '(t

i

) is the result of replaing the free ourrenes of x in '(x) by

ourrenes of t

i

. Here also we make use of the abbreviation \!." (See

page 2.)

With x = 

1

for '(x), we get from (V) that

j= 

1

= 

2

! (

1

= 

1

! 

2

= 

1

) :

Lemma 2.2 then implies that this sentene belongs to �. Now one read-

ily heks that f�; (� ! �)g j=

tf

� for any � and � . By (III) and two

appliations of Lemma 2.2, we get that 

1

= 

2

2 � and so that 

2

� 

1

.

Assume that 

1

� 

2

and 

2

� 

3

. Applying (V) with x = 

3

for '(x),

we get that

j= (

2

= 

1

! (

2

= 

3

! 

1

= 

3

)) :

Sine 

2

= 

1

2 � and 

2

= 

3

2 �, it follows by (III) and Lemma 2.2 that



1

= 

3

2 � and so that 

1

� 

3

. �

For onstants  of L, let [℄ = f

0

j 

0

� g. Let

A = f[℄ j  is a onstant of Lg .

j= (9v

1

) v

1

= v

1

(VI)

Lemma 2.5. The set A is non-empty.

Proof. By (VI) and Lemma 2.2, the sentene (9v

1

) v

1

= v

1

belongs to �.

Hypothesis (2) yields a onstant  of L suh that  =  2 �. Hene there is

a onstant of L. �

De�ne 

A

= [℄ for eah onstant  of L.

j= (9x)F (

1

: : : 

k

) = x

for F a k-plae funtion symbol

and 

1

; : : : ; 

k

onstants

(VII)

For F and 

1

; : : : ; 

k

as in (VII), we get by (VII), Lemma 2.2, and hy-

pothesis (2) that there is a onstant  with F (

1

: : : 

k

) =  2 �. De�ne

F

A

([

1

℄; : : : ; [

k

℄) = [℄ :

Here and hereafter we use the following notational onvention: a

1

; : : : ; a

k

denotes the sequene q of length k suh that q(i) = a

i+1

for eah i < k.
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We must show that this does not depend on the representatives 

1

; : : : ; 

k

and on the hoie of .

j= (t

1

= t

2

! u(t

1

) = u(t

2

))

for u(x) a term, t

1

and t

2

terms without variables

(VIII)

Suppose that F (

1

: : : 

k

) =  and F (

0

1

: : : 

0

k

) = 

0

both belong to � and

that 

i

� 

0

i

for 1 � i � k. For 1 � j � k + 1, let t

j

be the term

F (

0

1

: : : 

0

j�1



j

: : : 

k

) :

(VIII) and (III) give us that t

j

= t

j+1

belongs to � for 1 � j � k. Let

0 � i < k and assume that t

k+1�i

= t

k+1

2 �. By (V),

j= (t

k+1�i

= t

k+1

! (t

k+1�(i+1)

= t

k+1�i

! t

k+1�(i+1)

= t

k+1

)) :

(III) and Lemma 2.2 then give that t

k+1�(i+1)

= t

k+1

2 �. By indution

we get that t

1

= t

k+1

2 �, that is, F (

1

: : : 

k

) = F (

0

1

: : : 

0

k

) belongs to �.

(V) and (III) give that F (

0

1

: : : 

0

k

) =  belongs to � ; (V) and (III) again

give that  = 

0

2 �.

Exerise 2.4. Prove that, for all terms t without variables, t

A

= [℄ if and

only if t =  belongs to �.

We omplete the de�nition of A by stipulating that

P

A

([

1

℄; : : : ; [

k

℄) $ P (

1

: : : 

k

) 2 � :

Here we let P

A

(q) $ q 2 P

A

, and we also use the notational onvention

introdued above. The proof that the P

A

are well-de�ned is like the orre-

sponding proof for the F

A

.

Lemma 2.6. Let '(x) be a formula of L, let  be a onstant of L, and let

B be a model for L. Then B j= '[

B

℄ if and only if B j= '(), where '() is

the result of replaing the free ourrenes of x in '(x) by ourrenes of .

We omit the proof, an easy indution on the omplexity of '(x).

The following lemma ompletes the proof of the theorem.

Lemma 2.7. For every sentene � of L, A j= � if and only if � 2 �.
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Proof. We proeed by indution of the omplexity of �.

Suppose � is t

1

= t

2

. Let t

1
A

= [

1

℄ and t

2
A

= [

2

℄. The A j= � ,

[

1

℄ = [

2

℄ , 

1

= 

2

2 � , (by Exerise 2.4, (V), and (III)) t

1

= t

2

2 �.

The ase that � is P (t

1

: : : t

k

) is similar to the ase that � is t

1

= t

2

.

If � is :� , then A j= � , A 6j= � , � =2 � , (by (1) and (3)) � 2 �.

We have the following truth-funtional impliations:

f(�

1

^ �

2

)g j=

tf

�

1

f(�

1

^ �

2

)g j=

tf

�

2

f�

1

; �

2

g j=

tf

(�

1

^ �

2

) :

If � is (�

1

^�

2

) then A j= � , (A j= �

1

and A j= �

2

) , (�

1

2 � and �

2

2 �)

, (by (III) and Lemma 2.2) (�

1

^ �

2

) 2 �.

j= ('()! (9x)'(x)

for  a onstant

(IX)

Suppose that � is (9x)'(x). Then A j= � , there is an a 2 A suh

that A j= '[a℄ , there is a onstant  of L suh that A j= '[[℄℄ , (by

Lemma 2.6) there is a onstant  of L suh that A j= '() , there is a

onstant  of L suh that '() 2 � , () by (IX), (III), and Lemma 2.2;

( by hypothesis (2)) (9x)'(x) 2 �. �

Theorem 2.8. (Uses Choie) Let L be a language and let L

�

be obtained

from L by adding maxfard (L);�

0

g new onstant symbols, where ard (L)

is the ardinal number of the set of all non-logial symbols of L. Let � be a

set of sentenes of L suh that every �nite subset of � is onsistent (in L).

Then there is a set �

�

� � of sentenes of L

�

suh that (1) every �nite

subset of �

�

is onsistent (in L

�

), (2) �

�

has Henkin witnesses, and (3) for

eah sentene � of L

�

, either � 2 �

�

or :� 2 �

�

.

Proof. Let

� = maxf�

0

; ard(L)g:

By Theorem 1.19, �

<!

= �. Sine � is the ardinal of the set of all symbols

of L

�

, the ardinal of the set of all sentenes of L

�

is � �

<!

. There are at

least � sentenes of L

�

. (Consider sentenes  =  for onstants .) Thus �

is the ardinal of the set of all sentenes of L

�

. Let

� 7! �

�

be a one-one onto funtion from � to the set of all sentenes of L

�

.

Let r be a wellordering of the set of all onstant symbols of L

�

.

By trans�nite reursion, we de�ne sets �

�

of sentenes of L

�

for � � �.

We shall arrange that
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(a) �

0

= � ;

(b) �

�

=

S

f�

�

j � < �g for limit ordinals � � � ;

() for � � � � �, �

�

� �

�

;

(d) for � � �, every �nite subset of �

�

is onsistent (in L

�

);

(e) ard (�

�+1

n �

�

) � 2 for � < � ;

(f) for � < �, either �

�

2 �

�+1

or :�

�

2 �

�+1

;

(g) if � < �, if �

�

is (9x)'(x), and if �

�

2 �

�+1

, then '() 2 �

�+1

for

some onstant  of L

�

.

One we arry out this onstrution, we an �nish the proof by setting

�

�

= �

�

.

For � = 0 and for limit �, we de�ne �

�

as required by onditions (a)

and (b) respetively. Sine onsisteny in L implies onsisteny in L

�

,

(d) holds for � = 0. Furthermore (d) holds for limit �

�

unless () fails

for some � and � < � or (d) fails for some � < �. for � in plae of �. This

is beause, as is not diÆult to prove, if � is a �nite subset of �

�

then there

is a � < � suh that � � �

�

.

It follows that, however we de�ne �

�

for suessor ordinals �, the small-

est ordinal  � � suh that (a){(g) fail for the �

�

, � � , would have to be

a suessor ordinal.

Assume then that � < � and that we are given �

�

, � � �, violating

none of (a){(g).

Suppose �rst that � [ f:�

�

g is onsistent for every �nite � � �

�

. Set

�

�+1

= �

�

[ f:�

�

g:

Clearly none of (a){(g) are violated by the �

�

, � � �+ 1.

Before onsidering the other ase, we prove the following lemma.

Lemma 2.9. Let � be a set of sentenes and let � be a sentene. If �[f:�g

is inonsistent, then � j= �.

Proof. We use two more fats about j= :

� [ f�g j= � ! � j= (� ! �)(X)

(� j= � ^ (8� 2 �)� j= �) ! � j= �(XI)

We also need that

j=

tf

((:� ! �) ! ((:� ! :�)! �)):
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Suppose that � [ f:�g is inonsistent. For some sentene � , we have

that

� [ f:�g j= � ;

� [ f:�g j= :� :

By (X) we get that � j= both (:� ! �) and (:� ! :�). By (III) and (XI)

we get that � j= �. �

Now suppose that there is a �nite � � �

�

suh that � [ f:�

�

g is

inonsistent. Fix suh a �. By Lemma 2.9, we have that � j= �

�

.

The ardinal number of �

�

n � is � 2 � ard(�) < �. Therefore the

ardinal number of the set of all new onstants of L

�

(i.e., those that are

not onstants of L) ourring in �

�

[ f�

�

g is < �. Sine � is the ardinal

number of the set of all new onstants of L

�

, let 

�

be the r-least onstant

of L

�

not ourring in �

�

[ f�

�

g.

Let

�

�+1

= �

�

[ f�

�

g;

unless �

�

is (9x)'

�

(x) for some formula '

�

, in whih ase let

�

�+1

= �

�

[ f�

�

; '

�

(

�

)g:

If we an prove that every �nite subset of �

�+1

is onsistent, then we

will have shown that (a){(g) do not fail for the �

�

, � � � + 1, and so we

will have ompleted the proof of the theorem.

Assume that �

0

[ f�

�

g is inonsistent for some �nite subset �

0

of �

�

.

By (XI), (III), and the fat that f::�

�

g j=

tf

�

�

, we get that �

0

[ f::�

�

g

is inonsistent. By Lemma 2.9, we get that �

0

j= :�

�

. But then � [�

0

is

an inonsistent �nite subset of �

�

.

� [ f ()g j= � ! � [ f(9x) (x)g j= �

for  is a onstant not ourring in �,  (x), or �

(XII)

(If B is a model satisfying �[f(9x) (x)g but not � , then let b 2 B be suh

that B j=  [b℄. Let B

0

be like B, exept that 

B

0

= b. Then B

0

satis�es

� [ f ()g but not � .)

Assume that some �nite subset of �

�+1

is inonsistent. Then �

�+1

=

�

�

[ f�

�

; '

�

(

�

)g, and there is a �nite

�

� � �

�

and there is a sentene �

suh that

�

� [ f�

�

; '

�

(

�

)g j= � ;

�

� [ f�

�

; '

�

(

�

)g j= :� :
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Using the the truth-funtional impliation f�;:�g j=

tf

�

0

, we may assume

that 

�

does not our in � . By (XII) we have

�

� [ f�

�

; (9x)'

�

(x)g j= � ;

�

� [ f�

�

; (9x)'

�

(x)g j= :� :

But �

�

is (9x)'

�

(x), so we have the ontradition that �

�

[f�

�

g is inon-

sistent. �

Theorem 2.10. (Compatness I and Weak L�owenheim{Skolem The-

orem) (Uses Choie) Let � be a set of sentenes of a language L suh that

every �nite subset of � is onsistent. Then there is a model A of � suh

that ard(A) � maxf�

0

; ard(L)g.

Proof. Let L

�

be as in the statement of Theorem 2.8. Let �

�

be given by

that theorem. Let A

�

be the model of �

�

given by Theorem 2.1. Let A be

the redut of A

�

to L. Clearly A j= �. �

Theorem 2.11 (Compatness II). (Uses Choie) Let � be a set of sen-

tenes and let � be a sentene. If � j= � then there is a �nite � � � suh

that � j= �.

Proof. Suppose that � j= �. Then � [ f:�g is inonsistent. By Theo-

rem 2.10, there is a �nite � � � suh that � [ f:�g is inonsistent. But

then � j= �. �

Exerise 2.5. Let L be any language. A lass K of models for L is EC (is

an elementary lass) if there is a sentene � of L suh that

K = fA j A j= �g :

A lass K is EC

�

if there is a set � of sentenes of L suh that

K = fA j A j= �g :

Whih of the following are EC

�

?

(i) fA j A is in�niteg ;

(ii) fA j A is �niteg .

Show that neither is EC.
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Theorem 2.12. Assume that ZFC (i.e., the set of axioms of ZFC) is on-

sistent. For variables x, let Number (x) be the formula \x is a natural

number."

There is a model A of ZFC and an a 2 A suh that A j= Number [a℄ and

suh that 2

A

� fb j b 2

A

ag is not wellfounded.

Proof. For n 2 !, let �

n

(x) be the formula \x = n." (�

n

(x) is de�ned by

reursion on n.) Let L

�

be the result of adding to the language of set theory

a onstant . Let

� = ZFC [ fNumber ()g [ f(8v

0

)(�

n

(v

0

)! v

0

2 ) j n 2 !g :

Let � be a �nite subset of �. Then there is some m 2 ! suh that

� � ZFC [ fNumber ()g [ f(8v

0

)(�

n

(v

0

)! v

0

2 ) j n < mg :

Let B be a model of ZFC. For eah n 2 ! there is a unique b 2 B suh that

B j= �

n

[b℄; let n

B

be this unique b. Expand B to a model B

�

for L

�

by

letting 

B

�

= m

B

. Clearly B

�

j= �.

Sine every �nite subset of � is onsistent, there is by Theorem 2.10 a

model A

�

of �. Let A be the redut of A

�

to L, and let a = 

A

�

.

To see that 2

A

� fb j b 2

A

ag is not wellfounded, let

y = fb j b 2

A

a ^ (8n 2 !)A 6j= �

n

[b℄g:

Sine the 2

A

-immediate predeessor of a belongs to y, y is nonempty. For

any b 2 y, the 2

A

-immediate predeessor of b belongs to y, so y has no

2

A

-least element. �

Remark. If A and a are as in the statement of Theorem 2.12, then a is

a non-standard natural number of A. In x3, we shall onstrut models with

non-standard real numbers.

If A and B are models for a language L, then A and B are elementarily

equivalent (A � B) if they satisfy the same sentenes of L.

Theorem 2.13. Let L be a language and let � = maxf�

0

; ard(L)g. Every

model for L is elementarily equivalent to a model of ardinal � �.

Proof. Let B be a model for L. The theory of B (Th(B)), the set of all

sentenes � suh that B j= �, is onsistent. Apply Theorem 2.10. �
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Formal Dedution

Fix a language L.

Logial Axioms:

(1) All tautologies.

(2) Identity Axioms:

(a) t = t

for t a term;

(b) (t

1

= t

2

! ('(t

1

; y

1

; : : : ; y

n

)! '(t

2

; y

1

; : : : ; y

n

)))

for t

1

and t

2

terms and '(x; y

1

; : : : ; y

n

) an atomi formula.

(3) Quanti�er Axioms:

( (t; y

1

; : : : ; y

n

)! (9x) (x; y

1

; : : : ; y

n

));

for  (x; y

1

; : : : ; y

n

) a formula and t a term suh that no ourrene of a

variable in t gives a bound ourrene of the variable in  (t; y

1

; : : : ; y

n

).

Rules:

(1) Modus Ponens:

' ('!  )

 

for ' and  formulas;

(2) Quanti�er Rule:

('!  )

((9x)'!  )

for ' and  formulas with x not free in  .

Remark. In stating the axioms and rules, we have used abbreviations

involving the symbol \!" (introdued on page 2).

A dedution in L from a set � of sentenes is a �nite sequene of formulas

(the lines of the dedution) suh that every formula in the sequene either

(i) belongs to �, (ii) is a logial axiom, or (iii) follows from earlier formulas

by one of the two rules. A dedution in L of a sentene � from � is a

dedution in L from � with last line � .

A set � of sentenes dedutively implies in L a sentene � (� `

L

�) if

there is a dedution in L of � from �.

Remark. It will turn out that dedutive impliation is independent of L,

but this is not as easy to prove as the orresponding fat for the semantial

notion of logial impliation.
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Theorem 2.14 (Soundness). For any language L, if � `

L

� then � j= � .

Proof. Let D be a dedution from � in L and let A be any model of �. By

indution one an show that, for all lines ' of D and for every s (with large

enough domain), A j= '[s℄. This is trivial for ' 2 � and is easily heked

for logial axioms. Moreover it is easy to see that appliations of the rules

preserve this property. �

Theorem 2.15. For any language L, (I){(XII) hold with \`

L

" in plae

of \j=."

Remark. The modi�ed (III), like the original (III), remains true if the

restrition that � be �nite, is removed. This is beause|as is not diÆult

to show|ompatness holds for truth-funtional impliation. Our reason

for the restrition to �nite � is to save ourselves the e�ort of proving the

unrestrited version.

Proof. (I), (II), and (XI) follow diretly from the notion of a dedution,

and do not depend on our partiular axioms and rules.

(IV) and (V) are Identity Axioms, and (VIII) follows from Identity Ax-

ioms (a) and (b) using Modus Ponens.

For (III), suppose that � j=

tf

� with � �nite. Let � be f�

i

j i < ng.

Then

(�

0

! (�

1

! : : :! (�

n�1

! �) � � �)

is a tautology. By n appliations of Modus Ponens, we an get a dedution

of � from �.

(VI) follows by Modus Ponens from the Identity Axiom v

1

= v

1

and the

Quanti�er Axiom (v

1

= v

1

! (9v

1

) v

1

= v

1

).

For (VII), note that

F (

1

; : : : ; 

k

) = F (

1

; : : : ; 

k

)

is an Identity Axiom and that

(F (

1

; : : : ; 

k

) = F (

1

; : : : ; 

k

) ! (9x)F (

1

; : : : ; 

k

) = x)

is a Quanti�er Axiom. (VI) follows from these axioms by Modus Ponens.

(IX) is a Quanti�er Axiom.

(X) is ommonly alled the Dedution Theorem. To prove it, let D be a

dedution in L of � from � [ f�g. Get a new sequene D

0

of formulas by
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replaing eah line ' of D by (� ! '). We shall show how to turn D

0

into

a dedution of (� ! �) from � by inserting additional lines.

If a line ' of D belongs to � or is a logial axiom, then insert ' and the

tautology ('! (� ! ')). The line (� ! ') then omes by Modus Ponens.

If a line of D is �, then the orresponding line of D

0

is the tautology

(� ! �).

If a line ' of D omes from earlier lines  and ( ! ') by Modus Ponens,

then insert the tautology

(y) ((� !  )! ((� ! ( ! '))! (� ! ')))

and the formula

(z) ((� ! ( ! '))! (� ! ')) .

(z) omes from the (y) and (� !  ) by Modus Ponens, and (� ! ') then

omes from the (z) and (� ! ( ! ')) by another appliation of Modus

Ponens.

Suppose �nally that a line of D is ((9x)' !  ) and that it omes from

an earlier line ('!  ) by the Quanti�er Rule. That earlier line orresponds

to the line (� ! ('!  )) of D

0

. Insert the following lines:

((� ! ('!  ))! ('! (� !  )))

('! (� !  ))

((9x)'! (� !  ))

(((9x)'! (� !  ))! (� ! ((9x)'!  )))

(� ! ((9x)'!  )))

The �rst and fourth of these lines are tautologies. The seond and �fth ome

by Modus Ponens. The third omes by the Quanti�er Rule. Finally, the line

(� ! ') omes by Modus Ponens.

It remains only to show that (XII) holds. Assume that � [ f ()g `

L

�

and that the onditions of (XII) are met. By (X) we have that � `

L

( ()!

�). Let D be a dedution witnessing this fat. Let y be a variable not

ourring in D. We get a dedution D

0

from � with last line ( (y) ! �)

by replaing eah ourrene of  in D by an ourrene of y. Applying the

Quanti�er Rule to the last line of D

0

, we get ((9y) (y)! �). From this, the

Quanti�er Axiom ( (x) ! (9y) (y)), and tautologies and Modus Ponens,

we get ( (x)! �). The Quanti�er Rule now gives ((9x) (x)! �). �
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Let us say that a set � of sentenes of a language L is dedutively on-

sistent in L if there is no sentene � of L suh that � `

L

� and � `

L

:� .

Otherwise � is dedutively inonsistent in L. Sine dedutions are �nite,

a � is dedutively onsistent in L if and only if every �nite subset of � is

dedutively onsistent in L.

Theorem 2.16. (Uses Choie) Let � be a set of sentenes of a language L.

Suppose that

(1) � is dedutively onsistent in L;

(2) � has Henkin witnesses;

(3) for eah sentene � of L, either � 2 � or :� 2 �.

Then � has a model A suh that ard (A) � the ardinal number of the set

of onstant symbols of L.

(As with Theorem 2.1, Choie is needed only to guarantee that the set of

all onstant symbols of L has a ardinal number.)

Proof. The proof is exatly like that of Theorem 2.1, using Theorem 2.15.

�

Theorem 2.17. Let � be a set of sentenes of a language L suh that �

is dedutively onsistent in L. Let L

�

be obtained from L by adding new

onstant symbols. Then � is dedutively onsistent in L

�

.

Proof. Assume that � is dedutively inonsistent in L

�

Then there is a

sentene � , whih we may without loss of generality assume to be a sentene

of L, suh that � `

L�

� and � `

L�

:� . Let D

1

and D

2

be dedutions

witnessing these fats. Let 

1

; : : : ; 

n

be distint and be all the onstants of

L

�

ourring in either of D

1

or D

2

that are not onstants of L. Let y

1

; : : : ; y

n

be distint variables not ourring in D

1

or D

2

. Obtain D

0

1

and D

0

2

from

D

1

and D

2

respetively by replaing, for eah i, eah ourrene of 

i

by

an ourrene of y

i

. Then D

0

1

and D

0

2

witness that � `

L

� and � `

L

:�

respetively.

Theorem 2.18. (Uses Choie) Let L be a language and let L

�

be obtained

from L by adding maxfard (L);�

0

g new onstant symbols. Let � be a set

of sentenes of L suh that � is dedutively onsistent in L.

Then there is a set �

�

� � of sentenes of L

�

suh that (1) �

�

is

dedutively onsistent in L

�

, (2) �

�

has Henkin witnesses, and (3) for eah

sentene � of L

�

, either � 2 �

�

or :� 2 �

�

.
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Proof. The proof is exatly like that of Theorem 2.8, using Theorem 2.15

and using Theorem 2.17 to get that �

0

= � is dedutively onsistent in L

�

.

�

Theorem 2.19. (Uses Choie) Let � be a set of sentenes of a language L

suh � is dedutively onsistent in L. Then there is a model A of � suh

that ard(A) � maxf�

0

; ard(L)g.

Proof. The proof is like that of Theorem 2.10. �

Theorem 2.20 (G�odel Completeness Theorem). (Uses Choie.) Let

� be a set of sentenes of a language L and let � be a sentene of L. If

� j= � then � `

L

�.

Proof. Assume that � 6`

L

�. Then, by the analogue of Lemma 2.9, �[f:�g

is dedutively onsistent in L. By Theorem 2.19, there is a model A for L

suh that A j= � [ f:�g. But then � 6j= �. �

Beause of the Soundness and Completenenss Theorems, the symbol

\`

L

," is superuous, and we shall make no further use of it.

Exerise 2.6. Let L be a language with a one-plae relation symbol F .

Give a dedution witnessing the following

f:(9v

1

):F (v

1

)g `

L

:(9v

2

):F (v

2

):

Exerise 2.7. Suppose we replaed our Quanti�er Rule with the following

additional Logial Axioms:

(('!  )! ((9x)'!  ))

for x not ourring free in  :

Would Soundness still hold? Would Completeness still hold? Prove your

answers.
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3 Model theory

For the next several de�nitions, �x a language L.

If A and B are models for L, then A and B are isomorphi (A

�

=

B) if

there is a one-one onto f : A! B suh that

(1) f(

A

) = 

B

for every onstant  of L ;

(2) f(F

A

(a

1

; : : : ; a

k

)) = F

B

(f(a

1

); : : : ; f(a

k

)) for all k 2 !nf0g, all k-plae

funtion symbols of F of L, and all (a

1

; : : : ; a

k

) 2

k

A ;

(3) P

A

(a

1

; : : : ; a

k

))$ P

B

(f(a

1

); : : : ; f(a

k

)) for all k 2 ! n f0g, all k-plae

relation symbols P of L, and all (a

1

; : : : ; a

k

) 2

k

A .

Let A and B be models for L. The model A is a submodel of B (A � B)

if A � B and

(1) 

A

= 

B

for all onstants  of L ;

(2) F

A

= F

B

�

k

A for all k 2 ! n f0g and all k-plae funtion symbols F

of L ;

(3) P

A

= P

B

\

k

A for all k 2 ! n f0g and all k-plae relation symbols P

of L .

We say that A is an elementary submodel of B (A � B) if A � B and, for

every formula '(x

1

; : : : ; x

n

) of L and any elements a

1

; : : : ; a

n

of A,

A j= '[a

1

; : : : ; a

n

℄$ B j= '[a

1

; : : : ; a

n

℄ :

The ondition that A � B an be weakend to A � B without a�eting the

de�ned onept. To see why this is so, note, for example, that (2) in the

de�nition of A � B an be dedued using the formula F (v

1

: : : v

n

) = v

n+1

.

If A is a model for L, let L

A

be the language resulting from adding

to L distint new onstants 

a

for eah a 2 A. (This an be done in a

de�nable fashion.) The elementary diagram of A is Th(A

A

), where A

A

is

the expansion of A resulting from setting 

a

A

A

= a.

Theorem 3.1. Let A be a model for a language L. Suppose that B

�

is a

model for L

A

suh that B

�

is a model of the elementary diagram of A. Let

B be the redut of B

�

to L. Then there is a B

0

�

=

B suh that A � B

0

.

Proof. We may assume without loss of generality that A \B = ;.
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De�ne f : A! B by setting

f(a) = 

a

B

�

;

for a 2 A. For any formula '(x

1

; : : : ; x

n

) of L and for any elements a

1

; : : : ; a

n

of A,

A j= '[a

1

; : : : ; a

n

℄ $ A

A

j= '(

a

1

; : : : ; 

a

n

)

$ B

�

j= '(

a

1

; : : : ; 

a

n

)

$ B

�

j= '[

a

1

B

�

; : : : ; 

a

n

B

�

℄

$ B j= '[

a

1

B

�

; : : : ; 

a

n

B

�

℄

$ B j= '[f(a

1

); : : : ; f(a

n

)℄ :

Taking for ' the formula v

1

= v

2

, we get that f is one-one.

Let C = range (f). Let C be the model with universe C suh that

f : A

�

=

C. To see that C � B, let ' be a formula of L and let b

1

; : : : ; b

n

be

elements of C. Then

C j= '[b

1

; : : : ; b

n

℄ $ A j= '[f

�1

(b

1

); : : : ; f

�1

(b

n

)℄ $ B j= [b

1

; : : : ; b

n

℄ :

Let B

0

= (B n C) [ A. De�ne B

0

as follows. Let 

B

0

= 

A

for eah

onstant  of L. For b

0

2 B

0

let

g(b

0

) =

�

b

0

if b

0

2 B ;

f(b

0

) if b

0

2 A .

Now de�ne the interpretation of funtion and relation symbols by setting

F

B

0

(b

0

1

; : : : ; b

0

k

) = g

�1

(F

B

(g(b

0

1

); : : : ; g(b

0

k

))) ;

P

B

0

(b

0

1

; : : : ; b

0

k

) $ P

B

(g(b

0

1

); : : : ; g(b

0

k

)) :

It is easy to see that B

0

is as required. �

Theorem 3.2. (Uses Choie) Let

L = f0;1;<;+; �g:

Let R be the obvious model for L whose universe is the set R of all real

numbers. The model R has a non-arhimedean elementary extension; i.e.,

there is a A suh that R � A and

(9a 2A)(8n 2 !)(0

A

<

A

a ^ a+

A

� � �+

A

a

| {z }

n

<

A

1

A

) :
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Proof. Let L

�

be the result of adding to L

R

a new onstant . Let

� = Th(R

R

) [ f0<g [ f+ � � �+

| {z }

n

<1 j n 2 !g :

Every �nite subset of � is satis�ed by some expansion of R

R

. By Theo-

rem 2.10, let B

�

j= �. Apply Theorem 3.1. �

Theorem 3.3. (Upward L�owenheim{Skolem{Tarski Theorem) Let

A be a model for a language L and suppose that � is a ardinal number suh

that

� � ard(A) � �

0

^ � � ard(L) :

Then there is an elementary extension B of A suh that ard(B) = �.

Proof. Let L

�

be the result of adjoining to L

A

distint new onstants 

�

,

� < �. Let

� = Th(A

A

) [ f

�

6= 

�

j � 6= �g :

Every �nite subset of � is satis�ed by an expansion of A

A

. By Theorem 2.10,

this means that there is a model C for � with ard(C) � �. But then

ard(C) = �. Apply Theorem 3.1 to get B. �

If A is a model for a language L and ; 6= B � A, then a neessary and

suÆient ondition for B to be the universe of a submodel of A is that (i) 

A

belongs to B for eah onstant  of L and (ii) that B is losed under F

A

for eah funtion symbol F of A. The following theorem gives a neessary

and suÆient ondition for B to be the universe of an elementary submodel

of A.

Theorem 3.4. Let A be a model for a language L. Let B be a non-empty

subset of A. Then the following are equivalent:

(1) There is a (unique) B � A suh that jBj = B.

(2) For every formula '(y; x

1

; : : : ; x

n

) of L and any elements b

1

; : : : ; b

n

of B, there is an element b of B suh that

A j= ((9y)')[b

1

; : : : ; b

n

℄ ! A j= '[b; b

1

; : : : ; b

n

℄ :

Proof. That (1) implies (2) is easy to see. Suppose then that (2) holds.

We �rst argue that (i) and (ii) of the paragraph preeding the theorem

are satis�ed, and so there is a submodel B of A with universe B. If 
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is a onstant then A j= (9x)x = . By (2) there is a b 2 B suh that

A j= (x = )[b℄. Hene 

A

2 B. If F is a k-plae funtion symbol and

b

1

; : : : ; b

k

are elements of B, then A j= ((9y)F (x

1

; : : : ; x

k

) = y)[b

1

; : : : ; b

k

℄.

By (2) there is a b 2 B suh that A j= (F (x

1

; : : : ; x

k

) = y)[b; b

1

; : : : ; b

k

℄.

Thus b = F

A

(b

1

; : : : ; b

k

). This argument shows that B is losed under F

A

.

By indution on omplexity, we show that for all formulas '(x

1

; : : : ; x

n

)

of L and any elements b

1

; : : : ; b

n

of B,

B j= '[b

1

; : : : ; b

n

℄ $ A j= '[b

1

; : : : ; b

n

℄ :

For ' atomi this follows from B � A. The ases that ' is : and that '

is ( ^ �) are straightforward. Suppose that ' is (9y) (y; x

1

; : : : ; x

n

). If

B j= '[b

1

; : : : ; b

n

℄, then it follows easily that A j= '[b

1

; : : : ; b

n

℄. Assume that

A j= '[b

1

; : : : ; b

n

℄. By (2) there is an b 2 B suh that A j=  [b; b

1

; : : : ; b

n

℄.

By indution, B j=  [b; b

1

; : : : ; b

n

℄. Hene B j= '[b

1

; : : : ; b

n

℄. �

Theorem 3.5 (Downward L�owenheim{Skolem Theorem). (Uses

Choie) Let A be a model for a language L and let X � A. Then there

is a B � A suh that X � B and ard (B) � maxf�

0

; ard (X); ard (L)g.

Proof. Fix a wellordering r of A. For eah formula ' of L, let n

'

be 0 if

' is a sentene and let n

'

be the largest number n suh that v

n

ours free

in ' otherwise. For eah '(v

0

; v

1

; : : : ; v

n

'

), let f

'

:

n

'

A! A be given by

f

'

(a

1

; : : : ; a

n

'

) =

8

<

:

the r-least a 2 A suh that A j= '[a; a

1

; : : : ; a

n

'

℄

if A j= (9v

0

)'[a

1

; : : : ; a

n

'

℄ ;

the r-least element of A otherwise.

(The funtions f

'

are alled Skolem funtions.)

Let Y

0

= X. For k 2 ! let

Y

k+1

= Y

k

[

[

frange (f

'

�

n

'

(Y

k

)) j ' a formula of Lg :

It is easy to prove by indution that ard (Y

k

) � maxf�

0

; ard (X); ard (L)g

for eah k 2 !.

Let B =

S

fY

k

j k 2 !g. Then ard (B) � maxf�

0

; ard (X); ard (L)g.

Obviously B 6= ;. Sine B is losed under all the f

'

, it follows that A and

B satisfy (2) of Theorem 3.4, and so (1) of Theorem 3.4 holds. �

Suppose that / is a linear ordering of a set I 6= ;. If A

i

, i 2 I, are models

for a language L and are suh that

(8i 2 I)(8j 2 I)(i / j ! A

i

� A

j

) ;
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then h/; hA

i

j i 2 Iii is a hain of models. (By hA

i

j i 2 Ii we mean the

funtion f with domain I suh that f(i) = A

i

for eah i. We shall often use

suh notation.)

Let h/; hA

i

j i 2 Iii be a hain of models for a language L. Let A =

S

i2I

A

i

(i.e.,

S

fA

i

j i 2 Ig). We de�ne a model A with universe A as

follows:

(i) For onstants  of L, set 

A

= 

A

i

for some (all) i 2 I.

(ii) Let F be a k-plae funtion symbol of L and let a

1

; : : : ; a

k

be elements

of A. There is an i suh that all the a

m

belong to A

i

. For some (any)

suh i, set F

A

(a

1

; : : : ; a

k

) = F

A

i

(a

1

; : : : ; a

k

).

(iii) Let P be a k-plae funtion symbol of L and let a

1

; : : : ; a

k

be elements

of A. For some (any) i suh that all the a

m

belong to A

i

, de�ne

P

A

(a

1

; : : : ; a

k

)$ P

A

i

(a

1

; : : : ; a

k

).

Note that A

i

� A for eah i 2 I. We all A the union of the hain of models.

A hain of models h/; hA

i

j i 2 Iii is an elementary hain if

(8i 2 I)(8j 2 I)(i / j ! A

i

� A

j

) :

Theorem 3.6. Let A be the union of an elementary hain h/; hA

i

j i 2 Iii.

Then A

i

� A for every i 2 I.

Proof. By indution on the omplexity of formulas '(x

1

; : : : ; x

n

), we show

that

(8i 2 I)(8a

1

; : : : ; a

n

2A

i

)(A

i

j= '[a

1

; : : : ; a

n

℄$ A j= '[a

1

; : : : ; a

n

℄) :

The ases that ' is atomi, that it is a negation, and that it is a on-

juntion are routine.

For the ase that ' is (9y) for some formula  (y; x

1

; : : : ; x

n

), let i 2 I

and assume �rst that A

i

j= '[a

1

; : : : ; a

n

℄. Then there is a b 2 A

i

suh

that A

i

j=  [b; a

1

; : : : ; a

n

℄. By indution, A j=  [b; a

1

; : : : ; a

n

℄ and hene

A j= '[a

1

; : : : ; a

n

℄.

Now suppose that A j= '[a

1

; : : : ; a

n

℄. Let b 2 A be suh that A j=

 [b; a

1

; : : : ; a

n

℄. There is a j 2 I with i / j or i = j and suh that b 2 A

j

. By

indution we get that A

j

j=  [b; a

1

; : : : ; a

n

℄ and so that A

j

j= '[a

1

; : : : ; a

n

℄.

Sine A

i

� A

j

, it follows that A

i

j= '[a

1

; : : : ; a

n

℄. �

Exerise 3.1. Let (!;<) be the obvious model for the language f<g. (We

shall frequently speify models in this way.) For models A of Th(!;<)|we
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omit a set of parentheses for appearane's sake|and elements a and b of

A, say that a �

A

b if there are only �nitely many elements of A that are

between a and b with respet to <

A

. Let [a℄

A

be the equivalene lass of

a 2 A with respet to �

A

. Say that [a℄

A

<<

A

[b℄

A

if a<

A

b and there are

in�nitely many  suh that a<

A

<

A

b. Use elementary hains to show that

there is a model B of Th(!;<) suh that <<

B

is a dense linear ordering of

the set of equivalene lasses of �

B

with no last element.

Hint. First show that, for any model A of Th(!;<); there is an elemen-

tary extension C of A with the following properies:

(1) (8a 2A)(9 2C) [a℄

C

<<

C

[℄

C

;

(2) (8a 2A)(8a

0

2A)([a℄

A

<<

A

[a

0

℄

A

! (9 2C) [a℄

C

<<

C

[℄

C

<<

C

[a

0

℄

C

).

(Note that [a℄

C

= [a℄

A

for a 2 A.) To show that C exists, use ompatness

and Theorem 3.1. Your expanded language ould have one or in�nitely many

onstants for eah instane of (2), though one onstant suÆes to take are

of (1).

If A and B are models for a language L, f is an elementary embedding

of A into B (f : A � B or A

f

� B) if, for all formulas '(x

1

; : : : ; x

n

)

of L and any elements a

1

; : : : ; a

n

of A, A j= '[a

1

; : : : ; a

n

℄ if and only if

B j= '[f(a

1

); : : : ; f(a

n

)℄.

A theory in a language L is a set � of sentenes suh that whenever

� j= � then � 2 �. A theory in L is omplete if it is onsistent and, for

every sentene � of L, either � or :� belongs to �.

Theorem 3.7 (Robinson Joint Consisteny Theorem). (Uses Choie.)

Let L

0

and L

00

be languages and let L = L

0

\L

00

. Let T

0

be a onsistent theory

in L

0

. Let T

00

be a onsistent theory in L

00

. Let T be a omplete theory in L

suh that T � T

0

\ T

00

. Then T

0

[ T

00

is onsistent.

Remark. The statement of the theorem is somewhat impreise. By

saying that L = L

0

\ L

00

we mean to imply that the only ommon symbols

of L

0

and L

00

are those of L, and that eah of these ommon symbols is the

same kind of symbol in the three languages.

Proof. In order to do an elementary hain onstrution, we need the fol-

lowing two lemmas.
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Lemma 3.8. (Uses Choie.) Let L

1

and L

2

be languages eah of whih

extends a language L

0

. Let A and B be models for L

1

and L

2

respetively.

Suppose that

Th(A � L

0

) = Th(B � L

0

) ;

where, e.g., A � L

0

is the redut of A to L

0

. Then there is a model A

�

for

L

1

and there is a funtion g suh that

(i) A � A

�

;

(ii) g : B � L

0

� A

�

� L

0

.

Proof. We may assume that the onstants of (L

1

)

A

n L

1

are not symbols

of (L

2

)

B

and vie versa. We may also assume that (L

0

)

B

and (L

2

)

B

have

the same onstants 

b

.

We �rst show that Th((B � L

0

)

B

) [ Th(A

A

) is onsistent. Assume oth-

erwise. Using ompatness and forming onjuntions, we get that there are

sentenes � 2 Th((B �L

0

)

B

) and � 2 Th((A)

A

) suh that f�; �g is inonsis-

tent. Hene � j= :� . There is a formula '(x

1

; : : : ; x

n

) of L

0

suh that � is

'(

1

; : : : ; 

n

) for onstants 

1

; : : : ; 

n

of (L

0

)

B

nL

0

. Hene '(

1

; : : : ; 

n

) j= :� .

Sine the onstants 

1

; : : : ; 

n

are not onstants of (L

1

)

A

, we an apply n

times property (XII) of j= and get that

(9x

1

) � � � (9x

n

)'(x

1

; : : : ; x

n

) j= :� :

The sentene (9x

1

) � � � (9x

n

)'(x

1

; : : : ; x

n

) belongs to Th(B�L

0

). By hypoth-

esis it must then belong to Th(A �L

0

), and so to Th(A

A

). This ontradits

the fat that it implies :� .

Let C be a model of Th((B �L

0

)

B

) [Th(A

A

). By Theorem 3.1, there is

a model A

�

for L

1

suh that

A � A

�

�

=

C � L

1

:

The funtion b 7! 

b

C

is an elementary embedding of B � L

0

into C � L

0

�

=

A

�

� L

0

, so we get a g satisfying (ii). �

Lemma 3.9. (Uses Choie). Let L

0

, L

1

, L

2

, A, and B be as in Lemma 3.8.

In addition, let

f : A � L

0

� B � L

0

:

Then there are A

�

and g satisfying (i) and (ii) of Lemma 3.8 and suh that

(iii) g Æ f is the identity.
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Proof. We assume that (L

0

)

A

and (L

1

)

A

have the same onstants 

a

, and

we let (L

2

)

A

be the extension of L

2

with these same onstants, whih we

assume are not symbols of L

2

. Let

^

B be the expansion of B to (L

2

)

A

gotten

by setting 

a

^

B

= f(a) for eah a 2 A. The hypotheses of Lemma 3.8 are

satis�ed by the languages (L

0

)

A

, (L

1

)

A

, and (L

2

)

A

and the models A

A

and

^

B. By that lemma, we get

~

A and g suh that

(1) A

A

�

~

A ;

(2) g :

^

B � (L

0

)

A

�

~

A � (L

0

)

A

:

Let A

�

=

~

A � L

1

. Clause (i) follows from (1), and lause (ii) follows from

(2). (Note that g is literally a funtion with domain B.) For (iii), let a 2 A.

Then

g(f(a)) = g(

a

^

B

) = 

a

~

A

= 

a

A

A

= a . �

Let A

0

andB

0

be models of T

0

and T

00

respetively. Applying Lemma 3.8

with languages L, L

00

, and L

0

and models B

0

and A

0

, we get B

1

� B

0

and

f

0

: A

0

� L � B

1

� L.

Suppose indutively that we have (1) a model A

n

of T

0

, (2) a modelB

n+1

of T

00

, and (3) an elementary embedding f

n

: A

n

� L � B

n+1

� L. Applying

Lemma 3.9 with languages L, L

0

, and L

00

and models A

n

and B

n+1

, we get

A

n+1

� A

n

and g

n+1

: B

n+1

� L � A

n+1

� L, suh that g

n+1

Æ f

n

is the

identity. By another appliation of Lemma 3.9, we get B

n+2

� B

n+1

and

f

n+1

: A

n+1

� L � B

n+2

� L, suh that f

n+1

Æ g

n+1

is the identity.

Both h<; hA

n

j n 2 !ii and h<; hB

n

j n 2 !ii are elementary hains.

Moreover, for eah n 2 !,

f

n

= (f

n+1

Æ g

n+1

) Æ f

n

= f

n+1

Æ (g

n+1

Æ f

n

) = f

n+1

� A

n

:

Similarly g

n+1

= g

n+2

�B

n+1

for eah n 2 !.

Let A and B the unions of the elementary hains h<; hA

n

j n 2 !ii and

h<; hB

n

j n 2 !ii. By Theorem 3.6, A j= T

0

and B j= T

00

.

Let f : A! B be given by f =

S

n2!

f

n

and let g : B ! A be given by

g =

S

n2!

g

n

. It is easy to see that f and g are inverses of one another and

that f : A � L

�

=

B � L. De�ne an expansion C of A to L

0

[ L

00

by making

f : C � L

00

�

=

B. The model C witnesses that T

0

[ T

00

is onsistent. �

Corollary 3.10 (Craig's Lemma). Let � and � be sentenes of some lan-

guage suh that � j= � . Then there is a sentene � of the language suh that

every onstant, funtion symbol, and relation symbol ourring in � ours

in both � and � and suh that � j= � and � j= � .
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Proof. Let the non-logial symbols of L be those ourring in both � and

� . Let the non-logial symbols of L

0

be those ourring in �, and let the

non-logial symbols of L

00

be those ourring in � . Let T

0

be the set of all

sentenes � of L suh that � j= �. If T

0

j= � , then we get the desired � by

ompatness. Let then A be a model for L

00

suh that A j= T

0

[ f:�g. Let

T

00

= Th(A) and let T = Th(A � L). Let T

0

be the set of onsequenes in

L

0

of T [f�g. If T

0

were inonsistent, then ompatness would give a � 2 T

suh that � j= :�. This would yield the ontradition that � j= :� and

so that :� 2 T

0

� T . Thus the hypotheses of Theorem 3.7 are satis�ed.

By that theorem, T

0

[ T

00

is onsistent, ontraditing the assumption that

� j= � . �

Let L be a language, and let L [ fP; P

0

g be the result of adding to L

new k-plae relation symbols P and P

0

. Let �(P ) be a set of sentenes of

L [ fPg and let �(P

0

) result from �(P ) by replaing eah ourrene of P

by an ourrene of P

0

.

We say that �(P ) de�nes P impliitly if

�(P ) [ �(P

0

) j= (8x

1

) � � � (8x

k

)(P (x

1

; : : : ; x

k

)$ P

0

(x

1

; : : : ; x

k

)) :

(In other words, if A is a model for L, then there is at most on way to

expand A to a model of �(P ).)

We say that �(P ) de�nes P expliitly if there is a formula '(x

1

; : : : ; x

k

)

of L suh that

�(P ) j= (8x

1

) � � � (8x

k

)(P (x

1

; : : : ; x

k

)$ '(x

1

; : : : ; x

k

)) :

Theorem 3.11 (Beth's Theorem). (Uses Choie.) �(P ) de�nes P im-

pliitly if and only if �(P ) de�nes P expliitly.

Proof. The \if" part of the theorem is obvious. For the \only if" part,

assume that �(P ) de�nes P impliitly.

Adjoin new onstants 

1

; : : : ; 

k

to L. We have that

�(P ) [ �(P

0

) j= P (

1

; : : : ; 

k

)! P

0

(

1

; : : : ; 

k

) :

By ompatness, we get a �nite � � �(P ) and a �nite �

0

� �(P

0

) suh

that

� [�

0

j= P (

1

; : : : ; 

k

)! P

0

(

1

; : : : ; 

k

) :

We may assume without loss of generality that �

0

is the set of sentenes

that result from � when all ourrenes of P are replaed by ourrenes of

P

0

.
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Let �(P ) be the onjuntion of all the members of � and let �(P

0

) be

the onjuntion of all the members of �

0

. Then

�(P ) ^ �(P

0

) j= P (

1

; : : : ; 

k

)! P

0

(

1

; : : : ; 

k

) :

From this it follows that

�(P ) ^ P (

1

; : : : ; 

k

) j= �(P

0

)! P

0

(

1

; : : : ; 

k

) :

By Craig's Lemma there is a sentene �(

1

; : : : ; 

k

) of L [ f

1

; : : : ; 

k

g suh

that

(a) �(P ) ^ P (

1

; : : : ; 

k

) j= �(

1

; : : : ; 

k

) ;

(b) �(

1

; : : : ; 

k

) j= �(P

0

)! P

0

(

1

; : : : ; 

k

) .

From (b) we it follows that

�(

1

; : : : 

k

) j= �(P )! P (

1

; : : : ; 

k

) ;

and so that

�(P ) j= �(

1

; : : : 

k

)! P (

1

; : : : 

k

) :

But (a) implies that

�(P ) j= P (

1

; : : : ; 

k

)! �(

1

; : : : ; 

k

) :

Hene

�(P ) j= P (

1

; : : : ; 

k

)$ �(

1

; : : : ; 

k

) :

Sine 

1

; : : : ; 

k

do not our in �(P ),

�(P ) j= (8x

1

) � � � (8x

k

)(P (x

1

; : : : ; x

k

)$ �(x

1

; : : : ; x

k

)) :

Sine �(P ) j= �(P ), the proof is omplete. �

Exerise 3.2. Prove the Robinson Joint Consisteny Theorem diretly from

Craig's Lemma.

Exerise 3.3. A model a for a language L is �nitely generated if there is a

�nite X � A suh that there is no B ( A with X � B. Let T be a theory

in L and let A be a model for L. Assume that every �nitely generated

submodel of A is isomorphi to a submodel of a model of T . Show that A

is isomorphi to a submodel of a model of T .

Hint. First prove an analogue of Theorem 3.1 for �.
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Exerise 3.4. Let L be a language ontaining a two-plae relation symbol

R. If A is a model for L, then an end extension of A (with respet to R) is

a B ) A suh that

(8a 2 A)(8a 2B n A)(R

B

(a; b) ^ :R

B

(b; a)) :

Let T be a theory in L and suppose that every ountable model of T has

an elementary end extension. Show that every ountable model of T has an

unountable elementary end extension.

Assume until further notie that L is a ountable language.

For n 2 !, an n-type (in L) is a set �(x

1

; : : : ; x

n

) of formulas with only

the (distint) variables x

1

; : : : ; x

n

free and suh that

(1) If new onstants 

1

; : : : ; 

n

are adjoined to L, then f'(

1

; : : : ; 

n

) j

'(x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

)g is onsistent.

(2) If ' is a formula of L with only x

1

; : : : ; x

n

free, then either ' 2

�(x

1

; : : : ; x

n

) or :' 2 �(x

1

; : : : ; x

n

).

A 0-type is just a omplete theory.

If T is a theory in L, an n-type of T is n-type of whih T is a subset.

A model A for L realizes an n-type �(x

1

; : : : ; x

n

) if there are elements

a

1

; : : : ; a

n

of A suh that

(8' 2 �(x

1

; : : : ; x

n

))A j= '[a

1

; : : : ; a

n

℄ :

If A does not realize �(x

1

; : : : ; x

n

), then we say that A omits �(x

1

; : : : ; x

n

).

If A is a model for L and Y � A, let L

Y

ome from L by adding the new

onstants 

a

for a 2 Y . Let A

Y

be the obvious expansion of A to L

Y

.

For in�nite ardinal numbers �, a model A is �-saturated if, for every

Y � A with jY j < �, A

Y

realizes every one-type �(x) of Th(A

Y

). If A is

jAj-saturated, then A is saturated. If A is both ountable and !-saturated

(i.e. �

0

-saturated), then A is ountably saturated.

Theorem 3.12. Let T be a omplete theory in L. Then T has a ountably

saturated model if and only if, for all n 2 !, T has only ountably many

n-types.

Proof. Suppose that A is an !-saturated model of T . We show by indution

on n that every n-type of T is realized in A. The ase n = 0 is trivial. (So

is the ase n = 1: take Y = ;.)
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Let n 2 ! and let �(x

1

; : : : ; x

n+1

) be an n+1-type of T . Let

�

�(x

1

; : : : ; x

n

)

� �(x

1

; : : : ; x

n+1

) be the orresponding n-type of T . By indution, let

a

1

; : : : ; a

n

be elements of A suh that

(8'(x

1

; : : : ; x

n

) 2

�

�(x

1

; : : : ; x

n

))A j= '[a

1

; : : : ; a

n

℄ :

Let Y = fa

1

; : : : ; a

n

g. Let

�

�

(x

n+1

) = f'(

a

1

; : : : ; 

a

n

; x

n+1

) j '(x

1

; : : : ; x

n+1

) 2 �(x

1

; : : : ; x

n+1

)g :

If  is a new onstant, then

f () j  (x

n+1

) 2 �

�

(x

n+1

)g

= f'(

a

1

; : : : ; 

a

n

; ) j '(x

1

; : : : ; x

n+1

) 2 �(x

1

; : : : ; x

n+1

)g ;

and so this set is onsistent. The set �

�

(x

n+1

) fails to satisfy requirement (2)

for being a type in L

Y

, but it satis�es (2) exept for formulas ' of L

Y

that

ontain an ourrene of some 

a

i

within the sope of a quanti�er ontaining

the orresponding x

i

. Moreover �

�

(x

n+1

) fails only for the same trivial

reason to inlude Th(A

Y

). Thus there is a one-type �

��

(x

n+1

) of Th(A

Y

)

suh that �

�

(x

n+1

) � �

��

(x

n+1

). By !-saturation, let a

n+1

2 A be suh

that A

Y

j=  [a

n+1

℄ for all  (x

n+1

) 2 �

��

(x

n+1

). Thus A j= '[a

1

; : : : ; a

n+1

℄

for all '(x

1

; : : : ; x

n+1

) 2 �(x

1

; : : : ; x

n+1

), so A realizes �(x

1

; : : : ; x

n+1

).

To see that what we have proved implies the \only if" part of the the-

orem, suppose that A is a ountably saturated model of T . Sine

n

A is

ountable, A realizes only ountably many n-types. But these are all the

n-types of T .

For the \if" part of the theorem, �rst let A be a ountable model of T .

(Reall that L is ountable.) We show that there is a ountable B suh that

A � B and, for all �nite Y � A and all one-types �(x) of Th(A

Y

), B

Y

realizes �(x). Starting with some ountable model A

0

of T and repeatedly

applying this lemma, we get

A

0

� A

1

� A

2

� � � � ;

suh that eah (A

i+1

)

Y

is ountable and realizes eah one-type of (A

i

)

Y

for

eah �nite Y � A

i

. The union of this elementary hain is thus ountable

and !-saturated.

To show that B exists, let Let

W = fhY;�(x)i j Y � A ^ Y is �nite ^ �(x) is a one-type of Th(A

Y

)g
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and let L

�

be the language

L

A

[ fd

Y;�(x)

j hY;�(x)i 2Wg ;

where the d

Y;�(x)

are new onstants. Sine distint one-types of Th(A

Y

)

give rise to distint (jY j + 1)-types of T , we know that eah Th(A

Y

) has

only ountably many one-types. Thus L

�

is ountable.

Let

� = Th(A

A

) [ f'(d

Y;�(x)

) j hY;�(x)i 2W ^ '(x) 2 �(x)g :

Every �nite subset of � is satis�able in an expansion of A

A

. To see this, let

hY;�(x)i 2W . Then note that, for any �nite onjuntion '(x) of members

of �(x), the sentene (9x)'(x) 2 Th(A

Y

) � Th(A

A

). Thus ompatness

gives a ountable model B

�

of �. Using Theorem 3.1, let B be isomorphi

to the redut of B

�

to L and suh that A � B. �

Exerise 3.5. Prove that a model A is �-saturated if and only if, for every

n 2 ! and every Y � A with jY j < �, A

Y

realizes every n-type �(x) of

Th(A

Y

). (You don't have to give the detailed argument.)

Exerise 3.6. Let T be a omplete theory and suppose that all ountable

models of T are !-saturated. Show that all models of T are !-saturated.

Exerise 3.7. A set x is hereditarily ountable if the transitive losure of x

is ountable. Let A be the model for the language of set theory whih has

the set of all hereditarily ountable sets as its universe and whih is suh

that 2

A

=2�A. Prove that A realizes unountably many one-types of Th(A).

Hint. The set P(!) is unountable.

Theorem 3.13. Let T be a omplete theory in L. Any two ountably satu-

rated models of T are isomorphi.

Proof. Let A and B be ountably saturated models of T . Let Y � A and

Z � B be suh that Y and Z are �nite. Let Y = fa

1

; : : : ; a

n

g. Suppose that

f : Y ! Z is one-one onto and is suh that, for all formulas '(x

1

; : : : ; x

n

)

of L,

A j= '[a

1

; : : : ; a

n

℄ $ B j= '[f(a

1

); : : : ; f(a

n

)℄ :

Let a 2 A. We show that there is a b 2 B suh that, for all formulas

'(x

1

; : : : ; x

n+1

) of L,

A j= '[a

1

; : : : ; a

n

; a℄ $ B j= '[f(a

1

); : : : ; f(a

n

); b℄ :
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To show this, let �(x

n+1

) be the one-type of Th(A

Y

) given by a. Let

~

�(x

n+1

) = f'(

f(a

1

)

; : : : ; 

f(a

n

)

; x

n+1

) j '(

a

1

; : : : ; 

a

n

; x

n+1

) 2 �(x

n+1

)g :

Clearly

~

�(x

n+1

) is a one-type of Th(B

Z

). By saturation, B

Z

realizes this

one-type. Let b witness this fat.

We an prove by the same method that for every b 2 B there is an a 2 A

suh that, for all formulas '(x

1

; : : : ; x

n+1

) of L,

A j= '[a

1

; : : : ; a

n

; a℄ $ B j= '[f(a

1

); : : : ; f(a

n

); b℄ :

Sine A and B are ountable, these fats allow us, starting with the

empty f : ; ! ;, to onstrut by reursion an isomorphism g : A

�

=

B. �

Theorem 3.14. Let T be a omplete theory. Any two saturated models of

T of the same ardinality are isomorphi.

Proof. The proof is a diret generalization of the proof of Theorem 3.13,

so we omit it. �

Let T be a theory (in L). A type �(x

1

; : : : ; x

n

) of T is prinipal if there

is a �nite �(x

1

; : : : ; x

n

) � �(x

1

; : : : ; x

n

) suh that, for all  (x

1

; : : : ; x

n

) 2

�(x

1

; : : : ; x

n

),

(8x

1

) � � � (8x

n

)(

VV

�(x

1

; : : : ; x

n

)!  (x

1

; : : : ; x

n

)) 2 T ;

where

VV

�(x

1

; : : : ; x

n

) is the onjuntion of all the formulas belonging to

�(x

1

; : : : ; x

n

).

Theorem 3.15. Let T be a theory in L and let n 2 !. The following are

equivalent:

(a) There is a non-prinipal n-type of T .

(b) There are in�nitely many n-types of T (for �xed x

1

; : : : ; x

n

).

Proof. To show that (a) implies (b), let �(x

1

; : : : ; x

n

) be a non-prinipal

n-type of T . Let k 2 ! and assume that

�

0

(x

1

; : : : ; x

n

); : : : ;�

k�1

(x

1

; : : : ; x

n

)

are the only n-types of T that are distint from �(x

1

; : : : ; x

n

). For eah

i < k let

'

i

(x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) n �

i

(x

1

; : : : ; x

n

) :
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Let �(x

1

; : : : ; x

n

) = f'

i

j i < kg. Sine �(x

1

; : : : ; x

n

) is non-prinipal, there

is a  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) suh that

� = T [ f(9x

1

) � � � (9x

n

)(

VV

�(x

1

; : : : ; x

n

) ^ : (x

1

; : : : ; x

n

))g

is onsistent. Let A be a model of �. Let a

1

; : : : ; a

n

be members of A suh

that

A j= (

VV

�(x

1

; : : : ; x

n

) ^ : (x

1

; : : : ; x

n

))[a

1

; : : : ; a

n

℄:

Then

f'(x

1

; : : : ; x

n

) j A j= '[a

1

; : : : ; a

n

℄g

is an n-type of T that is distint from �(x

1

; : : : ; x

n

) and from eah of the

�

i

(x

1

; : : : ; x

n

).

For the impliation from (b) to (a), let '

i

, i 2 !, be all formulas of

L with only x

1

; : : : ; x

n

free. Let k 2 ! and assume indutively that, for

eah i < k,  

i

is either '

i

or :'

i

. Also assume indutively that there are

in�nitely many n-types of T that inlude f 

i

j i < kg. Obviously there is a

hoie of '

k

that satis�es our indution hypotheses for k + 1. Thus we get

f 

i

j i 2 !g, an n-type of T . If �(x

1

; : : : ; x

n

) witnessed that this type were

prinipal, then there would be a k with �(x

1

; : : : ; x

n

) � f 

i

j i < kg. But

in�nitely many n-types of T inlude this set. �

Theorem 3.16. Let T be a theory in L and let �(x

1

; : : : ; x

n

) be a non-

prinipal type of T . Then T has a ountable model that omits �(x

1

; : : : ; x

n

).

Proof. Let 

i

, i 2 !, be new onstants. Let L

�

= L [ f

i

j i 2 !g. We

shall onstrut a theory T

�

� T in L

�

suh that

(1) T

�

is onsistent;

(2) if (9x)'(x) 2 T

�

then '(

i

) 2 T

�

for some i 2 !;

(3) T

�

is omplete;

(4) for all i

1

; : : : ; i

n

2 !, there is a '(x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) suh that

'(

i

1

; : : : ; 

i

n

) =2 T

�

.

The existene of suh a T

�

suÆes to prove the theorem, as the following

argument shows. The proof of Theorem 2.1, with T

�

for the � of that

theorem, gives a ountable model A

�

of T

�

suh that

A

�

= f

A

�

j  is a onstant of L

�

g :
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For any onstant  of L

�

, an appliation of (2) with  = x for '(x) shows

that every there is an i suh that  = 

i

2 T

�

. Thus

A

�

= f

i
A

�

j i 2 !g :

This and (4) imply that the redut of A

�

to L omits �.

To onstrut T

�

, we follow the proof of Theorem 2.8, with an extra step

to take are of (4).

Let �

i

, i 2 !, be all sentenes of L

�

Let h(i)

1

; : : : ; (i)

n

i, i 2 !, be all

elements of

n

!.

By reursion, we de�ne sets �

�

of sentenes of L

�

for � � !. We arrange

that

(a) �

0

= T ;

(b) �

!

=

S

f�

n

j n 2 !g ;

() for i < � � !, �

i

� �

�

;

(d) for � � !, �

�

is onsistent;

(e) ard (�

�+1

n �

i

) � 3 for i 2 ! ;

(f) for i 2 !, either �

i

2 �

i+1

or :�

i

2 �

i+1

;

(g) if i 2 !, if �

i

is (9x)'(x), and if �

i

2 �

i+1

, then '(

j

) 2 �

i+1

for some

j 2 !;

(h) for i 2 !, there is some  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) suh that

: (

(i)

1

; : : : ; 

(i)

n

) 2 �

i+1

.

One we arry out this onstrution, we an �nish the proof by setting

T

�

= �

!

.

Assume that i 2 ! and that we are given �

j

, j � i, violating none of

(a){(h).

If �

i

[ f:�

i

g is onsistent, then let �

0

i

= �

i

[ f:�

i

g. Otherwise let

�

0

i

= �

i

[ f�

i

g unless �

i

is (9y)'

i

(y) for some ', in whih ase let �

0

i

=

�

i

[f�

i

; '

i

(

j

)g, where j is minimal suh that 

j

does not our in �

i

or �

i

.

Let z

1

; : : : ; z

n

be distint variables not ourring in any member of �

0

i

nT .

Let � be the onjuntion of all sentenes in �

0

i

n T . Let �� ome from � by

replaing, for 1 � m � n, all ourrenes of x

m

by ourrenes of z

m

. (The

point of this replaement is to make sure that no 

(i)

m

ours in the sope

of (9x

m

).) Let 

j

1

; : : : ; 

j

k

be all the new onstants ourring in �� that

are not among 

(i)

1

; : : : ; 

(i)

n

. Let y

1

; : : : ; y

k

be variables not ourring in ��

that are distint from one another and from x

1

; : : : ; x

n

. There is a formula

�(y

1

; : : : y

k

; x

1

; : : : ; x

n

) of L, suh that �� is �(

j

1

; : : : ; 

j

k

; 

(i)

1

; : : : ; 

(i)

n

).

55



We show that there is a  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) suh that �

0

i

6j=

 (

(i)

1

; : : : ; 

(i)

n

). Assume otherwise. Then

T [ f�(

j

1

; : : : ; 

j

k

; 

(i)

1

; : : : ; 

(i)

n

)g j=  (

(i)

1

; : : : ; 

(i)

n

)

for eah  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

). Properties (XII) and (X) of j= imply

that

T j= (9y

1

) � � � (9y

k

)�(y

1

; : : : ; y

k

; 

(i)

1

; : : : ; 

(i)

n

)!  (

(i)

1

; : : : ; 

(i)

n

)

for eah  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

). Let �

0

(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

) be the

result of adding onjunts x

m

= x

m

0

to �(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

) for 1 � m <

m

0

� n suh that (i)

m

= (i)

m

0

. Then

T j= (8x

1

) � � � (8x

n

)((9y

1

) � � � (9y

k

)�

0

(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

)!  (x

1

; : : : ; x

n

))

for eah  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

). The sentene

(9y

1

) � � � (9y

k

)�

0

(y

1

; : : : ; y

k

; 

(i)

1

; : : : ; 

(i)

n

)

is logially implied by �� , so by � , and so by �

0

i

. Hene this sentene is

onsistent with T . If the formula

(9y

1

) � � � (9y

k

)�

0

(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

)

does not belong to �(x

1

; : : : ; x

n

), then we get a ontradition by taking its

negation for  (x

1

; : : : ; x

n

). Otherwise the formula witnesses that �(x

1

; : : : ; x

n

)

is prinipal, a ontradition.

Let �

i+1

= �

0

i

[ f: (

(i)

1

; : : : ; 

(i)

n

)g for some  (x

1

; : : : ; x

n

) of the sort

we have just proved to exist. �

If T is a theory and � is a ardinal number, then T is �-ategorial if

any two models of T of ardinal � are isomorphi.

Theorem 3.17. Let T be a omplete theory. Then T is �

0

-ategorial if

and only if, for every n 2 !, T has only �nitely many n-types.

Proof. Suppose �rst that T has, for eah n, only �nitely many n-types.

We show that every model of T is !-saturated, and so that every ount-

able model of T is saturated. By Theorem 3.13, this implies that T is

�

0

-ategorial.
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Let A be a model of T . Let Y = fb

1

; : : : ; b

m

g be a �nite subset of A.

Let �(x

1

; : : : ; x

n

) be an n-type of Th(A

Y

). Let

~

�(x

1

; : : : ; x

n+m

) be

f'(x

1

; : : : ; x

n+m

) j '(x

1

; : : : ; x

n

; 

b

1

; : : : ; 

b

m

) 2 �(x

1

; : : : ; x

n

)g :

Clearly

~

�(x

1

; : : : ; x

n+m

) is an (n + m)-type of T . By Theorem 3.15, let

~

�(x

1

; : : : ; x

n+m

) witness that

~

�(x

1

; : : : ; x

n+m

) is prinipal. If 

1

; : : : ; 

n

are

new onstants, then

f'(

1

; : : : ; 

n

; 

b

1

; : : : ; 

b

m

) j '(x

1

; : : : ; x

n+m

) 2

~

�(x

1

; : : : ; x

n+m

)g

is onsistent with Th(A

Y

). Let �(x

1

; : : : ; x

n

) be

f'(x

1

; : : : ; x

n

; 

b

1

; : : : ; 

b

m

) j '(x

1

; : : : ; x

n+m

) 2

~

�(x

1

; : : : ; x

n+m

)g :

Then

(9x

1

) � � � (9x

n

)

VV

�(x

1

; : : : ; x

n

) 2 Th(A

Y

) :

Let a

1

; : : : ; a

n

be suh that A

Y

j= (

VV

�(x

1

; : : : ; x

n

))[a

1

; : : : ; a

n

℄. Beause

the set

~

�(x

1

; : : : ; x

n+m

) witnesses that

~

�(x

1

; : : : ; x

n+m

) is prinipal, we have

that A j= '[a

1

; : : : ; a

n

; b

1

; : : : ; b

m

℄ for all '(x

1

; : : : ; x

n+m

) 2

~

�(x

1

; : : : ; x

n+m

).

It follows that A

Y

j=  [a

1

; : : : ; a

n

℄ for all  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

).

Now suppose that n 2 ! and that T has in�nitely many n-types. By

Theorem 3.15, let �(x

1

; : : : ; x

n

) be a non-prinipal n-type of T . Clearly

T has no �nite models. Thus it is enough to show that T has a ount-

able model that realizes �(x

1

; : : : ; x

n

) and a ountable model that omits

�(x

1

; : : : ; x

n

). The former an be proved by a simple ompatness argu-

ment and the L�owenheim{Skolem theorem. The latter is a onsequene of

Theorem 3.16. �

Example of an �

0

-ategorial theory: Let L be f<g. Let T be the theory

of dense linear orderings without endpoints.

To see that T is �

0

-ategorial, let A and B be ountable models of T .

Let a

1

; : : : ; a

n

be elements of A and let b

1

; : : : ; b

n

be elements of B. Suppose

suppose that a

i

7! b

i

is order preserving (i.e., that a

i

<

A

a

j

if and only if

b

i

<

B

b

j

). Let a 2 A. One of the following must hold:

(i) a = a

i

for some i;

(ii) a<

A

a

i

for all i;

(iii) a

i

<

A

a for all i;

(iv) a

i

<

A

a<

A

a

j

for some i and j suh that there is no a

k

with a

i

<

A

a

k

<

A

a

j

.
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Sine B j= T , there must be a b 2 B suh that whihever of (i){(iv) holds

ontinues to hold when eah ourrene of the letter \a" is replaed by \b"

and eah ourrene of \A" is replaed by \B". Choosing suh a b, we an

send a to b and extend the given order preserving orrespondene. This

argument and its dual allow us to show A

�

=

B by a onstrution like that

of the proof of Theorem 3.13,

The argument allows us, moreover, to onstrut an isomorphism extend-

ing any given order preserving orrespondene between �nite subsets of A

and B. Hene our given ha

i

j i < ni and hb

i

j i < ni satisfy exatly

the same formulas in their respetive models. This shows that eah n-type

�(x

1

; : : : ; x

n

) of T is determined by a onjuntion of formulas of the forms

x

i

= x

j

and x

i

<x

j

.

We �nish our study of types by disussing briey the onept of stability.

For ardinal numbers �, a theory T is �-stable if, for every model A of T

and every Y � A, if ard (Y ) � � then Th(A

Y

) has � � one-types. A theory

T is stable if T is �-stable for some in�nite �.

Theorem 3.18. Let T be a theory in L. If T is !-stable, then T is �-stable

for every in�nite �.

Proof. Let � be an in�nite ardinal, and suppose that T is not �-stable.

Let A

Y

witness this fat. By reursion on `h(s), we de�ne for eah s 2

<!

2,

a formula '

s

(x) of L

Y

. We shall arrange that

(a) for eah s 2

<!

2, '

s[fh`h(s);0ig

is the negation of '

s[fh`h(s);1ig

;

(b) for eah s 2

<!

2, there are more than � one-types of Th(A

Y

) that

inlude f'

t

j t � sg.

It will follow that the f'

s

j s � xg, x 2

!

!, an be extended to distint one

types of Th(A

Z

), where Z is the set of all a 2 Y suh that 

a

ours in some

'

s

.

Let '

;

be x = x. Let s 2

<!

! and assume that '

t

is de�ned for t � s

and has property (b). Let n = `h(s). If we annot de�ne '

s[fhn;0ig

and

'

s[fhn;1ig

so as to satisfy (a) and (b), then there is a type �(x) of Th(A

Y

)

suh that f'

t

j t � sg � �(x) and suh that, for any  (x) 2 �(x), no

more than � one-types of Th(A

Y

) inlude f'

t

j t � sg [ f: g. This is a

ontradition.

�
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Exerise 3.8. Show that the theory of dense linear orderings without end-

points is not !-stable.

Hint. Consider the model (Q;<), where Q is the set of all rational

numbers. Let Y = Q.

Exerise 3.9. Let T be a omplete theory with a ountably saturated

model. Prove that T has a model that is atomi, i.e., realizes no non-

prinipal types.

Hint. Generalize Theorem 3.16.

Exerise 3.10. Let add onstants 

i

, i 2 ! to the language f<g. Let T

be gotten from the theory of dense linear orderings without endpoints by

adding the additional axioms 

i

<

j

for i < j 2 !. Prove that there are

exatly 3 non-isomorphi expansions of (Q;<) to a model of T . Whih of

these is saturated and whih is atomi?

Exerise 3.11. Show that the theory of algebraially losed �elds of har-

ateristi 0 is not �

0

-ategorial but is �-ategorial for every unountable

ardinal �.

We now drop our assumption that L is ountable.

Let L be a language, let I be a non-empty set, and let A

i

, i 2 I be

models for L. Let U be an ultra�lter on I.

We de�ne A =

Q

i2I

A

i

=U , the ultraprodut of hA

i

j i 2 Ii with respet

to U , as follows:

Let

Q

i2I

A

i

be the set of all funtions f suh that domain (f) = I and

eah f(i) 2 A

i

. For elements f and g of

Q

i2I

A

i

, de�ne

f �

U

g $ fi 2 I j f(i) = g(i)g 2 U :

Let [[f ℄℄

U

be the equivalene lass of f with respet to the equivalene relation

�

U

. Let

A = f[[f ℄℄

U

j f 2

Y

i2I

A

i

g :

If P is a k-plae relation symbol of L, let

P

A

([[f

1

℄℄

U

; : : : ; [[f

n

℄℄

U

) $ fi 2 I j P

A

i

(f

1

(i); : : : ; f

n

(i))g 2 U :

If  is a onstant of L, let 

A

= [[f ℄℄

U

, where f(i) = 

A

i

. If F is a k-

plae funtion symbol of L, set F

A

([[f

1

℄℄

U

; : : : ; [[f

n

℄℄

U

) = [[f ℄℄

U

, where f(i) =

F

A

i

(f

1

(i); : : : f

n

(i)). It is easy to hek that A is well-de�ned.
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Theorem 3.19 ( Lo�s). (Uses Choie) For eah formula '(x

1

; : : : ; x

n

) of L

and for any elements f

1

; : : : ; f

n

of

Q

i2I

A

i

,

Y

i2I

A

i

=U j= '[[[f

1

℄℄

U

; : : : ; [[f

n

℄℄

U

℄ $ fi 2 I j A

i

j= '[f

1

(i) : : : ; f

n

(i)℄g 2 U :

Proof. Let A =

Q

i2I

A

i

=U . We proeed by indution on '. We omit the

subsipt \U ."

The ase that ' is atomi is essentially by de�nition. If ' is : , then

A j= '[[[f

1

℄℄; : : : ; [[f

n

℄℄℄ if and only if A 6j=  [[[f

1

℄℄; : : : ; [[f

n

℄℄℄. By indution,

this holds if and only if fi j A

i

j=  [f

1

(i); : : : ; f

n

(i)℄g =2 U . Sine U is an

ultra�lter, this holds if and only if fi j A

i

j= '[f

1

(i); : : : ; f

n

(i)℄g 2 U . We

omit the routine ase that ' is a onjuntion.

Suppose that '(x

1

; : : : ; x

n

) is (9y) (y; x

1

; : : : ; x

n

). Then

A j= '[[[f

1

℄℄; : : : ; [[f

n

℄℄℄ $ (9a 2A)A j=  [a; [[f

1

℄℄; : : : ; [[f

n

℄℄℄

$ (9g 2

Y

i2I

A

i

)A j=  [[[g℄℄; [[f

1

℄℄; : : : ; [[f

n

℄℄℄

$ (9g 2

Y

i2I

A

i

) fi j A

i

j=  [g(i); f

1

(i); : : : ; f

n

(i)℄g 2 U

$ fi j (9b 2A

i

)A

i

j=  [b; f

1

(i); : : : ; f

n

(i)℄g 2 U

$ fi j A

i

j= '[f

1

(i); : : : ; f

n

(i)℄g 2 U :

The Axiom of Choie is needed to show that the next-to-last line implies

the third-to-last line. �

Exerise 3.12. Use ultraproduts to prove the Compatness Theorem.

Hint. Let � be a set of sentenes every �nite subset of whih is onsistent.

Let I be the set of all �nite subsets of �.

Exerise 3.13. Assume that L is ountable. Let U be a non-prinipal

ultra�lter on a ountable set I, i.e., an ultra�lter to whih no singleton fig

belongs. Prove that every ultraprodut

Q

i2I

A

i

=U is �

1

-saturated.

Hint. First show that there are elements U

k

, k 2 !, of U suh that

T

k2!

U

k

=2 U (indeed, so that the intersetion is empty). Then, given a

one-type, hoose f so that, for i 2

T

k

0

<k

U

k

0

n U

k

, f(i) satis�es in A

i

the

�rst k formulas of the type.
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Exerise 3.14. An ultraprodut of the form

Q

i2I

A=U is alled an ultra-

power, and we may all it A

I

=U . For any ultrapower A

I

=U , de�ne an ele-

mentary embedding j : A � A

I

=U .

Exerise 3.15. For � a ardinal number, an ultra�lter U is �-omplete if

the intersetion of any set of fewer than � elements of U belongs to U . A

ountably omplete ultra�lter is one that is �

1

-omplete.

Suppose that U is a ountably omplete ultra�lter on a set I. Let A be

any set. Let B = (A;2�A)

I

=U .

(a) Prove that 2

B

is wellfounded.

(b) Suppose that U is non-prinipal. (The existene of a ountably om-

plete, non-prinipal ultra�lter annot be proved in ZFC.) Show that there

is a largest ardinal � suh that U is �-omplete. Assume that A is tran-

sitive and that � 2 A. Let j be the embedding de�ned in the (natural)

solution to Exerise 3.14. Let B

0

be the set of all \ordinals" of B. Prove

that � : (B

0

;2

B

�B

0

)

�

=

(�;2��) for some ordinal � and some �. Prove that

� is the smallest ordinal number � suh that �(j(�)) 6= �.

Exerise 3.16. The solution to Exerise 3.12 suggested by the hint used

Choie (1) to get that every �lter an be extended to an ultra�lter and (2)

beause the proof of Theorem 3.19 used Choie. (One use was mentioned; an

impliit use was to get

Q

i2I

A

i

non-empty.) Eliminate the uses (2) of Choie

by employing a di�erent I from that suggested in the hint to Exerise 3.12.

In the next setion we shall study theories and models of arithmeti. We

lose the setion on model theory by proving a result about a fragment of

the main theory of the next setion.

If i

1

< � � � < i

n

and if '(v

i

1

; : : : ; v

i

n

) is a formula ontaining free our-

renes of all of v

i

1

; : : : ; v

i

n

, then the universal losure of ' is the sentene

(8v

i

1

) � � � (8v

i

n

)'. The universal losure of a sentene is the sentene itself.

If � is a set of sentenes and ' is a formula, then we say � j= ' if

� j= the universal losure of '. A formula is valid if its universal losure is

valid. Formulas ' and  are equivalent if ('$  ) is valid, and ' and  are

equivalent in T , for T a theory, if T j= ('$  ).

A theory T in a language L admits elimination of quanti�ers if every

formula of L is equivalent in T to a quanti�er-free formula.

Theorem 3.20. Let T be a theory. Assume that, for every formula ' of

the form

(9x)(�

1

^ : : : ^ �

n

);
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with eah �

j

atomi or the negation of an atomi formula, is equivalent in

T to a quanti�er-free formula. Then T admits elimination of quanti�ers.

Proof. Suppose �rst that ' is of the form (9x) , with  quanti�er-free.

It is easy to see that every quanti�er-free formula is equivalent to one of the

form

((�

1;1

^ : : : ^ �

1;n

1

) _ : : : _ (�

m;1

^ : : : ^ �

m;n

m

)) ;

with eah �

i;j

atomi or negation of atomi. Thus we assume ' is

(9x)((�

1;1

^ : : : ^ �

1;n

1

) _ : : : _ (�

m;1

^ : : : ^ �

m;n

m

)) ;

with eah �

i;j

atomi or negation of atomi. But this formula is equivalent

to

((9x)(�

1;1

^ : : : ^ �

1;n

1

) _ : : : _ (9x)(�

m;1

^ : : : ^ �

m;n

m

)) :

By hypothesis, eah of the disjunts is equivalent in T to a quanti�er-free

formula. Hene ' is equivalent in T to a quanti�er free-formula.

The theorem now follows easily by indution on '. �

Let L = f0;Sg, where 0 is a onstant and S is a one-plae funtion

symbol. For n 2 !, let us abbreviate

S(� � �S(

| {z }

n

t ) � � �)

| {z }

n

by S

n

(t).

Theorem 3.21. Th(!; 0;S) admits elimination of quanti�ers.

Proof. Let T = Th(!; 0;S). By Theorem 3.20, it suÆes to prove that every

formula of the form (9x)(�

1

^ : : : ^ �

n

), with eah �

i

atomi or negation of

atomi, is equivalent in T to an quanti�er-free formula. Fix a formula of

this form.

If  and  

0

are formulas and  does not ontain a free ourrene of

the variable y, then (9y)( ^  

0

) is equivalent to  ^ (9y) 

0

. Thus we may

assume that eah �

i

has an ourrene of the variable x.

By the symmetry of identity, eah atomi formula of L that ontains an

ourrene of x is equivalent to one of the form

S

j

(x) = S

k

(t)

where t is 0 or a variable. If t is x, then S

j

(x) = S

k

(t) is equivalent in T to

0 = 0 if j = k and equivalent to 0 6= 0 if j 6= k. Thus we may assume that
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for eah �

i

there are j

i

and t

i

, where t

i

is a term not ontaining x, suh that

�

i

is the equation S

j

i

(x) = t

i

or else is the negation of this equation.

If eah �

i

is the negation of an equation, then it is evident that (!; 0;S)

satis�es the universal losure of (9x)(�

1

^ : : :^�

n

), so this formula is equiv-

alent in T to 0 = 0.

Suppose then that some �

i

is S

j

i

(x) = t

i

. In eah �

m

, m 6= i, we replae

S

j

m

(x) = t

m

by S

j

m

(t

i

) = S

j

i

(t

m

). If we also replae �

i

by

t

i

6= 0 ^ : : : ^ t

i

6= S

j

i

�1

(0)

(or by 0 = 0 if j

i

= 0), then we get a formula equivalent in T to our original

one. The new formula is (9x) , where  has no ourrenes of x; so it is

equivalent to the quanti�er-free formula  . �

From the proof just given, one an extrat a list of axioms for Th(!; 0;S)

(an in�nite list). This gives us a deision proedure for Th(!; 0;S), an

algorithm for deiding whether any given sentene belongs to the theory.

(Simply list all dedutions from the axioms until one is found of the sentene

or its negation.) The proofs of Theorems 3.20 and 3.21 also diretly provide

a deision proedure.
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4 Inompleteness

The theory of (!; 0;S; <), like that of (!;S), admits elimination of quanti-

�ers and is deidable (has a deision proedure). The same is essentially true

of Th(!; 0;S; <;+), though this theory doesn't literally admit elimination

of quanti�ers.

Let N = (!; 0;S; <;+; �). The situation with Th(N) is quite di�erent

from that of its reduts just mentioned. We shall see in this setion just

how di�erent it is.

Let L

PA

be the language f0;S;<;+; �g, for whih we take N to be a

model.

Peano Arithmeti (PA) is the natural attempt to axiomatize N. Peano

Arithmeti is the set of sentenes implied by the following axioms:

Axioms for PA.

(a) Universal losures of the following formulas (where we employ some

obvious abbreviations and onventions):

(1) 0 6= S(v

0

) ;

(2) S(v

0

) = S(v

1

)! v

0

= v

1

;

(3) v

0

6<0 ;

(4) v

0

<S(v

1

)$ v

0

�v

1

;

(5) v

0

+0 = v

0

;

(6) v

0

+S(v

1

) = S(v

0

+v

1

) ;

(7) v

0

�0 = 0 ;

(8) v

0

�S(v

1

) = (v

0

�v

1

)+v

0

.

(b) The Shema of Indution, onsisting of the universal losures of all for-

mulas of the form:

(('(0; x

1

; : : : ; x

n

) ^ (8x

0

)('(x

0

; : : : x

n

)! '(S(x

0

); x

1

; : : : ; x

n

)))

! (8x

0

)'(x

0

; : : : ; x

n

)) :

We wish to study a suÆiently strong �nitely axiomatizable subtheory of

PA. For tehnial reasons, it is easier to work in a language with exponenti-

ation, so we �rst onsider a theory QE whih is not literally a subtheory of

PA. (In this, and in some other things, we are following Herbert Enderton's

A Mathematial Introdution to Logi.)
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Let L

PAE

= L

PA

[ fEg.

QE is the set of sentenes implied by Axioms (1){(8) above and two

additional axioms, the universal losures of:

(9) v

0

E 0 = S(0) ;

(10) v

0

E S(v

1

) = (v

0

E v

1

)�v

0

.

Let N

0

= (!; 0;S; <;+; �; E), where E(a; b) = a

b

. Clearly N

0

j= QE.

Lemma 4.1. For all k 2 !,

QE j= (x<S

k+1

(0) $ (x = 0 _ : : : _ x = S

k

(0))) :

Proof. We proeed by indution on k. By Axiom (4),

QE j= (x<S

k+1

(0)$ (x<S

k

(0) _ x = S

k

(0))) :

If k = 0, our onlusion follows by Axiom (3). If k > 0, it follows by indution.

�

Lemma 4.2. If t is a term without variables and k = t

N

0

, then

QE j= t = S

k

(0) :

Proof. We use indution on the omplexity of t. The ase that t is 0 is

immediate.

Assume that t is S(u). By indution, QE j= u = S

u

N

0

(0). Hene QE j=

S(u) = S

u

N

0

+1

(0).

Assume next that t is u

1

+ u

2

. Let j

1

= (u

1

)

N

0

and let j

2

= (u

2

)

N

0

. By

indution, QE j= u

1

= S

j

1

(0) and QE j= u

2

= S

j

2

(0). Axiom (5) and j

2

appliations of Axiom (6) give that

QE j= S

j

1

(0)+S

j

2

(0) = S

j

1

+j

2

(0) :

Appliations of Axioms (7) and (8) give that QE j= S

j

1

(0)�S

j

2

(0) =

S

j

1

�j

2

(0), for any j

1

and j

2

2 !. This allows us to handle the ase that t

is u

1

�u

2

. The ase that t is u

1

Eu

2

is treated similarly, using Axioms (9)

and (10). �

Let T be a theory in a language L ontaining 0 and S. A formula

'(v

1

; : : : ; v

n

) of L represents R �

n

! in T if, for all elements a

1

; : : : ; a

n

of

!,

R(a

1

; : : : ; a

n

) ! T j= '(S

a

1

(0); : : : ;S

a

n

(0)) ;

:R(a

1

; : : : ; a

n

) ! T j= :'(S

a

1

(0); : : : ;S

a

n

(0)) :
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If some formula represtents R in T , then we say that R is representable in

T .

Representability is related to de�nability. If A is a model and R �

n

A,

then R is de�nable in A if there is a formula '(v

1

; : : : ; v

n

) of L suh that,

for any members a

1

; : : : ; a

n

of A,

R(a

1

; : : : ; a

n

) $ A j= '[a

1

; : : : ; a

n

℄ :

For suh a ', we say that ' de�nes R in A. The relation between repre-

sentability and de�nability is the following. Suppose that A is a model of a

theory T in a language ontaining 0 and S. Suppose also that A = !, that

0

A

= 0, and that S

A

= S. Then any formula that represents a relation in T

also de�nes that relation in A. The onverse is not in general true.

We shall de�ne representability of funtions as well as of relations. A

natural de�nition would be: \'(v

1

; : : : ; v

n+1

) represents f in T if and only

if ' represents the graph of f in T ," where the graph of f is the (n+1)-ary

relation that holds of (a

1

; : : : ; a

n+1

) if and only if f(a

1

; : : : ; a

n

) = a

n+1

. For

tehnial reasons, we shall de�ne a stronger notion, though it will turn out

that the two notions are equivalent for any T ontaining Axioms (1){(4).

If f :

n

! ! ! and T is a theory in a language ontaining 0 and S, then

a formula '(v

1

; : : : ; v

n+1

) represents f in T if, for all a

1

; : : : ; a

n

,

T j= (8v

n+1

)('(S

a

1

(0); : : : ;S

a

n

(0); v

n+1

) $ v

n+1

= S

f(a

1

;:::;a

n

)

(0)) :

Say that f is representable in T if some formula represents f in T .

Note that if T ontains Axioms (1) and (2) and ' represents f in T then

' represents the graph of f in T . We shall say that T proves '(v

1

; : : : ; v

n+1

)

funtional if

T j= (8v

1

) � � � (8v

n

)(9v

n+1

)(8v

n+2

)('(v

1

; : : : ; v

n

; v

n+2

) $ v

n+2

= v

n+1

) :

If T proves '(v

1

; : : : ; v

n+1

) funtional and ' represents the graph of f in T ,

then ' represents f in T . The onverse does not hold in general.

Exerise 4.1. Show that, for every sentene � of L

PAE

that is atomi or

negation of atomi,

QE j= � $ N

0

j= � :

Exerise 4.2. A formula ' of L

PAE

belongs to �

0

(or, as we shall say, is

�

0

) if ' belongs to the smallest set ontaining the atomi formulas and
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losed under negation, onjuntion and bounded quanti�ation. Closure of

�

0

under bounded quanti�ation means that

 2 �

0

!

�

(9x)(x<t ^  ) 2 �

0

;

(9x)(x�t ^  ) 2 �

0

;

for any term t not ontaining x. The �

1

formulas of L

PAE

are those of the

form (9x

1

) � � � (9x

n

) , where  is �

0

.

(a) Prove that, for any �

0

sentene �, QE j= � $ N

0

j= �.

(b) Prove that, for any �

1

sentene �, QE j= � $ N

0

j= �.

A funtion is primitive reursive just in ase (I)-(III) below require it

to be. (I.e., the primitive reursive funtions form the smallest set of fun-

tions ontaining the funtions of (I) and losed under the operations of (II)

and (III).)

(I) The following are primitive reursive.

(a) S : ! ! ! ;

(b) I

n

i

:

n

! ! !, for 1 � i � n 2 !, where I

n

i

(a

1

; : : : ; a

n

) = a

i

;

() All onstant funtions f :

n

! ! ! .

(II) (Composition) If f :

m

! ! ! and g

1

; : : : ; g

m

:

n

! ! ! are primitive

reursive, then so is h, where

h(a

1

; : : : ; a

n

) = f(g

1

(a

1

; : : : ; a

n

); : : : ; g

m

(a

1

; : : : ; a

n

)) :

(III) (Primitive Reursion) If f :

n

! ! ! and g :

n+2

! ! ! are primitive

reursive, then so is h, where

h(a

1

; : : : ; a

n

; 0) = f(a

1

; : : : ; a

n

) ;

h(a

1

; : : : ; a

n

;S(b)) = g(a

1

; : : : ; a

n

; b; h(a

1

; : : : ; a

n

; b)) :

We allow funtions of zero arguments (e.g., the f of (III)), all of whih

are primitive reursive by (I)().

A funtion is reursive just in ase it is required to be by (I)-(III), with

\primitive reursive" replaed by \reursive," plus (IV) below.

(IV) (�-Operator) If g :

n+1

! ! ! is reursive and

(8a

1

2 !) � � � (8a

n

2 !)(9b 2 !) g(a

1

; : : : ; a

n

; b) = 0 ;

then f is reursive, where

f(a

1

; : : : ; a

n

) = �b g(a

1

; : : : ; a

n

; b) = 0 ;

and where \�b" means \the least b."
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Lemma 4.3. The relations and funtions representable in QE are losed

under omplement, intersetion, union, and bounded quanti�ation. Inter-

setion and union we onstrue as operations ating on pairs of relations

that are subsets of the same

n

!. Bounded quanti�ation is the operation

hf;Ri 7! R

0

, where

R

0

(a

1

; : : : ; a

n

)$ (9a

n+1

)(a

n+1

< f(a

1

; : : : ; a

n

) ^ R(a

1

; : : : ; a

n+1

)) :

Proof. If ' represents R, then :' represents the omplement of R; if '

and  represent R and R

0

respetively, then ' ^  represents R \ R

0

; if '

and  represent R and R

0

respetively, then ' _  represents R [R

0

.

To prove losure under bounded quanti�ation, assume that '(v

1

; : : : ; v

n+1

)

and  (v

1

; : : : ; v

n+1

) represent f and R respetively.

Let �(v

1

; : : : ; v

n

) be, for some appropriate variable z,

(9v

n+1

)(9z)('(v

1

; : : : ; v

n

; z) ^ v

n+1

<z ^  (v

1

; : : : ; v

n

; v

n+1

)) :

To see that � represents R

0

in QE, �x numbers a

1

; : : : ; a

n

. Sine '

represents f , we have that

QE j= (8z)('(S

a

1

(0); : : : ;S

a

n

(0); z)$ z = S

f(a

1

;:::;a

n

)

(0)) :

Thus �(S

a

1

(0); : : : ;S

a

n

(0)) is equivalent in QE to

(9v

n+1

)(v

n+1

<S

f(a

1

;:::;a

n

)

(0) ^  (S

a

1

(0); : : : ;S

a

n

(0); v

n+1

)) :

By Lemma 4.1, �(S

a

1

(0); : : : ;S

a

n

(0)) is equivalent in QE to

 (S

a

1

(0); : : : ;S

a

n

(0);0) _ : : : _  (S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)�1

(0)) ;

(or, say, 0 6= 0 if f(a

1

; : : : ; a

n

) = 0). Sine  represents R, this formula

is provable or refutable in QE aording to whether or not R

0

(a

1

; : : : ; a

n

)

holds. �

Lemma 4.4. All the funtions under lause (I) (in the de�nition of the

primitive reursive funtions) are representable in QE.

Proof. Their graphs are represented by atomi formulas whih QE (indeed,

every theory) proves funtional. �

Lemma 4.5. The funtions representable in QE are losed under omposi-

tion (II).
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Proof. Given representable f and g

1

; : : : ; g

m

, as in the statement of (II),

let  

1

(v

1

; : : : ; v

n+1

); : : : ;  

m

(v

1

; : : : ; v

n+1

) represent g

1

; : : : ; g

m

respetively

and let �(v

1

; : : : ; v

m+1

) represent f . Let '(v

1

; : : : ; v

n+1

) be, for appropriate

variables x

1

; : : : ; x

m

,

(9x

1

) � � � (9x

m

)( 

1

(v

1

; : : : ; v

n

; x

1

) ^ : : :

^ 

m

(v

1

; : : : ; v

n

; x

m

) ^ �(x

1

; : : : ; x

m

; v

n+1

)) :

Let a

1

; : : : ; a

n

2 !. For eah j,

QE j=  

j

(S

a

1

(0); : : : ;S

a

n

(0); x

j

)$ x

j

= S

g

j

(a

1

;:::;a

n

)

(0) :

Thus QE j=

'(S

a

1

(0); : : : ;S

a

n

(0); v

n+1

)$ �(S

g

1

(a

1

;:::;a

n

)

(0); : : : ;S

g

m

(a

1

;:::a

n

)

(0); v

n+1

) :

But QE j=

�(S

g

1

(a

1

;:::;a

n

)

(0); : : : ;S

g

m

(a

1

;:::;a

n

)

(0); v

n+1

)

$ v

n+1

= S

f(g

1

(a

1

;:::;a

n

);:::;g

m

(a

1

;:::a

n

))

(0)) :

Therefore QE j=

(8v

n+1

)('(S

a

1

(0); : : : ;S

a

n

(0); v

n+1

) $ v

n+1

= S

f(g

1

(a

1

;:::;a

n

);:::;g

m

(a

1

;:::a

n

))

(0)) :

�

Lemma 4.6. A relation R is representable in QE if and only if its hara-

teristi funtion K

R

is representable in QE, where

K

R

(a

1

; : : : ; a

n

) =

�

1 if R(a

1

; : : : ; a

n

) ;

0 if :R(a

1

; : : : ; a

n

) .

Proof. The proof is routine, and we omit it. �

Our next goal is to show that the funtions representable in QE are losed

under the �-operator (IV). This would be easy if the sentene (8v

1

)(8v

2

)(v

1

<

v

2

_ v

1

= v

2

_ v

2

< v

1

) were provable in QE. We ould have made this sen-

tene an axiom of a strengthening of QE, as does Enderton in the book ited

earlier. But we did not do this, so our argument will be a little ompliated.

Let WC(v

1

) be the following formula:

(0�v

1

^ (8v

2

)(v

2

<v

1

! S(v

2

)�v

1

)) :

Think of WC as \weakly omparable."
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Lemma 4.7. For every natural number k,

(a) QE j= WC(S

k

(0)) ;

(b) QE j= (8v

1

)(WC(v

1

)! (v

1

<S

k

(0) _ v

1

= S

k

(0) _ S

k

(0)<v

1

)) .

Proof. That QE j= WC(0) follows from Axiom (3). Fix k > 0. By Exer-

ise 4.1 (or by Lemma 4.1), we know that QE j= 0�S

k

(0). An appliation

of Lemma 4.1 gives that

QE j= v

2

<S

k

(0)! (v

2

= 0 _ : : : _ v

2

= S

k�1

(0)) :

But then

QE j= v

2

<S

k

(0)! (S(v

2

) = S

1

(0) _ : : : _ S(v

2

) = S

k

(0)) :

(a) follows by Lemma 4.1.

We prove (b) by indution on k. The ase k = 0 omes from the �rst

onjunt of WC(v

1

). For the indution step note that, by Axiom (4), QE j=

(v

1

�S

k

(0)! v

1

<S(S

k

(0))) and that, by the seond onjunt of WC(v

1

),

QE j= (S

k

(0)<v

1

^WC(v

1

)) ! S(S

k

(0))�v

1

:

�

Lemma 4.8. The funtions representable in QE are losed under the �-

operator (IV).

Proof. Suppose that '(v

1

; : : : ; v

n+2

) represents g in QE and suppose that

(8a

1

2 !) � � � (8a

n

2 !)(9b 2 !) g(a

1

; : : : ; a

n

; b) = 0 :

Let f be given by

f(a

1

; : : : ; a

n

) = �b g(a

1

; : : : ; a

n

; b) = 0 :

Let  (v

1

; : : : ; v

n+1

) be, for an appropriate z,

WC(v

n+1

) ^ '(v

1

; : : : ; v

n+1

;0) ^ (8z)(z<v

n+1

! :'(v

1

; : : : ; v

n

; z;0)) :

To see that  represents f in QE, �x a

1

; : : : ; a

n

. Using part (a) of Lemma 4.7

and the fat that ' represents g in QE, we dedue that

QE j= WC(S

f(a

1

;:::;a

n

)

(0)) ^ '(S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)

(0);0); :

Using the fat that ' represents g in QE and using Lemma 4.1, we get that

QE j= (8z)(z<S

f(a

1

:::;a

n

)

(0)! :'(S

a

1

(0); : : : ;S

a

n

(0); z;0)) :
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Combining these two fats we get that

QE j=  (S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)

(0)) :

Moreover, the seond of the two fats and part (b) of Lemma 4.7 give that

QE j= (8z)((WC(z) ^ '(S

a

1

(0); : : : ;S

a

n

(0); z;0)) ! S

f(a

1

:::;a

n

)

(0)�z) :

Sine WC(z) and '(S

a

1

(0); : : : ;S

a

n

(0); z;0) are onjunts of the formula

 (S

a

1

(0); : : : ;S

a

n

(0); z),

QE j= (8z)( (S

a

1

(0); : : : ;S

a

n

(0); z) ! S

f(a

1

:::;a

n

)

(0)�z) :

Sine QE j= '(S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)

(0);0), onsideration of the

last onjunt of  (S

a

1

(0); : : : ;S

a

n

(0); z) shows us that

QE j= (8z)( (S

a

1

(0); : : : ;S

a

n

(0); z) ! S

f(a

1

;:::;a

n

)

(0)6<z) :

Thus

QE j= (8z)( (S

a

1

(0); : : : ;S

a

n

(0); z) ! z = S

f(a

1

;:::;a

n

)

(0)) :

�

Corollary 4.9. A funtion is representable in QE if its graph is repre-

sentable in QE.

Proof. Let R be the graph of f : n

!

! !.

f(a

1

; : : : ; a

n

) = �bK

:R

(a

1

; : : : ; a

n

; b) = 0 :

Lemma 4.10. The relation < and the funtions +, �, and E are repre-

sentable in QE.

Proof. By Exerise 4.1, < and the graphs of +, �, and E are represented

by v

1

<v

2

, v

1

+v

2

= v

3

, v

1

�v

2

= v

3

, and v

1

E v

2

= v

3

respetively. Use

Corollary 4.9 or the fat that very theory proves the last three formulas

funtional. �

Lemma 4.11. f(a; b) j a divides bg is representable in QE.

Proof. For any a and b belonging to !,

a divides b $ (9� b) a �  = b . �
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Lemma 4.12. (a) The set of all prime numbers is representable in QE.

(b) The set of all pairs of adjaent primes is representable in QE, where

(a; b) is a pair of adjaent primes if and only if a < b, both a and b are

prime, and there is no prime  suh that a <  < b.

Proof. The proof is an easy appliation of the losure of the representable

funtions under bounded quanti�ation. �

Lemma 4.13. The funtion a 7! p

a

is representable in QE, where p

a

is the

a+ 1st prime.

Proof. We shall show that, for any a and b belonging to !, p

a

= b if and

only if b is prime and there is a  � b

a

2

suh that

(i) 2 does not divide ;

(ii) For all q < b and all r � b, if (q; r) is a pair of adjaent primes, then

(8j < )(q

j

divides  $ r

j+1

divides ) :

(iii) b

a

divides  and b

a+1

does not.

To see this, �x a and b and �rst note that if p

a

= b and

 = p

0

0

� p

1

1

� : : : � p

a

a

;

then  � b

a

2

and  satis�es (i){(iii).

Suppose that b is prime and that  satis�es (i){(iii).

By indution we show that

(8i 2 !)(p

i

� b ! (p

i

i

divides  ^ p

i

i+1

does not divide )) :

For i = 0 this is given by (i). Suppose that i = j + 1 and that p

j

j

divides

 but p

j

j+1

does not. The desired onlusion follows from (ii) with q = p

j

and r = p

i

, sine j < p

j

j

� .

Now b is prime, and so b = p

j

for some j. Thus b

j

divides  and b

j+1

does not. By (iii), it follows that j = a. �

For natural numbers a

0

; : : : ; a

m

, let

-ha

0

; : : : ; a

m

i- = p

0

a

0

+1

� : : : � p

m

a

m

+1

:

For m = �1, let -h i- = 1. Let Seq be the set of all a suh that a =

-ha

0

; : : : ; a

m

i- for some m � �1 and some a

0

; : : : ; a

m

. For elements a and b

of !, let

(a)

b

= �n (p

b

n+2

does not divide a) :
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Lemma 4.14. (a) For eah m 2 !, the funtion

(a

0

; : : : ; a

m�1

) 7! -ha

0

; : : : ; a

m�1

i-

is representable in QE. (b) The funtion (a; b) 7! (a)

b

is representable in

QE. () Seq is representable in QE.

Proof. (a) holds by losure under omposition. For (b), apply the �-

operator to the harateristi funtion of the relation

p

b

n+2

divides a :

For (), note that

a 2 Seq $ a > 0 ^ (8i � a)(p

i+1

divides a ! p

i

divides a) . �

For a 2 !, let

lh(a) = �n (p

n

does not divide a) :

For a and b elements of !, let

adb = �n (a = 0_ (n 6= 0^ (8j<b)(8k<a)(p

j

k

divides a! p

j

k

divides n))) :

The following lemma follows easily from the de�nitions and earlier results.

Lemma 4.15. The funtions lh and (a; b) 7! (adb) are representable in QE.

For all m � �1 and all a

0

; : : : ; a

m

,

(i) lh(-ha

0

; : : : ; a

m

i-) = m+ 1 ;

(ii) -ha

0

; : : : ; a

m

i-db = -ha

0

; : : : ; a

b�1

i- if b � m+ 1 .

For n 2 ! and h :

n+1

! ! !, let

�

h :

n+1

! ! ! be given by

�

h(a

1

; : : : ; a

n

; b) = -hh(a

1

; : : : ; a

n

; 0); : : : ; h(a

1

; : : : ; a

n

; b� 1)i- :

Lemma 4.16. The set of funtions representable in QE is losed under

primitive reursion (III).
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Proof. Let h :

n+1

! ! ! be de�ned from f :

n

! ! ! and g :

n+2

! ! !

as in the statement of (III). Assume that f and g are representable in QE.

We �rst show that

�

h is representable:

�

h(a

1

; : : : ; a

n

; b) = �m (m 2 Seq ^ lh(m) = b ^

(8i < b)((i = 0 ^ (m)

i

= f(a

1

; : : : ; a

n

)) _

(9j < i)(i = j + 1 ^ (m)

i

= g(a

1

; : : : ; a

n

; j; (m)

j

)))) :

Now we note that

h(a

1

; : : : ; a

n

; b) = (

�

h(a

1

; : : : ; a

n

; b+ 1))

b

:

�

Theorem 4.17. Every reursive funtion is representable in QE.

Proof. This follows from Lemmas 4.4, 4.5, 4.16, and 4.8. �

Our next goal is to show that various funtions oding syntatial rela-

tions in languages suh as L

PAE

are primitive reursive.

Lemma 4.18. If t(v

1

; : : : ; v

n

) is a term of L

PAE

, then the funtion

(a

1

; : : : ; a

n

) 7! (t(S

a

1

(0); : : : ;S

a

n

(0)))

N

0

is primitive reursive.

Proof. Suessor and the onstant funtion with value 0 are primitive re-

ursive by (I). Addition, multipliation, and exponentiation are suessively

given by primitive reursion. For general terms, use omposition and the

I

n

i

.

�

Lemma 4.19. The funtions sg, pred, and

.

� are primitive reursive, where

sg(a) =

�

1 if a > 0 ;

0 if a = 0 ;

pred(a) =

�

a� 1 if a > 0 ;

0 if a = 0 ;

a

.

� b =

�

a� b if a � b ;

0 if a < b ;
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Exerise 4.3. Prove Lemma 4.19.

Hint. Use primitive reursion.

Call a relation primitive reursive or reursive if its harateristi fun-

tion is.

Lemma 4.20. The set of all primitive reursive relations is losed under

omplement, intersetion, and union. The relation < is primitive reursive.

Proof. Note thatK

:R

(a

1

; : : : ; a

n

) = 1

.

� K

R

(a

1

; : : : a

n

), thatK

R\S

(a

1

; : : : ; a

n

)

= K

R

(a

1

; : : : ; a

n

)�K

S

(a

1

; : : : ; a

n

), thatK

R[S

(a

1

; : : : ; a

n

) = sg(K

R

(a

1

; : : : ; a

n

)

+ K

S

(a

1

; : : : ; a

n

)), and that K

<

(a; b) = sg(b

.

� a). �

Lemma 4.21. The set of primitive reursive funtions is losed under the

two operations f 7! g given by

g(a

1

; : : : ; a

n

; b) =

X

b

0

<b

f(a

1

; : : : ; a

n

; b

0

) ;

g(a

1

; : : : ; a

n

; b) =

Y

b

0

<b

f(a

1

; : : : ; a

n

; b

0

) :

(We onsider the empty produt to have value 1.)

Proof. We onsider only the ase of

P

. That of produt is similar. We

have

g(a

1

; : : : ; a

n

; 0) = 0 ;

g(a

1

; : : : ; a

n

;S(b)) = g(a

1

; : : : ; a

n

; b) + f(a

1

; : : : ; a

n

; b) :

Thus g omes by primitive reursion from funtions that are primitive re-

ursive if f is. �

Lemma 4.22. The set of primitive reursive relations and funtions is losed

under bounded quanti�ation.

Proof. Let R

0

(a

1

; : : : ; a

n

)$ (9b < f(a

1

; : : : ; a

n

))R(a

1

; : : : ; a

n

; b). Then

K

R

0

(a

1

; : : : ; a

n

) = sg

0

�

X

b<f(a

1

;:::;a

n

)

K

R

(a

1

; : : : ; a

n

; b)

1

A

. �
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Lemma 4.23. The set of primitive reursive funtions is losed under the

bounded �-operator, i.e., under hf; gi 7! h, where

h(a

1

; : : : ; a

n

) = �b (b = f(a

1

; : : : ; a

n

) _ g(a

1

; : : : ; a

n

; b) = 0) :

Exerise 4.4. Prove Lemma 4.23.

Lemma 4.24. The relations and funtions representable in QE by Lem-

mas 4.11, 4.12, 4.13, 4.14, and 4.15 are primitive reursive.

Proof. The proofs of representability, with minor modi�ations, yield

proofs of primitive reursiveness. The main thing to note is that the uses

of the �-operator in de�ning (a)

b

, adb, and lh(a), are equivalent to the or-

responding uses of the bounded �-operator, with the bound funtion f in

eah ase a onstant funtion with value a. �

De�ne � :

2

! ! ! by

a � b = a �

Y

i<lh(b)

p

lh(a)+i

(b)

i

+1

:

The following lemma is evident.

Lemma 4.25. The funtion � is primitive reursive. For m and n � �1

and for any elments a

0

; : : : ; a

m

, b

0

; : : : ; b

n

of !,

-ha

0

; : : : ; a

m

i- � -hb

0

; : : : ; b

n

i- = -ha

0

; : : : ; a

m

; b

0

; : : : ; b

n

i- :

For any n 2 ! and any f :

n+1

! ! !, de�ne a funtion (a

1

; : : : ; a

n

; b) 7!

�

i<b

f(a

1

; : : : ; a

n

; i) by

�

i<0

f(a

1

; : : : ; a

n

; i) = 1 ;

�

i<b+1

f(a

1

; : : : ; a

n

; i) = (�

i<b

f(a

1

; : : : ; a

n

; i)) � f(a

1

; : : : ; a

n

; b) :

The following lemma is also evident.

Lemma 4.26. The funtion (a

1

; : : : ; a

n

; b) 7! �

i<b

f(a

1

; : : : ; a

n

; i) is primi-

tive reursive if f is primitive reursive.

Reall our oÆial de�nition on page 21 of the logial symbols of our

formal languages.
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Fix a language L all of whose symbols are natural numbers: i.e., L =

hf; pi with all f(m) and all p(m) subsets of !. Let us assume the following

relations are primitive reursive:

f(k;m) j k 2 p(m)g ;

f(k;m) j k 2 f(m)g :

Sine we have not given the oÆial de�nition of L

PAE

, let us now delare:

0 13

S 15

+ 17

� 19

E 21

< 23

Note that our assumptions about L hold for L

PAE

.

We assign numbers to �nite sequenes of symbols of L (to expressions of

L) by setting

#(s

0

; : : : ; s

n

) = -hs

0

; : : : ; s

n

i- :

When we talk of the # of a symbol s, we mean #(s), i.e., -hsi-. We assign

numbers to sequenes of expressions (for example, to dedutions) by

#( 

0

; : : : ;  

n

) = -h# 

0

; : : : ;# 

n

i- :

Lemma 4.27. The following are primitive reursive:

(1) the set of all #'s of variables;

(2) the set of all #'s of terms;

(3) the set of all #'s of atomi formulas;

(4) the set of all #'s of formulas.

Proof. (1) For a 2 !, a is the # of a variable i� and only if

a 2 Seq ^ lh(a) = 1 ^ 2 divides (a)

0

:

(2) Let f be the harateristi funtion of the set of all #'s of terms.

We shall show that

�

f is primitive reursive, from whih it follows that f is
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primitive reursive. Note �rst that

�

f(0) = 1. For any number a, a is the #

of a term if and only if either a is the # of a variable or onstant or

(9b)(9)(b < a ^  < p

a

a�lh(a)

^  2 Seq ^

b is the # of a lh()-plae funtion symbol ^

(8i < lh())(()

i

< a ^ ()

i

is a term) ^

a = b �#(() � (�

i<lh()

()

i

) �#())) :

Beause of the ondition ()

i

< a, we an replae \()

i

is a term" by

\(

�

f(a))

()

i

= 1." Hene we an write f(a) and so

�

f(a + 1) as a primitive

reursive funtion of a and

�

f(a). By (III),

�

f is primitive reursive.

(3) is easy using (2).

The proof of (4) is similar in struture to that of (2). �

Lemma 4.28. The set of all #'s of tautologies is primitive reursive.

Proof. If  is a proper subformula of a formula ', then # < #'. Using

this fat, we an see that, for any a 2 !, a is the # of a tautology if and

only if a is the # of a formula and, for all e < p

a

2(a+1)

, if

e 2 Seq ^ lh(e) = a+ 1 ^

(8i� a) (e)

i

� 1 ^

(8i� a)(8j < i)(i = #(:) � j ! (e)

i

= 1

.

� (e)

j

) ^

(8i� a)(8j < i)(8k < i)(i = #(() � j �#(^) � k �#())

! (e)

i

= (e)

j

� (e)

k

) ;

then (e)

a

= 1. �

Lemma 4.29. (1) There is a primitive reursive funtion Sb suh that, if

' is a formula or a term, x is a variable, and t is a term, then

Sb(#';#(x);#t) = #'(t)

where '(t) is the result of substituting t for the free ourrenes of x in '.

(2) There is a primitive reursive relation Fr suh that, if ' is a formula

and x is a variable, then

Fr(#';#(x))$ x ours free in ' :

(3) The set of all #'s of sentenes is primitive reursive.

(4) There is a primitive reursive relation Sbl suh that, if ' is a formula

and x, t, and '(t) are as in (1), then

Sbl(#';#(x);#t)$

no ourrene of a variable in t beomes bound in '(t).

78



The proof of the lemma will be a �nal examination problem.

Lemma 4.30. (a) The set of all #'s of logial axioms is primitive reursive.

(b) The set of all (#';# ;#�) suh that � follows from ' and  by

Modus Ponens is primitive reursive.

() The set of all (#';# ) suh that  follows from ' by the Quanti�er

Rule is primitive reursive.

Proof. (a) We have already dealt with tautologies in Lemma 4.28. The

identity axioms are easily handled using parts (2) and (3) of Lemma 4.27

and the funtion Sb. Quanti�er Axioms are handled using Sbl and Sb.

(b) and () are proved in a straightforward manner, with Fr used for the

latter. �

Lemma 4.31. Suppose that L extends L

PA

. The set of #'s of axioms of

PA is primitive reursive.

Proof. There are �nitely many axioms plus the indution shema. Instanes

of the latter are easily haraterized using Sb. �

A theory T in L is reursively axiomatizable if there is a set � of sentenes

suh that

(i) f#� j � 2 �g is reursive;

(ii) T = f� j � j= �g .

The notion of a primitively reursively axiomatizable theory is similarly de-

�ned, with \primitive reursive" replaing \reursive" in lause (i).

Remark. In fat, the lass of reursively axiomatizable theories turns out

to be the same as the lass of primitively reursively axiomatizable theories.

Lemma 4.32. Suppose that T is a primitively reursively axiomatizable the-

ory in L. Let � witness this fat. Then there is a primitive reursive relation

Pr suh that, for all a and b 2 !, Pr(a; b) holds if and only if a is the # of

a sentene � and b is the # of a dedution of � from �.

Proof. The lemma follows easily from Lemma 4.30. �

Theorem 4.33. The funtions reprensentable in QE are exatly the reur-

sive funtions.
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Proof. By Theorem 4.17, we need only show that every funtion repre-

sentable in QE is reursive. Suppose '(v

1

; : : : ; v

n+1

) represents f :

n

! ! !

in QE. Let Pr be given by Lemma 4.32 for T = QE. Note that the funtion

(a

1

; : : : ; a

n+1

) 7! #'(S

a

1

(0); : : : ;S

a

n+1

(0))

is primitive reursive, sine the # of '(S

a

1

(0); : : : ;S

a

n+1

(0)) is

Sb(: : : (Sb(#';#(v

1

);#S

a

1

(0)); : : :);#(v

n+1

);#S

a

n+1

(0)) ;

and sine the funtion a 7! #S

a

(0) is easily seen to be primitive reursive.

De�ne a reursive funtion g :

n

! ! ! by

g(a

1

; : : : ; a

n

) = �bPr(#'(S

a

1

(0); : : : ;S

a

n

(0);S

(b)

0

(0)); (b)

1

) :

For all (a

1

; : : : ; a

n

),

f(a

1

; : : : ; a

n

) = (g(a

1

; : : : ; a

n

))

0

. �

We now know that the reursive funtions have all the losure propeties

of those representable in QE. (We ould have diretly proved these losure

properties, as we did for the primitive reursive funtions.) Thus we get the

following lemma.

Lemma 4.34. Lemma 4.32 ontinues to hold when the words \primitively"

and \primitive" are deleted from its statement.

Remark. By Lemma 4.34 and the proof of Lemma 4.33, any funtion

representable in any reursively axiomatizable theory is reursive.

Lemma 4.35 (Fixed Point Lemma). Let '(v

1

) be a formula of L

PAE

.

There is a sentene � suh that

QE j= (� $ '(S

#�

(0)) :

Proof. Let  (v

1

; v

2

; v

3

) represent in QE the primitive reursive funtion

(a; n) 7! Sb(a;#v

1

;#S

n

(0)) :

Note that, for any formula �(v

1

) and any n 2 !, this funtion sends (#�; n)

to #�(S

n

(0)).

Let �(v

1

) be the following formula:

(8v

3

)( (v

1

; v

1

; v

3

)! '(v

3

)) :
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Let q = #�(v

1

).

Now let � be the sentene

(8v

3

)( (S

q

(0);S

q

(0); v

3

)! '(v

3

)) :

Note that � is the result of replaing v

1

by S

q

(0) in the formula �(v

1

).

In other words, #� is the value of the funtion represented by  on the

argument (q; q). Hene

QE j= (8v

3

)( (S

q

(0);S

q

(0); v

3

) $ v

3

= S

#�

(0)) :

In partiular,

QE j=  (S

q

(0);S

q

(0);S

#�

(0)) :

Thus

QE j= (� ! '(S

#�

(0)) :

But also

QE j= (8v

3

)( (S

q

(0);S

q

(0); v

3

) ! v

3

= S

#�

(0)) :

Therefore

QE j= ('(S

#�

(0))! �) . �

It is worth reording the following fat: Suppose  (v

1

; : : : ; v

n

) represents

in QE a relation R. Sine N

0

j= QE, we have that

(8a

1

2 !) � � � (8a

n

2 !)(R(a

1

; : : : ; a

n

)$ N

0

j=  [a

1

; : : : ; a

n

℄) :

Theorem 4.36. Let T be a reursively axiomatizable theory in L

PAE

suh

that N

0

j= T . Then T is not omplete.

Proof. Let Pr be given by Lemma 4.34. Let  witness that Pr is repre-

sentable in QE. Let '(v

1

) be the formula

(8v

2

): (v

1

; v

2

) :

Let � be given be the Fixed Point Lemma.

One an think of � as expressing its own unprovability in T . Indeed, by

the observation preeding the theorem,

T 6j= � $ N

0

j= � :

If the onsistent theory T j= � or j= :�, then this ontradits the hypothesis

that N

0

j= T . �
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Theorem 4.37. Let T be any theory in L

PAE

suh that T[QE is onsistent.

Then f#� j � 2 Tg is not reursive.

Proof. Suppose for a ontradition that f#� j � 2 Tg is reursive. Let

T

0

= f� j T [QE j= �g :

Let � be the onjuntion of the �nitely many axioms of QE. Then

� 2 T

0

$ (�! �) 2 T ;

so f#� j � 2 T

0

g is reursive.

By Theorem 4.17, let  (v

1

) represent f#� j � 2 T

0

g in QE. Let � be

given by the Fixed Point Lemma with : as '.

Suppose �rst that � =2 T

0

. Then

QE j= : (S

#�

(0)) :

But this implies that

QE j= � ;

whih in turn implies that � 2 T

0

.

Suppose then that � 2 T

0

. We suessively get that QE j=  (S

#�

(0)),

that QE j= :�, and that :� 2 T

0

. �

Corollary 4.38 (Churh's Theorem). The set of all #'s of valid sen-

tenes in L

PAE

is not reursive.

Corollary 4.39. If T be a reursively axiomatizable theory in L

PAE

suh

that T [QE is onsistent, then T is not omplete.

Proof. It suÆes to prove that if � is a set of sentenes suh that f#� j

� 2 �g is reursive and the theory T = f� j � j= �g is omplete, then

f#� j � 2 Tg is reursive. For this, �x � and let Pr be given by Lemma 4.34.

Assume that T is is omplete. De�ne g : ! ! ! by setting g(a) = 0 if a is

not the # of a sentene and otherwise setting

g(a) = �b (Pr(a; b) _ Pr(#(: ) � a; b)) :

Sine T is omplete, g is a reursive funtion. Moreover, for any a 2 !,

a 2 f#� j � 2 Tg $ (g(a) 6= 0 ^ Pr(a; g(a))) . �
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A theory T in L is reursively deidable if f#� j � 2 Tg is reursive. Oth-

erwise T is reursively undeidable. Thus Churh's Theorem shows that the

set of valid sentenes of L

PAE

is not reursively deidable. (Churh's Theo-

rem is atully more general, holding for, say, any language with a two-plae

relation symbol.) Aording to Churh's Thesis, the reursive funtions

are exatly the e�etively omputable funtions. Granted Churh's Thesis,

deidability and reursive deidability are the same.

To eliminate exponentiation and get inompleteness theorems for PA,

we shall use the following number-theoreti result.

Lemma 4.40 (Chinese Remainder Theorem). Let the positive integers

d

0

; : : : ; d

n

be relatively prime. Let a

i

< d

i

for eah i � n. Then there is a 

suh that, for eah i � n, a

i

is the remainder when  is divided by d

i

.

Proof. For any  2 !, let F() = (r

0

; : : : ; r

n

), where eah r

i

is the remainder

when  is divided by d

i

.

Suppose 

1

and 

2

are distint numbers smaller than

Q

i�n

d

i

. If F(

1

) =

F(

2

), then eah d

i

divides j

1

� 

2

j and so, sine the d

i

are relatively prime,

Q

i�n

d

i

divides j

1

� 

2

j. This ontradition shows that F(

1

) 6= F(

2

).

Thus F() takes on

Q

i�n

d

i

distint values for  <

Q

i�n

d

i

. But eah

of these values is of the form (r

0

; : : : ; r

n

) with eah r

i

< d

i

. There are only

Q

i�n

d

i

suh (r

0

; : : : ; r

n

), so one of the F() must be (a

0

; : : : ; a

n

). �

Lemma 4.41. For any positive integer m, the numbers 1 + (i + 1) � m!,

i � m, are relatively prime.

Proof. Let i and j be distint numbers � m. Suppose that some prime p

divides both 1 + (i+ 1) �m! and 1 + (j + 1) �m!, with i and j � m. Then p

divides ji � jj �m!. Sine p annot divide m!, it follows that p must divide

ji � jj. But ji � jj � m, and thus we have the ontradition that p divides

m!.

�

For elements , d, and i of !, let r(; d; i) be the remainder when  is

divided by 1 + (i+ 1) � d.

Order the set of all pairs (a; b) of natural numbers �rst by maxfa; bg and

then lexiographially. For pairs (a; b), let n(a; b) be the number of pairs

preeding (a; b) in this ordering. De�ne q

1

: ! ! ! and q

2

: ! ! ! by

setting q

1

(n(a; b)) = a and q

2

(n(a; b)) = b.

Let Q be the set of onsequenes in L

PA

of Axioms 1{8.
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Lemma 4.42. The funtions r, n, q

1

, and q

2

are representable in Q.

Proof. Note that all our lemmas before Lemma 4.13 ontinue to hold if we

replae L

PAE

by L

PA

and QE by Q. We have

r(; d; i) = �b (9e� )  = (1 + (i+ 1) � d) � e+ b ;

maxfa; bg = � (a �  ^ b � ) ;

n(a; b) = (maxfa; bg)

2

+ a+ b �K

�

(b; a) ;

q

1

() = �a (9b� )n(a; b) =  ;

q

2

() = �b (9a� )n(a; b) =  :

�

Lemma 4.43. For any natural numbers n and a

0

; : : : ; a

n

, there are  and

d suh that

(8i� n) r(; d; i) = a

i

:

Proof. Given n and a

0

; : : : a

n

, let m = maxfn; a

0

; : : : ; a

n

g. Let d = m! .

Sine the 1 + (i + 1) � d are relatively prime, let  be given by the Chinese

Remainder Theorem. (Note that eah a

i

< 1 + (i+ 1) � d.) �

Lemma 4.44. Exponentiation is representable in Q.

Proof. De�ne funtions f :

2

! ! ! and E

�

:

2

! ! ! by

f(m; i) = r(q

1

(m); q

2

(m); i) ;

E

�

(a; b) = �m (f(m; 0) = 1 ^ (8i� b) f(m; i+ 1) = f(m; i) � a) :

Both f and E

�

are representable in Q. Moreover, we have that

(8a 2 !)(8b 2 !)(8i� b) f(E

�

(a; b); i) = a

i

:

Thus a

b

= f(E

�

(a; b); b) for all a and b. �

Theorem 4.45. All previous lemmas, theorems, and orollaries of Se-

tion 4 hold with L

PA

replaing L

PAE

and Q replaing QE.

Theorem 4.46. PA is inomplete and reursively undeidable. Moreover

all reursively axiomatizable extensions of PA are inomplete, and all on-

sistent extensions of PA are reursively undeidable.
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Proof. This follows from Theorems 4.45, Theorem 4.36 or Corollary 4.39,

and Theorem 4.37. �

Theorem 4.36, Theorem 4.37, Corollary 4.39, and Theorem 4.46 are all

versions of G�odel's First Inompleteness Theorem. We end this setion with

a brief sketh of G�odel's Seond Inompleteness Theorem.

Let Pr be given by Lemma 4.34 for some reursively axiomatizable T in

L

PA

suh that Q � T . Let  witness that Pr is representable in Q. Let

� be given by the Fixed Point Lemma, with QE

0

replaing QE and with

(8v

2

): (v

1

; v

2

) as '(v

1

). Thus T 6j= � if and only if � is true in N.

Suppose that � is false in N, i.e., suppose that T j= �. Then there is a

b 2 ! suh that Pr(#�; b). For any suh b,

Q j=  (S

#�

(0);S

b

(0)) :

Hene

Q j= (9v

2

) (S

#�

(0); v

2

) :

In other words,

Q j= :'(S

#�

(0)) :

But then Q j= :�, and so T j= :�. Therefore T is inonsistent.

The argument of the last paragraph shows that if T is onsistent then �

is true in N. The onverse of this fat also holds: If � is true, then T 6j= �,

and so T is onsistent. Thus � is true in N if and only if T is onsistent.

Using the formula  and formulas representing the set of all #'s of

sentenes and the funtion a 7! #(:) � a, we an onstrut a sentene

pCon Tq of L

PA

that we may think of as expressing the onsisteny of T .

Our argument then establishes the truth of

� $ pCon Tq :

Now omes the skethy part of our disussion. If we have hosen natural

representing formulas, then we an show that

PA j= � $ pCon Tq :

This is essentially beause our basi tool in our (presumably set theoreti)

proof of (the set theoreti version of) this sentene was indution.

Now suppose that T is PA. Sine PA is onsistent, PA 6j= �. But then

PA 6j= pCon PAq :
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In other words, the onsisteny of PA implies that the number theoreti

version of the onsisteny of PA is not provable in PA.

The argument establishes that any onsisent, reursively axiomatizable

extension of PA annot prove the number-theoreti sentene expressing its

own onsisteny. This result an easily be extended to theories in whih PA

is interpretable. For example, one annot prove in ZFC, if ZFC is onsistent,

the set-theoreti formulation of the onsisteny of ZFC.
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5 Reursion Theory

Fix n 2 ! n f0g. To get a useful enumeration of the reursive funtions, we

do a uniform version of the onstrution of the proof of Theorem 4.33. Let

Pr(a; d) hold if and only if d is the # of a dedution from the axioms of

Q of a sentene � of L

PA

suh that a = #�. De�ne T

n

�

n+2

! by letting

T

n

(e; a

1

; : : : ; a

n

; d) hold if and only if

(i) For some formula '(v

1

; : : : ; v

n+1

) of L

PA

, #' = e ;

(ii) Pr(#'(S

a

1

(0); : : : ;S

a

n

(0);S

(d)

0

(0)); (d)

1

) ;

(iii) d is the smallest number satisfying (i) and (ii).

De�ne U : ! ! ! by setting U(d) = (d)

0

.

Theorem 5.1. (a) For eah n � 1, T

n

is primitive reursive.

(b) The funtion U is primitive reursive.

() If n � 1 and f :

n

! ! ! is reursive, then there is an e 2 ! suh

that, for all numbers a

1

; : : : ; a

n

,

f(a

1

; : : : ; a

n

) = U(�dT

n

(e; a

1

; : : : ; a

n

; d)) :

(d) Every total (i.e., totally de�ned) funtion in this form is reursive.

Proof. For (a), note that lause (ii) is equivalent with

Pr(Sb(: : : (Sb(e;#v

1

;#S

a

1

(0)); : : :);#v

n+1

;#S

(d)

0

(0)); (d)

1

) :

For (), let ' represent f in Q and let e = #'. (d) follows from (a) and (b).

�

A partial (number-theoreti) funtion of n variables is an f : A ! !

where A �

n

!.

A partial funtion of n variables is partial reursive if there are reursive

g and h suh that

f(a

1

; : : : ; a

n

) ' h(�b g(a

1

; : : : ; a

n

; b) = 0) ;

where \x ' y" means \x and y are de�ned and equal or both are unde�ned."

Lemma 5.2. For eah n and e, the partial funtion f given by

f(a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d))

is partial reursive.
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Lemma 5.3. If f is a partial reursive funtion of n variables, then there

is an e suh that, for all a

1

; : : : ; a

n

,

f(a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d)) :

Proof. Let g and h witness that f is partial reursive. Let '(v

1

; : : : ; v

n+2

)

and  (v

1

; v

2

) represent g and h respetively in Q. Let �(v

1

; : : : ; v

n+1

) be

(9z)('(v

1

; : : : ; v

n

; z;0) ^ (8z

0

)(z

0

<z ! :'(v

1

; : : : ; v

n

; z

0

;0)) ^  (z; v

n+1

)) ;

for appropriate variables z and z

0

. It is easy to see that the sentene

�(S

a

1

(0); : : : ;S

a

n

(0);S



(0)) is provable in Q if and only if  ' f(a

1

; : : : ; a

n

).

(The main point is that only sentenes true in N are provable in Q.) Thus

we an let e = #�. �

Theorem 5.4. The partial reursive funtions of n variables are exatly the

funtions feg

n

, where

feg

n

(a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d)) :

Exerise 5.1. De�ne an operation of omposition for partial funtions and

prove that the partial reursive funtions are losed under omposition.

A subset A of ! is reursively enumerable (r.e.) if A is the domain of a

partial reursive funtion.

Theorem 5.5. If A � !, then A is r.e. if and only if A is either empty or

the range of a reursive funtion, where the funtion an be taken to be of

one argument.

Proof. Suppose the A is r.e. Then there is an e suh that A = fa j

(9d)T

1

(e; a; d)g. Suppose that A 6= ;. Let a 2 A. De�ne a reursive g by

setting

g(b) =

�

(b)

0

if T

1

(e; (b)

0

; (b)

1

) ;

a otherwise.

Now suppose that A = range (~g) with ~g reursive. For b 2 !, let

f(b) ' � ~g(()

1

; : : : ; ()

n

)) = b :

Clearly A = domain (f). To see that f is partial reursive, de�ne g and h

by:

g(b; ) = (~g(()

1

; : : : ; ()

n

))

.

� b) + (b

.

� ~g(()

1

; : : : ; ()

n

) ;

h(a) = a :

It is easy to see that there is a partial reursive funtion with domain ;:

Note that, e.g., f0g

1

= ;. �
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Theorem 5.6. A subset A of ! is reursive if and only if both A and :A

are r.e.

Proof. Suppose �rst that A is reursive. De�ne g and g

0

by setting

g(a) ' �bK

A

(a) = 1 ;

g

0

(a) ' �bK

A

(a) = 0 :

g and g

0

witness that A and :A respetively are r.e.

For the onverse, suppose that A = fa j (9d)T

1

(e; a; d)g and that :A =

fa j (9d)T

1

(e

0

; a; d)g. Then

K

A

(a) = K

T

1

(e; a; �d (T

1

; (e; a; d) _ T

1

(e

0

; a; d))) . �

Let K = fe j (9d)T

1

(e; e; d)g.

Theorem 5.7. The set K is r.e. but not reursive.

Proof. K is the domain of the partial reursive funtion f given by f(e) '

U(�dT

1

(e; e; d)).

Suppose that K is reursive. Then :K is r.e., and so there is an e suh

that :K = domain (feg

1

). But then

e 2 K $ (9d)T

1

(e; e; d) $ e =2 K . �

Remark. An obvious and important fat that we have failed to mention

expliitly is that, for all n 2 !, the partial funtion f of n+1 variables given

by f(e; a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d)) is partial reursive.

Theorem 5.8 (s-m-n Theorem). For any positive integersm and n, there

is a reursive funtion S

m

n

suh that, for all e; a

1

; : : : ; a

m

; b

1

; : : : ; b

n

,

feg

m+n

(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) ' fS

m

n

(e; a

1

; : : : ; a

m

)g

n

(b

1

; : : : ; b

n

) :

Proof. The idea of the proof is simple. In the ase that matters, when

e is the number of a formula '(v

1

; : : : ; v

m+n+1

), then we would like to set

S

m

n

(e; a

1

; : : : ; a

m

) = #'(S

a

1

(0); : : : ;S

a

m

(0); v

1

; : : : ; v

n+1

). But, for 1 � i �

n+ 1, some ourrenes of v

i

that replae free ourrenes of v

m+i

may be

bound. For this reason, we need to hange the bound ourrenes of these

v

i

to ourrenes of other variables before we insert the v

i

, and even this

step requires preparation.
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First let Let f

m

n

(e; a

1

; : : : ; a

m

) =

Sb(� � � Sb(

| {z }

n+1

Sb(� � � Sb(

| {z }

m

e ;#v

1

;#S

a

1

(0)) � � � ;#v

m

;#S

a

m

(0));

| {z }

m

#v

m+1

;#v

e+1

) � � � ;#v

m+n+1

;#v

e+n+1

)

| {z }

n+1

.

Next let

g

n

(e; ; i) =

�

()

i

+ 2(e+ n+ 1) if ()

i

is even and 2 � ()

i

� 2(n+ 1);

()

i

otherwise.

Then let

h

n

(e; ) =

Y

i<lh(a)

p

g

n

(e;;i)+1

i

and let

k

m

n

(e; a

1

; : : : ; a

m

) = h

n

(e; f

m

n

(e; a

1

; : : : ; a

m

)) :

Finally let

S

m

n

(e; a

1

; : : : ; a

m

) = Sb(k

m

n

(e; a

1

; : : : ; a

m

);#v

e+1

;#v

1

) � � � ;#v

e+n+1

;#v

n+1

)

if e is the # of a formula '(v

1

; : : : ; v

m+n+1

), and let S

m

n

(e; a

1

; : : : ; a

m

) = 0

otherwise.

To see how the de�nition works, note that if e = #'(v

1

; : : : ; v

m+n+1

),

then

f

m

n

(e; a

1

; : : : ; a

m

) = #'(S

a

1

(0); : : : ;S

a

m

(0); v

e+1

; : : : ; v

e+n+1

) :

In this ase, k

m

n

(e; a

1

; : : : ; a

m

) is the number of a formula we shall all

 (S

a

1

(0); : : : ;S

a

m

(0); v

e+1

; : : : ; v

e+n+1

), the formula that is gotten from

'(S

a

1

(0); : : : ;S

a

m

(0); v

e+1

; : : : ; v

e+n+1

) by replaing all ourrenes of v

i

by

ourrenes of v

e+n+1+i

for 1 � i � n + 1. The replaed ourrenes of v

i

are bound ourrenes, sine these are the only ourrenes of v

i

. Finally,

S

m

n

(e; a

1

; : : : ; a

m

) = # (S

a

1

(0); : : : ;S

a

m

(0); v

1

; : : : ; v

n+1

) :

�

For subsets A and B of !, we say that A is many-one reduible to B

(A �

m

B) if there is a reursive f suh that

(8a 2 !)(a 2 A$ f(a) 2 B) :

From now on, we shall usually write feg for feg

1

.
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Theorem 5.9. Let H = fb 2 ! j f(b)

0

g((b)

1

) is de�nedg. Then H is r.e.,

K �

m

H, and H �

m

K.

Proof. H is obviously r.e.

Let f(e) = -he; ei-. Then, for any e 2 !,

e 2 K $ feg(e) is de�ned$ -he; ei- 2 H ;

so K �

m

H.

To show that H �

m

K, we use the s-m-n Theorem. De�ne g by

g(b; a) ' f(b)

0

g((b)

1

) :

The partial funtion g is partial reursive, sine

g(b; a) ' U(�d (T

1

((b)

0

; (b)

1

; d)) :

Hene there is an e 2 ! suh that

(8b)(8a) g(b; a) ' feg

2

(b; a) :

Set f(b) = S

1

1

(e; b) for b 2 !. We have that

ff(b)g(a) ' fS

1

1

(e; b)g(a) ' feg

2

(b; a) ' g(b; a) :

Suppose that b 2 H. Then f(b)

0

g((b)

1

) is de�ned. Hene g(b; a) is

de�ned for every a, and so ff(b)g(a) is de�ned for every a. In partiular,

ff(b)g(f(b)) is de�ned, and this means that f(b) 2 K.

Now suppose that b =2 H. Then f(b)

0

g((b)

1

) is unde�ned. Thus ff(b)g

is the ompletely unde�ned funtion, so f(b) =2 K. �

Theorem 5.10. Let A � ! be r.e. Then A �

m

H and so A �

m

K.

Proof. Let A = domain(feg). De�ne f by setting f(n) = -he; ni-. Then, for

all n,

n 2 A $ feg(n) is de�ned $ -he; ni- 2 H . �

The s-m-n Theorem implies that if g is a partial reursive funtion of

m+ n variables, then there is a reursive f suh that

ff((a

1

; : : : ; a

m

)g

n

(b

1

; : : : ; b

n

) ' g(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) ;

for all a

1

; : : : ; a

m

; b

1

; : : : ; b

n

. From now on we shall use this onsequene of

the s-m-n Theorem diretly.
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Theorem 5.11 (Reursion Theorem). For all m 2 ! and all reursive

f : ! ! !, there is an n 2 ! suh that fng

m

= ff(n)g

m

.

Proof. De�ne g by

g(u; a

1

; : : : ; a

m

) ' ffug(u)g

m

(a

1

; : : : ; a

m

) :

It is easy to see that g is partial reursive, so the s-m-n Theorem gives a

reursive h suh that, for all u; a

1

; : : : ; a

m

,

g(u; a

1

; : : : ; a

m

) ' fh(u)g

m

(a

1

; : : : ; a

m

) :

Let fvg = f Æ h, the omposition of f and h. Let n = h(v). We have that

fng

m

(a

1

; : : : ; a

m

) ' fh(v)g

m

(a

1

; : : : ; a

m

)

' g(v; a

1

; : : : ; a

m

)

' ffvg(v)g

m

(a

1

; : : : ; a

m

)

' ff(h(v))g

m

(a

1

; : : : ; a

m

)

' ff(n)g

m

(a

1

; : : : ; a

m

) :

�

Theorem 5.12 (Uniform Reursion Theorem). For eah m 2 !, there

is a reursive funtion r

m

suh that, for all e 2 !,

feg is total ! fr

m

(e)g

m

= ffeg(r

m

(e))g

m

:

Proof. De�ne h as in the proof of Theorem 5.11. By the s-m-n Theorem,

let v be a reursive funtion suh that

(8e)(8n)fv(e)g(n) ' (feg Æ h)(n) :

For eah e, set r

m

(e) = h(v(e)). �

For e 2 !, let W

e

= domain (feg). Note that K = fe j e 2W

e

g.

An r.e. set C is reative if there is a reursive funtion f suh that

(8e 2 !)(W

e

\ C = ; ! f(e) =2W

e

[ C) :

If C is reative, then C is not reursive, for f(e) witnesses that :C 6= W

e

whenever W

e

� :C. (We write :C for ! n C.)

The set K is witnessed reative by the identity funtion, for

W

e

\ K = ; ) e =2W

e

) e =2 K :
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Theorem 5.13. If C is reative and A is r.e., then A �

m

C.

Proof. Let f witness that C is reative, and let A be r.e. De�ne h by

h(a; b; ) '

�

0 if a 2 A and  = f(b) ;

unde�ned otherwise.

It is easy to show that h is partial reursive. By appliations of the s-m-n

Theorem, let p and q be reursive and suh that

h(a; b; ) ' fp(a; b)g() ;

p(a; b) = fq(a)g(b) :

Note that, for all a and b,

W

p(a;b)

=

�

ff(b)g (the singleton) if a 2 A ;

; otherwise :

Let r = r

1

. By the Uniform Reursion Theorem, we have for all a that

fr(q(a))g = ffq(a)g(r(q(a)))g

= fp(a; r(q(a)))g :

Hene, for all a, W

r(q(a))

=W

p(a;r(q(a)))

.

We show that f Æ r Æ q witnesses that A �

m

C. Note �rst that

a 2 A ! W

p(a;r(q(a)))

= ff(r(q(a)))g

! W

r(q(a))

= ff(r(q(a)))g

! f(r(q(a))) 2 C :

(Sine f witnesses that C is reative, the next-to-last line implies that

W

r(q(a))

\ C 6= ;. This and the next-to-last line imply the last line.) Note

�nally that

a =2 A ! W

p(a;r(q(a)))

= ;

! W

r(q(a))

= ;

! f(r(q(a))) =2 C :

(The last impliation holds beause f witnesses that C is reative.) �

Exerise 5.2. The join of subsets A and B of ! is

f2n j n 2 Ag [ f2n+ 1 j n 2 Bg :

Prove that the join of A and B is a �

m

-least upper bound for A and B.
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Exerise 5.3. (a) Show that if A is r.e. and A �

m

:A then A is reursive.

(b) Prove that the hypothesis that A is r.e. annot be dropped from (a).

Hint. Consider the join of a set and its omplement.

Exerise 5.4. A subset A of ! is a many-one omplete r.e. set if A is r.e.

and, for all r.e. B, B �

m

A. Thus all reative sets are many-one omplete

r.e. sets. Prove that fe 2 ! jW

e

6= ;g is a many-one omplete r.e. set.

Exerise 5.5. Let C be reative. Show that there is a reursive f suh that

(8e 2 !)(f(e) 2W

e

\ C _ f(e) =2W

e

[ C) :

Hint. Let

�

f witness that C is reative. Use the s-m-n Theorem to de�ne

a reursive p suh that, for all a and b,

W

p(a;b)

=W

a

\ f

�

f(b)g :

Now use the s-m-n Theorem and the Uniform Reursion Theorem to get a

reursive s suh that, for all a,

W

s(a)

=W

p(a;s(a))

:

Let f =

�

f Æ s.

Theorem 5.14. If C is a many-one omplete r.e. set, then C is reative.

Proof. Let g witness that K �

m

C. By the s-m-n theorem, let h be

reursive and suh that

(8e)(8a) fh(e)g(a) ' feg(g(a)) :

Note that, for all e, W

h(e)

is the preimage under g of W

e

.

Let f = g Æ h. To show that f witnesses that C is reative, let e be suh

that W

e

\C = ;. Taking preimages under g, we get that W

h(e)

\K = ;. By

the de�nition of K, this implies that h(e) =2 W

h(e)

[ K. But then g(h(e)) =2

W

e

[ C.

�

Theorem 5.15. For all m and n, there is a one-one funtion S

m

n

that wit-

nesses the truth of the s-m-n Theorem.
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Proof. Fix m and n. Let

�

S

m

n

have the property required of S

m

n

in the

statement of the s-m-n Theorem. De�ne h :

m+1

! ! ! by setting

h(a

0

; : : : ; a

m

) = #(S

a

0

(0) = S

a

0

(0) ^ (� � � ^ S

a

m

(0) = S

a

m

(0)) � � �) :

It is easy to see that h is a one-one reursive funtion and that all the values

of h are #'s of valid sentenes of L

PA

. De�ne S

m

n

by setting

S

m

n

(e; a

1

; : : : ; a

m

) = #h(i�h(e; a

1

; : : : ; a

m

)�#h^i�

�

S

m

n

(e; a

1

; : : : ; a

m

)�#h)i :

�

Theorem 5.16. For eah m 2 !, there is a one-one funtion r

m

that wit-

nesses the truth of the Uniform Reursion Theorem.

Proof. Given m, de�ne funtions h and v, as in the proof of Theorem 5.12,

using one-one funtions S

1

m

and S

1

1

. The h and v so de�ned are one-one.

Hene r

m

= h Æ v is also one-one. �

Theorem 5.17. If C is reative, then there is a one-one funtion witnessing

that C is reative.

Proof. De�ne a partial reursive funtion g by

g(e; n; y) '

�

y if (9i < lh(n)) y = (n)

i

;

feg(y) otherwise :

Let p be reursive and suh that

(8e)(8n)(8y) fp(e; n)g(y) ' g(e; n; y) :

Thus

(8e)(8n)W

p(e;n)

=W

e

[ f(n)

0

; : : : ; (n)

lh(n)

.

�1

g :

Let f witness that C is reative. De�ne a reursive

~

f by

~

f(e; 0) = -hf(e)i- ;

~

f(e; k + 1) =

~

f(e; k) � -hf(p(e;

~

f(e; k))i- :

By indution, we show that, for all k,

(i)

~

f(e; k) 2 Seq ;

(ii) lh(

~

f(e; k)) = k + 1 ;
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(iii) (8k

0

� k)

~

f(e; k

0

) =

~

f(e; k) d k

0

+ 1 ;

(iv) W

e

\C = ; ! (8i� k)(8j < i) (

~

f(e; k))

i

6= (

~

f(e; k))

j

;

(v) W

e

\C = ; ! (8i� k) (

~

f (e; k))

i

=2W

e

[ C .

Clauses (i){(iii) are lear. To verify (iv) and (v), note that

W

p(e;

~

f(e;k))

=W

e

[ f(

~

f(e; k))

i

j i � kg :

De�ne h by reursion as follows. If the numbers (

~

f(e; e))

k

, k � e, are

distint, let h(e) be the least of these numbers that is di�erent from all the

h(e

0

), e

0

< e. Otherwise let h(e) be the least number that is di�erent from

all the h(e

0

), e

0

< e. The reursive funtion h witnesses that C is reative.

�

For subsets A and B of !, say that A is one-one reduible to B (A �

1

B)

if some one-one f witnesses that A �

m

B. De�ne the notion of a one-one

omplete r.e. set in the obvious way. All our earlier results go through with

\one-one" replaing \many-one." Hene we have the following theorem.

Theorem 5.18. An r.e. set C is reative if and only if C is many-one

omplete if and only if C is one-one omplete.

A reursive permutation is a reursive one-one onto f : ! ! !. Two

subsets of ! are reursively isomorphi if one is the image of the other

under a reursive permutation.

Theorem 5.19. Let A and B be arbitrary subsets of !. If A �

1

B and

B �

1

A, then A and B are reursively isomorphi.

Proof. Suppose that g and h witness that A �

1

B and B �

1

A respetively.

We de�ne indutively reursive funtions p : ! ! !, r :

2

! ! !, and

s :

2

! ! !. There will be numbers m

i

i 2 !, and n

i

, i 2 !, suh that, for

eah k,

p(k) = -h-hm

0

; n

0

i-; : : : ; -hm

2k�1

; n

2k�1

i-i- :

The m

i

will be distint, as will the n

i

. Moreover we shall have that

m

i

2 A $ n

i

2 B :

Given p(k), letm

2k

be the least number di�erent from all them

i

, i < 2k.

Set r(k; 0) = g(m

2k

) and

r(k; i+ 1) =

�

r(k; i) if r(k; i) =2 fn

0

; : : : ; n

2k�1

g ;

g(m

j

); where n

j

= r(k; i), otherwise:
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Sine g is one-one, it follows that, whenever r(k; i+ 1) is de�ned by the

seond lause, the numbers r(k; 0) : : : ; r(k; i + 1) are distint. For any i,

r(k; i) 2 B if and only if m

2k

2 A.

Let n

2k

= r(k; i) for the least i � 2k suh that r(k; i) =2 fn

0

; : : : ; n

2k�1

g.

Now let n

2k+1

be the least number di�erent from all the n

i

, i � 2k.

De�ne s(k; i) and m

2k+1

by analogy with the de�nition of r(k; i) and n

2k

.

Now de�ne f : ! ! ! by setting f(m

i

) = n

i

for eah i 2 !. Clearly f

witnesses that A and B are reursively isomorphi. �

Corollary 5.20. Any two reative sets are reursively isomorphi.

We now turn to the topi of relative reursion. If f : ! ! !, then the

funtions reursive in f form the smallest set C suh that

(I) The funtion S, all onstant funtions, all the I

m

i

, and f belong to C;

(II) C is losed under omposition;

(III) C is losed under primitive reursion;

(IV) C is losed under the � operator.

For R �

n

!, R is reursive in f if K

R

is reursive in f . The partial

funtions partial reursive in f and the subsets of ! reursively enumerable

in f are de�ned in the obvious way.

Let L

PAF

be the result of adding to L

PA

a new one-plae funtion symbol

F. For any f : ! ! !, let Q(f) be the set of all onsequenes (in L

PAF

) of

Axioms (1){(8) plus

fF(S

a

(0)) = S

f(a)

(0) j a 2 !g :

Theorem 5.21. For all f , the funtions reursive in f are the same as the

funtions representable in Q(f).

Proof. Our proofs of Theorems 4.17 and 4.33 are easily adapted to give

a proof the present theorem, sine f is representable in Q(f) and sine the

relation Pr for Q(f) is reurive in f . �

For n � 1, let T

f

n

be de�ned just as was T

n

, but using Q(f) instead of

Q.

Theorem 5.22. For any f , T

f

n

is reursive in f . The funtions partial

reursive in f are exatly the feg

f

n

, where

feg

f

n

(a

1

; : : : ; a

n

) ' U(�dT

f

n

(e; a

1

; : : : ; a

n

; d)) :
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Whenever T

f

n

(e; a

1

; : : : ; a

n

; d) holds, then (d)

1

is the # of some dedu-

tion. Any axiom of Q(f) that ours as a line in this dedution must have

# smaller than d. Hene, for any suh axiom of the form F(S

a

(0)) =

S

f(a)

(0), we must have that a < d. In partiular, this means that whether

T

f

n

(e; a

1

; : : : ; a

n

; d) holds depends only upon f � d.

De�ne T

1

n

�

n+3

! by letting T

1

n

(; e; a

1

; : : : ; a

n

; d) hold if and only if

 2 Seq ^ lh() = d ^ (8f)((8i < d) f(i) = ()

i

! T

f

n

(e; a

1

; : : : ; a

n

; d)) :

Note that we ould have written the de�nition of T

1

n

diretly, without men-

tioning the f 's or the T

f

n

's.

Theorem 5.23. For eah n, the relation T

1

n

is primitive reursive. For any

f , n, e, and a

1

; : : : ; a

n

,

feg

f

n

(a

1

; : : : ; a

n

) ' U(�dT

1

n

(

�

f(d); e; a

1

; : : : ; a

n

; d)) :

Let us extend the de�nition of reursive enumerability to subsets of

n

!

by delaring A �

n

! to be reursively enumerable if A is the domain of a

partial reursive funtion. Similarly de�ne the notion of A's being reursively

enumerable in f , for f : ! ! ! and A �

n

!.

If n � 1, A �

n

!, and k � 1, then A 2 �

k

(or A is �

k

) if there is a

reursive B �

n+k

! suh that, for all a

1

; : : : ; a

n

,

(a

1

; : : : ; a

n

) 2 A $ (9b

1

) � � � (Qb

k

) (a

1

; : : : ; a

n

; b

1

; : : : ; b

k

) 2 B ;

where the quanti�ers alternate between 9 and 8 (so that Q is 9 just in ase

k is odd). Let A 2 �

k

if and only if :A 2 �

k

. Let �

k

= �

k

\�

k

. Similarly

de�ne �

k

(f), �

k

(f), and �

k

(f), replaing the ondition that B is reursive

with the ondition that it is reursive in f . We shall sometimes say, e.g.,

that A is �

k

in f to mean that A 2 �

k

(f).

We omit the easy proof of the following theorem.

Theorem 5.24. Let n � 1 and A �

n

!. Then A is �

1

if and only if A is

r.e., and A is �

1

if and only if A is reursive. For f : ! ! !, A is �

1

in f

if and only if A is r.e. in f , and A is �

1

in f if and only if A is reursive

in f .

For f : ! ! !, let

K

f

= fe j feg

f

1

(e) is de�nedg

= fe j (9d)T

1

1

(

�

f(d); e; e; d)g

= fe j e 2W

f

e

g ;

where W

f

e

= domain (feg

f

1

).
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Theorem 5.25. For all f : ! ! !, we have:

(1) K

f

is r.e. in f ;

(2) K

f

is not reursive in f ;

(3) if A � ! is r.e. in f , then A �

1

K

f

;

(4) f is reursive in K

K

f

.

Proof. The proofs of (1) and (2) are like the proofs of the orresponding

fats for K.

Note that, for eah m and n, a de�nition like that of the S

m

n

funtion

gives a one-one reursive funtion

~

S

m

n

suh that, for all f , e, a

1

; : : : ; a

m

,

and b

1

; : : : ; b

n

,

f

~

S

m

n

(e; a

1

; : : : ; a

m

)g

f

n

(b

1

; : : : ; b

n

) ' feg

f

m+n

(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) :

We leave as an exerise the task of using

~

S

m

n

to prove (3) and (4). �

Exerise 5.6. Prove parts (3) and (4) of Theorem 5.25.

For k 2 !, de�ne 0

(k)

: ! ! ! as follows:

0

(0)

= K

;

;

0

(k+1)

= K

K

0

(k)

:

Theorem 5.26. For any A �

n

!, A is �

k+1

if and only if A is r.e. in 0

(k)

.

Proof. The ase k = 0 follows from Theorems 5.24 and 5.25, so assume

that k � 0 and that the theorem holds for k.

First suppose that A is r.e. in 0

(k+1)

. Let e be a number suh that

A = domain (feg

0

(k+1)

n

). Then, for all a

1

; : : : ; a

n

,

(a

1

; : : : ; a

n

) 2 A $ (9d)T

1

n

(0

(k+1)

(d); e; a

1

; : : : ; a

n

; d)

$ (9d)(9)( = 0

(k+1)

(d) ^ T

1

n

(; e; a

1

; : : : ; a

n

; d)) :

Now

 = 0

(k+1)

(d) $ ( 2 Seq ^ lh() = d ^ (8i < d) ()

i

= 0

(k+1)

(i)) :

Moreover

()

i

= 0

(k+1)

(i) $ ((()

i

= 1 ^ i 2 K

0

(k)

) _ (()

i

= 0 ^ i =2 K

0

(k)

)) :
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Sine K

0

(k)

is r.e. in 0

(k)

, we have by indution that K

0

(k)

is �

k+1

. Thus

there is a reursive B suh that, for eah i 2 !,

i 2 K

0

(k)

$ (9b

1

) � � � (Qb

k+1

) (i; b

1

; : : : ; b

k+1

) 2 B ;

i =2 K

0

(k)

$ (8b

0

1

) � � � (Q

0

b

0

k+1

) (i; b

0

1

; : : : ; b

0

k+1

) =2 B :

Substituting and bringing all quanti�ers to the front, we get that, for all

a

1

; : : : ; a

n

, (a

1

; : : : ; a

n

) 2 A if and only if

(9d)(9)(8i < d)(9b

1

)(8b

0

1

) � � � (Qb

k+1

)(Q

0

b

0

k+1

)

R(a

1

; : : : ; a

n

; d; ; i; b

1

; b

0

1

; : : : ; b

k+1

; b

0

k+1

) ;

with R reursive. Now, for any relation P ,

(8i < d)(9b)P (i; b) $ (9

^

b)(8i < d)P (i; (

^

b)

i

) ;

(8i < d)(8b)P (i; b) $ (8b)(8i < d)P (i; b) :

Hene we an move (8i<d) to the right past all the other quanti�ers. Sine

(9b)(9b

0

)P (b; b

0

) $ (9

^

b)P ((

^

b)

0

; (

^

b)

1

) ;

(8b)(8b

0

)P (b; b

0

) $ (8

^

b)P ((

^

b)

0

; (

^

b)

1

) ;

we an ontrat adjaent pairs of like quanti�ers. The end result is that we

show A to be �

k+2

.

Now suppose that A is �

k+2

. There is then a C 2 �

k+1

suh that, for

all a

1

; : : : ; a

n

,

(a

1

; : : : ; a

n

) 2 A $ (9b)(a

1

; : : : ; a

n

; b) 2 C :

By indution, :C is r.e. in 0

(k)

. Let

D = f-ha

1

; : : : ; a

n

; bi- j (a

1

; : : : ; a

n

; b) =2 Cg :

Then D is r.e. in 0

(k)

, and so Theorem 5.25 implies that D �

1

K

0

(k)

. By the

de�nition of 0

(k+1)

, this gives that D is reursive in 0

(k+1)

. But A is �

1

in

K

D

, hene r.e. in K

D

, hene r.e. in 0

(k+1)

. �

Theorem 5.27. For eah k � 1,

�

k

( �

k

^ �

k

( �

k

^ (�

k

[�

k

) ( �

k+1

:
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Proof. That �

k

� �

k

and �

k

� �

k

is by de�nition. Using vauous

quanti�ers, we an see that �

k

� �

k+1

and �

k

� �

k+1

.

Sine K

0

(k�1)

is r.e. in 0

(k�1)

but not reursive in 0

(k�1)

, we have an

example of a set that belongs to �

k

n �

k

. But then :K

0

(k�1)

belongs to

�

k

n�

k

.

The join of K

0

(k�1)

and :K

0

(k�1)

is reursive in 0

(k)

and so belongs to

�

k+1

, but it does not belong to �

k

[�

k

. �

For n � 1, a subset A of ! is one-one omplete for �

n

if A 2 �

n

and

every �

n

subset of ! is one-one reduible to A. Similarly de�ne one-one

omplete for �

n

, many-one omplete for �

n

, and many-one omplete for

�

n

.

Theorem 5.28. Let A be the set of all e 2 ! suh that W

e

is �nite. Then

A is one-one omplete for �

2

.

Proof. For eah e 2 !,

e 2 A $ (9m)(8n)(n 2W

e

! n � m)

$ (9m)(8n)(8d)(T

1

(e; n; d)! n � m) :

Thus A 2 �

2

.

Let B � ! with B 2 �

2

. There is a reursive C suh that

(8e)(e 2 B $ (9m)(8n) (e;m; n) 2 C) :

De�ne f :

2

! ! ! by

f(e;m) ' �n (8m

0

�m)(9n

0

� n) (e;m

0

; n

0

) =2 C :

Sine f is partial reursive, the s-m-n Theorem gives us a one-one reursive

g suh that

(8e)(8m) fg(e)g(m) ' f(e;m) :

To see that g witnesses that B �

1

A, assume �rst that e 2 B. Then

there is an m suh that (e;m; n) 2 C for all n. For m

0

� m, f(e;m

0

) is

unde�ned. Hene W

g(e)

� m.

Now assume that e =2 B. Then for every m there is an n suh that

(e;m; n) =2 C. Thus f(e;m) is de�ned for every m, and so W

g(e)

= !. �

Exerise 5.4 gives an example of a set many-one omplete (indeed, one-

one omplete) for �

1

.
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Exerise 5.7. Show that fe j range(feg) = !g is one-one omplete for �

2

.

Exerise 5.8. Show that fe j :W

e

is �niteg is one-one omplete for �

3

.

Degrees of unsolvability.

For f : ! ! !, de�ne the degree d(f) of f by

d(f) = fg 2

!

! j f �

T

g ^ g �

T

fg ;

where �

T

means \is reursive in." Let

D = fd(f) j f 2

!

!g :

D is the set of degrees of unsolvability. Partially order D by

d(f) � d(g)$ f �

T

g :

Theorem 5.29. The struture (D;�) is an upper semilattie with a least

element.

Proof. The least upper bound of degrees d(f

1

) and d(f

2

) is f , where for

eah n,

f(2n) = f

1

(n) ;

f(2n+ 1) = f

2

(n) :

The reursive funtions all have the same degree 0, and this is the least

degree. �

Theorem 5.30. There exist inomparable degrees, i.e., � is not a linear

ordering of D.

Proof. We de�ne indutively s

0

; s

1

; : : : and t

0

; t

1

; : : : suh that

(a) (8i 2 !) s

i

2 Seq ;

(b) (8i 2 !) t

i

2 Seq ;

() (8i 2 !)(8j 2 !)(i < j ! (lh(s

i

) < lh(s

j

) ^ s

i

= s

j

d lh(s

i

))) ;

(d) (8i 2 !)(8j 2 !)(i < j ! (lh(t

i

) < lh(t

j

) ^ t

i

= t

j

d lh(t

i

))) .
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Let s

0

= t

0

= -h i-.

Assume that s

e

and t

e

are de�ned.

If there is an s 2 Seq suh that

(i) lh(s) � lh(s

e

) ;

(ii) s d lh(s

e

) = s

e

;

(iii) (9d� lh(s))T

1

1

(sdd; e; lh(t

e

); d) ;

then let s

0

e

be the least suh s and let

t

0

e

= t

e

� -hU(�dT

1

1

(s

0

e

dd; e; lh(t

e

); d)) + 1i- :

Otherwise let s

0

e

= s

e

and t

0

e

= t

e

.

If there is a t 2 Seq suh that

(i) lh(t) > lh(t

0

e

) ;

(ii) t d lh(t

0

e

) = t

0

e

;

(iii) (9d� lh(t))T

1

1

(tdd; e; lh(s

0

e

); d) ;

then let t

e+1

be the least suh t and let

s

e+1

= s

0

e

� -hU(�dT

1

1

(t

e+1

dd; e; lh(s

0

e

); d)) + 1i- :

Otherwise let t

e+1

= t

0

e

� -h0i- and let s

e+1

= s

0

e

� -h0i-.

Let f : ! ! ! be suh that

�

f(lh(s

i

)) = s

i

for all i 2 ! and let g : ! ! !

be suh that �g(lh(t

i

)) = t

i

for all i 2 !.

To show that g 6�

T

f , let e 2 !. We show that feg

f

6= g. To see this,

note that feg

f

(lh(t

e

)) 6= g(lh(t

e

)); for, if feg

f

(lh(t

e

)) is de�ned, then

g(lh(t

e

)) = t

0

e

(lh(t

e

)) = feg

f

(lh(t

e

)) + 1 :

Similarly, for eah e 2 !,

f(lh(s

0

e

)) = s

e+1

(lh(s

0

e

)) = feg

g

(lh(s

0

e

)) + 1 :

Hene f 6�

T

g. �

For subsets A of !, let d(A) = d(K

A

). A degree is reursively enumerable

if it is d(A) for some r.e. A. There is a least r.e. degree, 0, and there is a

greatest r.e. degree, 0

0

= d(0

(1)

) = d(K).

Theorem 5.31. There is an r.e. degree d suh that

0 < d < 0

0

:
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Proof. We shall onstrut a reursive funtion f :

2

! ! ! satisfying

(8s)(8e)(f(s; e) > 0! (e < s ^ f(s+ 1; e) = f(s; e))) :

For s 2 !, we let

A

s

= ff(s; e)� 1 j f(s; e) > 0g :

The stated properties of f imply the reursiveness of f(s;m) j m 2 A

s

g. For

e 2 !, we let

m

e

' f(�s f(s; e) > 0; e) � 1 :

Finally we let

A = fm

e

j m

e

is de�nedg =

[

s

A

s

:

Thus A will be r.e.

We shall make d(A) > 0 by arranging that :A is in�nite and, for all e,

W

e

is in�nite ! W

e

\A 6= 0 :(I)

The numbers m

e

will be used to witness that (1) holds.

We shall make d(A) < 0

0

by arranging that

K

K

A

2 �

2

:(II)

By Theorem 5.26, (2) implies that K

K

A

�

T

0

(1)

, and so that

d(A) < d(K

K

A

) � 0

0

:

As we de�ne f , we shall simultaneously de�ne another reursive funtion

g :

2

! ! !.

Set f(0; e) = 0 for all e.

Let s 2 !. Suppose f(s; e) is de�ned for all e. Suppose indutively that

(8e)(f(s; e) > 0! W

s

e

\A

s

6= ;) ;

where

W

s

e

= fn j (9d� s)T

1

(e; n; d)g :

For eah e, let

g(s; e) =

�

�d (d � s ^ T

1

1

(K

A

s

(d); e; e; d)) if (9d� s)T

1

1

(K

A

s

(d); e; e; d) ;

0 otherwise.
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For eah e < s, if both

(a) W

e

\A

s

= ; ;

(b) (9m� s)(m 2W

s

e

^m > 2e ^ (8e

0

< e)m � g(s; e

0

)) ;

then, for the least suh m, let f(s+ 1; e) = m+ 1. If either (a) or (b) does

not hold, let f(s+ 1; e) = f(s; e).

Lemma 5.32. :A is in�nite.

Proof. Eah m

e

> 2e, and therefore

fn j n 2 A ^ n � 2eg � fm

e

0

j e

0

< eg ;

a set of size � e. �

Lemma 5.33. For eah e, lim

s

g(s; e) exists.

Proof. Fix e. Let s

0

be suh that

(8e

0

� e) (m

e

de�ned! f(s

0

; e

0

) > 0) :

Suppose that s � s

0

and g(s; e) > 0. Any e

0

suh that f(s; e

0

) = 0 and

f(s+1; e

0

) > 0 must be greater than e, and so, by ondition (b) above, must

satisfy m

e

0

� g(s; e). Thus A

s+1

\ g(s; e) = A

s

\ g(s; e). This implies that

g(s+1; e) = g(s; e). We have then shown that if g(s; e) > 0 for some s � s

0

then g(s

0

; e) = g(s; e) for every s

0

� s. �

Lemma 5.34. For eah e, lim

s

g(s; e) > 0 if and only if e 2 K

K

A

.

Proof. Let ĝ(e) = lim

s

g(s; e) and assume that ĝ(e) > 0. for all suÆiently

large s, A

s

\ ĝ(e) = A \ ĝ(e) . By the de�nition of g(s; e), e 2 K

K

A

.

Now assume that e 2 K

K

A

. Then (9d)T

1

1

(K

A

(d); e; e; d). Hene, for

every large enough s, (9d � s)T

1

1

(K

A

s

(d); e; e; d), and so g(s; e) > 0. �

Lemma 5.35. (1) holds.

Proof. Let e 2 ! and suppose that W

e

is in�nite. Let m 2W

e

withm > 2e

and m � ĝ(e

0

) for all e

0

< e. Let s be suh that e < s, m � s, m 2 W

s

e

,

and g(s; e

0

) = ĝ(e

0

) for all e

0

< e. If W

s

\A

s

= ;, then (a) and (b) hold for

m at s, and so some m

0

� m belongs to W

s

e

\A

s+1

. �

Lemma 5.36. (2) holds.
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Proof. For eah e,

e 2 K

K

A

$ lim

s

g(s; e) > 0

$ (9s)(8s

0

)(s

0

� s! g(s

0

; e) > 0)

$ (8s)(9s

0

)(s

0

� s ^ g(s

0

; e) > 0) :

�

Exerise 5.9. Prove that there is set of size 2

�

0

of pairwise inomparable

degrees of unsolvability.

Hint. Modify the proof of Theorem 5.30 by de�ning hs

u

j u 2

<!

2i.

Exerise 5.10. Show that there is no partial reursive funtion f suh that,

for all e 2 !, if :W

e

is �nite then f(e) is de�ned and every number � f(e)

belongs to W

e

.

Exerise 5.11. Show that there are reursive funtions f :

2

! ! ! and

g :

2

! ! ! suh that

(a) for all e

1

and e

2

, W

f(e

1

;e

2

)

and W

g(e

1

;e

2

)

are disjoint and reursive;

(b) for all e

1

and e

2

, ifW

e

1

= :W

e

2

thenW

f(e

1

;e

2

)

=W

e

1

andW

g(e

1

;e

2

)

=

W

e

2

.

Hint. All �nite sets are reursive.

Exerise 5.12. Let A be a reursively enumerable set suh that :A is in-

�nite. Let f : ! ! :A be one-one onto and order preserving. Assume that

f eventually dominates every partial reursive funtion, i.e., that, for every

partial reursive g,

(9m)(8n�m)(g(n) is de�ned! g(n) � f(n)) :

Prove that d(A) = 0

0

.
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6 Construtible Sets

In this setion, as in x1, we we our notation and terminology is pretty

muh the same as that of Kenneth Kunen's Set Theory: an Introdution

to Independene Proofs. In addition, our treatment of onstrutible sets is

derived from Kunen's.

In ZFC without the axiom of Foundation, we proved (Theorem 1.9) the

existene of the lass funtion � 7! V

�

. Still working in ZFC � Foundation,

we an de�ne the proper lass WF by

WF =

[

fV

�

j � 2 ONg :

Moreover it is easy to onvine oneself that all the axioms of ZFC, inlud-

ing Foundation, hold in (WF;2 �WF). Can one not show in this way the

onsisteny of the Axiom of Foundation? The answer is yes, but we have to

be areful about several things.

We an't hope to show that the onsisteny of ZFC is a theorem of

ZFC � Foundation, for the seond inompleteness theorem implies that the

onsisteny of ZFC annot be proved even in ZFC (unless ZFC is inonsis-

tent). Of ourse, the argument outlined above doesn't atually establish the

onsisteny of ZFC, sine (WF;2 �WF) isn't atually a (set) model. And

we an't really be \working in ZFC � Foundation" if we show that all the

axioms of ZFC hold in WF, for this assertion isn't even expressible in the

formal language of set theory.

Let M be a lass. For formulas ' (of the language of set theory), we

de�ne '

M

, the relativization of ' to M , indutively as follows:

(a) (x = y)

M

is x = y;

(b) (x 2 y)

M

is x 2 y;

() (:')

M

is :'

M

;

(d) (' ^  )

M

is ('

M

^  

M

);

(e) ((9x)')

M

is (9x)(x 2M ^ '

M

).

This de�nition requires some explanation.

Classes are the (sometimes nonexistent, from the point of view of ZFC)

extensions of formulas. So we should think of M as being fx j �(x)g for

some formula �. Thus lause (e) should really read

(e) ((9x)')

M

is (9x)(�(x) ^ '

M

).
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Hene the operation ' 7! '

M

depends not just on M but also on a formula

� de�ning M .

Even this amended aount of the de�nition is not really aurate. A

lass need not be de�nable. It may be given by a formula �(x; y

1

; : : : ; y

n

). (If

we are using the language, then the formula is, in e�et, speifying for us a

lass; if we are talking about the language, then the formula isn't speifying

a lass unless we assign sets to the variables y

i

.) For lasses M given by

suh formulas, the de�nition of '

M

must be modi�ed so that the quanti�ers

of '

M

do not bind any of the variables y

1

; : : : ; y

n

ourring free in the the

de�ning formula.

For any lass M and formula ', ' is true in M , ' holds in M , and M

is a model of ' all mean the same as the formula '

M

.

Lemma 6.1. Let S and T be sets of sentenes in the language of set theory

and let M be a de�nable lass. Suppose that (for some formula de�ning M)

(1) T j= M 6= ; ;

(2) (8� 2 S)T j= �

M

.

Then S is onsistent if T is onsistent.

Proof. Let �(x) be the given formula de�ning M for whih (1) and (2)

hold. (Note that the Lemma is really about � and has nothing to do with

M qua lass.)

Assume that T is onsistent. Let A be a model of T . Let B be given by

B = fa 2A j A j= �[a℄g ;

2

B

= 2

A

�B :

(1) implies that B 6= ; and so that B is a model. It is routine to show that,

for any sentene �,

B j= � $ A j= �

M

:

Thus (2) implies that B j= S. �

Remarks:

(a) It is easy to give a diret proof-theoreti argument for the (equivalent)

version of Lemma 6.1 formulated in terms of dedutive onsisteny.

(b) Suppose that S and T are, say, reursively axiomatizable theories.

Then the dedutive onsisteny version of Lemma 6.1 for S and T an be

formulated in, for example, Peano Arithmeti. Moreover it an be proved
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in PA. The appliations we make of Lemma 6.1 will all involve reursively

axiomatizable theories, and the arithemeti versions of (1) and (2) will be

provable in PA. Thus our relative onsisteny results are all essentially the-

orems of PA.

Lemma 6.2. If M is a transitive lass, then the Axiom of Extensionality

holds in M .

Proof. Let M be transitive. The relativization of Extensionality to M is

equivalent to

(8x 2M)(8y 2M)((8z 2M)(z 2 x$ z 2 y)! x = y) :

Fix elements x and y ofM and assume that (8z2M)(z 2 x$ z 2 y). Sine

M is transitive, this implies that (8z)(z 2 x $ z 2 y). By Extensionality,

x = y. �

Lemma 6.3. The Axiom of Foundation holds in every sublass of WF.

Proof. Let M �WF. The relativization of Foundation to M is

(8x 2M)((9y 2M) y 2 x ! (9y 2 x \M)(8z 2 x \M) z =2 y) :

Let x 2M . Assume that x\M 6= ;. SineM �WF, there is a least ordinal

� suh that x \M \ V

�

6= ;. For this least �, let y 2 x \M \ V

�

. Sine all

members of y belong to V

�

for some � < �, y is disjoint from x \M . �

Lemma 6.4. LetM be a lass with the following property: For eah formula

'(x; z; w

1

; : : : ; w

n

) and for any elements z, w

1

, . . . , w

n

of M ,

fx 2 z j '

M

(x; z; w

1

; : : : ; w

n

)g 2M :

Then every instane of the Axiom Shema of Comprehension holds in M .

Proof. Any relativization to M of an instane of Comprehension is of the

form

(8w

1

2M) � � � (8w

n

2M)(8z2M)(9y2M)(8x2M)(x 2 y $ (x 2 z ^ '

M

)) ;

for ' as in the statement of the lemma. Fix suh a ' and �x elements z,

w

1

; : : : w

n

of M . Let y = fx 2 z j '

M

(x; z; w

1

; : : : ; w

n

)g . By hypothesis,

y 2 M . Sine (8x)(x 2 y $ (x 2 z ^ '

M

)), we have in partiular that

(8x 2M)(x 2 y $ (x 2 z ^ '

M

)). �
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In our appliations, M will be transitive, so that the set y will not have

elements x =2 M satisfying '

M

(x). Note that a lass M (transitive or not)

satis�es the hypothesis of Lemma 6.4 if M if all subsets of elements of M

belong to M .

The following two lemmas are easy to prove.

Lemma 6.5. If M is a lass suh that, for all x and y belonging to M ,

there is a z 2M with fx; yg � z, then the Axiom of Pairing holds in M .

Lemma 6.6. If M is a lass suh that for all x 2M there is a y 2M suh

that U(x) � y, then the Axiom of Union holds in M .

Lemma 6.7. LetM be a lass with the following property: For eah formula

'(x; z; w

1

; : : : ; w

n

) and for any elements z, w

1

, . . . , w

n

of M , if

(8x 2 z \M)(9!y 2M)'

M

(x; y; z; w

1

; : : : ; w

n

) ;

then there is a u 2M suh that

fy 2M j (9x 2 z \M)'

M

(x; y; z; w

1

; : : : ; w

n

)g � u :

Then every instane of the Axiom Shema of Replaement holds in M .

Proof. The proof is similar to that of Lemma 6.4. �

We postpone disussing the Axioms of In�nity, Power Set, and Choie

until we have proved some results about absoluteness.

Let '(x

1

; : : : ; x

n

) be a formula. IfM andN are lasses suh thatM � N ,

then ' is absolute for (M;N) if, for any elements x

1

; : : : x

n

of M ,

'

M

(x

1

; : : : ; x

n

)$ '

N

(x

1

; : : : ; x

n

) :

We say that ' is absolute for a lass M if ' is absolute for (M;V ), i.e., if,

for any elements x

1

; : : : ; x

n

of M ,

'

M

(x

1

; : : : ; x

n

)$ '(x

1

; : : : ; x

n

) :

Lemma 6.8. If M � N , then the set of formulas absolute for (M;N) is

losed under negation and onjuntion.

Proof. The lemma follows diretly from the fats that the relativization of

:' is the negation of the relativization of ' and that the relativization of

' ^  is the onjuntion of the relativizations of ' and  . �
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Lemma 6.9. Let M and N be transitive lasses suh that M � N . Then

the set of formulas absolute for (M;N) is losed under bounded quanti�a-

tion; that is to say, if ' is absolute for (M;N) then

(9x)(x 2 y ^ ')

is absolute for (M;N).

Proof. Given '(x; y; z

1

; : : : ; z

n

) absolute for (M;N) and given elements y,

z

1

; : : : ; z

n

of M , we have

((9x)(x 2 y ^ '(x; y; z

1

; : : : ; z

n

)))

M

$ (9x)(x 2 y ^ '

M

(x; y; z

1

; : : : ; z

n

))

$ (9x)(x 2 y ^ '

N

(x; y; z

1

; : : : ; z

n

))

$ ((9x)(x 2 y ^ '(x; y; z

1

; : : : ; z

n

)))

N

:

The �rst bionditional follows from the transitivity of M , the seond from

the absoluteness of ' for (M;N), and the third from the transitivity of N .

�

The �

0

formulas form the smallest set of formulas satisfying the following

onditions:

(1) All atomi formulas are �

0

.

(2) If ' is �

0

then so is :'.

(3) If ' and  are �

0

then so is (' ^  ).

(4) If ' is �

0

then so is (9x)(x 2 y ^ ').

Lemma 6.10. If M and N are transitive lasses and M � N , then all �

0

formulas are absolute for (M;N).

The following useful lemma is easy to prove.

Lemma 6.11. Let T be a theory and let '(x

1

; : : : ; x

n

) and  (x

1

; : : : x

n

) be

formulas suh that

T j= (8x

1

) � � � (8x

n

)('(x

1

; : : : ; x

n

)$  (x

1

; : : : ; x

n

)) :

Let M and N be models of T suh that M � N . Then ' is absolute for

(M;N) if  is.
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If T is a theory in the language of set theory and '(v

1

; : : : ; v

n+1

) is a

formula of that language, then ' de�nes an operation (of n arguments) in

T if

T j= (8v

1

) � � � (8v

n

)(9!v

n+1

)'(v

1

; : : : ; v

n+1

) :

To have a uniform terminology, let us speak of any formula '(v

1

; : : : ; v

n

) as

de�ning an n-ary relation in T . When we speak of a de�ned operation or

relation as being absolute, we mean that the de�ning formula is absolute.

Let ZF be ZFC � Choie.

Lemma 6.12. The following relations and operations are de�ned in ZF �

Foundation � Power Set � In�nity by formulas provably equivalent in ZF �

Foundation � Power Set � In�nity to �

0

formulas. Hene they are absolute

for any transitive lass M that is a model of ZF � Foundation � Power Set

� In�nity.

(a) x 2 y ; (h) x [ y ;

(b) x = y ; (i) x \ y ;

() x � y ; (j) x n y ;

(d) fx; yg ; (k) S(x) ;

(e) fxg ; (l) x is transitive ;

(f) hx; yi ; (m) U(x) ;

(g) ; ; (n)

T

x :

In (n), we onstrue

T

; to be ; in order to make

T

into an operation.

Proof. That we de�ned these relations and funtions in ZF � Foundation �

Power Set � In�nity, we leave to the reader to hek. We ontent ourselves

with making it lear that the de�ning formulas are equivalent in that theory

to �

0

formulas.

(a) and (b) are obvious.

For (), note that x � y if and only if (8z 2 x) z 2 y.

For (d), observe that

z = fx; yg $ (x 2 z ^ y 2 z ^ (8w 2 z)(w = x _ w = y)) :

(e) is similar.

For (f), note that z = hx; yi if and only if

(9w2 z)w = fxg ^ (9w2 z)w = fx; yg ^ (8w2 z)(w = fxg _ w = fx; yg) :

Sine w = fxg and w = fx; yg are equivalent to �

0

formulas, so is z = hx; yi.
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For (g){(k), note that

z = ; $ (8w 2 z)w 6= w ;

z = x [ y $ x � z ^ y � z ^ (8w 2 z)(w 2 x _ w 2 y) ;

z = x \ y $ z � x ^ z � y ^ (8w 2 x)(w 2 y ! w 2 z) ;

z = x n y $ z � x ^ z \ y = ; ^ (8w 2 x)(w =2 y ! w 2 z) ;

z = S(x) $ x 2 z ^ x � z ^ (8w 2 z)(w = x _ w 2 x) :

For (l), observe that x is transitive if and only if (8z2x)(8w2 z)w 2 x .

For (m) and (n), note that

y = U(x) $ (8z 2 x) z � y ^ (8z 2 y)(9w 2 x) z 2 w

and that

y =

T

x $ (8z 2 x) y � z ^ (8z 2 x)(8w 2 z)((8u 2 x)w 2 u! w 2 y)

^ (x = ; ! y = ;) :

�

Lemma 6.13. Suppose that M is a transitive model of ZF � Foundation

� Power Set � In�nity suh that (8x 2M)(9y 2M)P(x) \M � y. Then

the Axiom of Power Set holds in M .

Proof. The relativization to M of Power Set is

(8x 2M)(9y 2M)(8z 2M)((z � x)

M

! z 2 y) :

By Lemma 6.12, � is absolute for M , so the relativization of Power Set to

M is equivalent to

(8x 2M)(9y 2M)(8z 2M)(z � x! z 2 y) :

But this is just what the seond part of the hypothesis of the lemma says.

�

Remark. Sine � is literally de�ned by a �

0

formula, the lemma holds

without the assumption that M is a model of ZF � Foundation � Power

Set � In�nity.

Lemma 6.14. Let M be a transitive model of ZF � Foundation � Power

Set � In�nity. If ! 2M , then the Axiom of In�nity holds in M .
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Proof. The relativization to M of In�nity is

(9x 2M)(;

M

2 x ^ (8y 2 x \M)S

M

(y) 2 x) :

By the transitivity of M and the absoluteness of ; and S, this is equivalent

to

(9x 2M)(; 2 x ^ (8y 2 x)S(y) 2 x) :

But ! witnesses that this is true. �

Lemma 6.15. (Uses Choie) Let M be a transitive model of ZF � Foun-

dation � Power Set � In�nity suh that every subset of an element of M

belongs to M . Then the Axiom of Choie holds in M .

Proof. Using the transitivity of M and the absoluteness of ; and \, we get

that the relativization to M of Choie is

(8x 2M)

((8y

1

)(8y

2

) ((y

1

2 x ^ y

2

2 x)! (y

1

6= ; ^ (y

1

= y

2

_ y

1

\ y

2

= ;)))

! (9z 2M)(8y)(y 2 x! (9!w 2M)w 2 y \ z)))

Let x 2 M satisfy the anteedent of the onditional. Let z be given by

Choie. Then

(8y)(y 2 x! (9!w)w 2 y \ z) :

The transitivity of M implies that

(8y)(y 2 x! (9!w 2M)w 2 y \ z) :

This in turn implies that

(8y)(y 2 x! (9!w 2M)w 2 y \ (z \ U(x)) :

Sine the U operation is de�ned in M and is absolute for M , the set U(x)

belongs to M . Sine z \ U(x) � U(x), the hypotheses of the lemma give

that z \ U(x) 2M . �

Theorem 6.16. (a) The lass WF is a model of ZF.

(b) (Uses Choie) The lass WF is a model of ZFC.

Proof. Sine WF is transitive, Lemma 6.2 implies that Extensionality holds

in WF. Sine WF � WF, Lemma 6.3 gives that Foundation holds in WF.

All subsets of WF belong to WF, so, by the remark after the proof of

Lemma 6.4, Comprehension holds in WF. It is easy to see that WF is losed
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under the operations of pairing and U ; hene Pairing and Union hold in WF

by Lemmas 6.5 and 6.6. We leave as an exerise to prove that the hypothesis

of Lemma 6.7 holds for WF. By that lemma we then get that Replaement

holds in WF. We now have that WF is a model of ZF � Foundation � Power

Set � In�nity. For x 2WF,

P(x) \WF = P(x) 2WF :

Hene, by Lemma 6.13, Power Set holds in WF. By Lemma 6.14 and the

fat that ! 2WF, we have that In�nity holds in WF. Sine the hypotheses

of Lemma 6.15 hold in WF, Choie holds in WF if it holds in V . �

Theorem 6.17. (a) If ZF � Foundation is onsistent, then so is ZF.

(b) If ZFC � Foundation is onsistent, then so is ZFC.

Proof. (a) follows from Lemma 6.1 and and part (a) Theorem 6.16, and

(b) follows from Lemma 6.1 and and part (b) Theorem 6.16. �

Exerise 6.1. Prove the the Shema of Replaement holds in WF.

Announement. We shall no longer note uses of Foundation.

Lemma 6.18. The omposition of absolute operations and relations is ab-

solute: Suppose that T is a theory, that M � N , that M and N are models

of T , and that that G

1

; : : : ; G

m

are n-argument operations de�ned in T that

are absolute for (M;N).

(a) Let R be an m-ary relation de�ned in T that is absolute for (M;N).

Then the n-ary relation R

0

given by

R

0

(x

1

; : : : ; x

n

) $ R(G

1

(x

1

; : : : ; x

n

); : : : ; G

m

(x

1

; : : : ; x

n

))

is de�ned in T and is absolute for (M;N).

(b) Let F be an m-argument operation de�ned in T that is absolute for

(M;N). Then the n-argument operation H given by

H(x

1

; : : : ; x

n

) = F (G

1

(x

1

; : : : ; x

n

); : : : ; G

m

(x

1

; : : : ; x

n

))

is de�ned in T and is absolute for (M;N).
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We prove (b). The argument for (a) is similar. It is easy to see that H

is de�ned in T . To prove its absoluteness, let x

1

; : : : ; x

n

be elements of M .

Then

H

M

(x

1

; : : : ; x

n

) = F

M

(G

M

1

(x

1

; : : : ; x

n

); : : : ; G

M

m

(x

1

; : : : ; x

n

))

= F

N

(G

M

1

(x

1

; : : : ; x

n

); : : : ; G

M

m

(x

1

; : : : ; x

n

))

= F

N

(G

N

1

(x

1

; : : : ; x

n

); : : : ; G

N

m

(x

1

; : : : ; x

n

))

= H

N

(x

1

; : : : ; x

n

) :

�

Lemma 6.19. The following relations and operations are de�ned in ZF �

Power Set and are absolute for transitive models of ZF � Power Set.

(a) z is an ordered pair;

(b) u� v ;

() z is a relation;

(d) domain (z) (= fx j (9y)hx; yi 2 zg) ;

(e) range (z) (= fy j (9x)hx; yi 2 zg) ;

(f) z is a funtion ;

(g) z(x)

�

=

�

z(x) if (9!y) hx; yi 2 z;

; otherwise;

�

(h) z is a one-one funtion.

Proof. (a) z is an ordered pair if and only if (9x2U(z))(9y2U(z)) z = hx; yi .

(b) The �rst of our two proofs of the existene of u � v was in ZF �

Power Set, so � is de�ned in ZF � Power Set. For absoluteness, note that

z = u� v if and only if

(8x 2 u)(8y 2 v) hx; yi 2 z ^ (8w 2 z)(9x 2 u)(9y 2 v)w = hx; yi :

() z is a relation if and only if every element of z is an ordered pair.

(d) u = domain (z) if and only if

(8x 2 u)(9y 2 U(U(z)))hx; yi 2 z

^ (8x 2 U(U(z)))(8y 2 U(U(z)))(hx; yi 2 z ! x 2 u) :

(e) v = range (z) if and only if

(8y 2 v)(9x 2 U(U(z)))hx; yi 2 z

^ (8x 2 U(U(z)))(8y 2 U(U(z)))(hx; yi 2 z ! y 2 v) :
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(f) z is a funtion if and only if z is a relation and

(8x 2 U(U(z)))(8y 2 U(U(z)))(8y

0

2 U(U(z)))

((hx; yi 2 z ^ hx; y

0

i 2 z)! y = y

0

) :

(g) y = z(x) if and only if

(hx; yi 2 z ^ (9!v 2 U(U(z))) hx; vi 2 z)

_ (y = ; ^ :(9!v 2 U(U(z)))(hx; vi 2 z)) :

(h) z is a one-one funtion if and only if z is a funtion and

(8x 2 U(U(z)))(8x

0

2 U(U(z)))(z(x) = z(x

0

)! x = x

0

) :

�

From now on, when we state that an operation or relation is absolute

for transitive models of a theory T , we mean that the operation or relation

is de�ned in T and is absolute for transitive models of T .

Lemma 6.20. The following operations and relations are absolute for tran-

sitive models of ZF � Power Set.

(a) x is an ordinal;

(b) x is a limit ordinal;

() x is a suessor ordinal;

(d) x is a �nite ordinal;

(e) !;

(f) 0; 1; 2 : : : :

Proof. (a) x is an ordinal if and only if x is transitive and 2�x is a linear

ordering of x. The �rst lause is absolute by Lemma 6.12 and the seond is

given by a �

0

formula (all the quanti�ers are bounded to x).

(b) x is a limit ordinal if and only if x is an ordinal and x 6= ; and

(8y 2 x)S(y) 2 x.

() x is a suessor ordinal if and only if x is an ordinal and x is neither

; nor a limit ordinal.

(d) x is a natural number if and only if x is an ordinal number and

neither x nor any member of x is a limit ordinal.

(e) x = ! if and only if x is a limit ordinal and no member of x is a limit

ordinal.

(f) z = 0$ z = ;; z = a+ 1$ (9x 2 z)(x = a ^ z = S(x)) . �
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Exerise 6.2. Explain briey whih axioms of ZFC are true in the following

transitive lasses. (The lasses are all sets, so \true in M" an be taken in

either of our two senses.)

(1) V

!

;

(2) V

!+1

;

(3) V

!+!

;

(4) V

!

1

;

(5) V

�

for � inaessible.

A ardinal � is inaessible if � is unountable and regular and if, for all

�

0

< �, 2

�

0

< �.

Exerise 6.3. A formula of the language of set theory is �

1

if it is of the

form (9x

1

) : : : (9x

n

)' with ' a �

0

formula. A formula is �

1

if it is of the

form (8x

1

) : : : (8x

n

)' with ' a �

0

formula. If T is a theory, a formula ' is

provably �

1

in T if there are formulas  and � suh that  is �

1

, � is �

1

,

and T j= both ('$  ) and ('$ �).

Let ' be provably �

1

in T and let M and N be transitive models of T

suh that M � N . Prove that ' is absolute for (M;N).

Lemma 6.21. Let M be a transitive model of ZF � Power Set. Then every

�nite subset of M belongs to M .

Proof. There is only one subset x of M with ard (x) = 0, namely ;, and

this set belongs to M . Assume indutively that every size n subset of M

belongs to M . Let x � M with ard (x) = n + 1. Then there is a y � M

and there is a z 2M suh that ard (y) = n and x = y [ fzg. By indution

y 2M , and so Lemma 6.12 gives that x 2M . �

Lemma 6.22. The following are absolute for transitive models of ZF �

Power Set.

(a) x is �nite;

(b)

<!

x .

Proof. (a) x is �nite if and only if there is a one-one funtion f with

domain (f) 2 ! and range (f) = x. If x 2 M , then Lemmas 6.12 and 6.20

imply that any suh f is a subset of M and so, by Lemma 6.21, an element

of M .
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(b) We must show that

<!

x is de�ned in ZF � Power Set. To do this we

�rst use indution to prove in ZF � Power Set that

n

x exists for every set

x and every n 2 !. This is true for n = 0, beause

0

x = f;g. It is easy to

de�ne a one-one orrespondene between

n

x�x and

n+1

x, so our assertion for

n+ 1 follows from the assertion for n using Lemma 6.19 and Replaement.

Next we use Replaement to get the existene of f

n

x j n 2 !g. Sine

<!

x = Uf

n

x j n 2 !g, we �nally get the existene of

<!

x. Absoluteness

holds beause z 2

<!

x if and only if z is a funtion and domain (z) 2 ! and

range (z) � x. �

Lemma 6.23. The following are absolute for transitive models of ZF �

Power Set.

(a) r wellorders x;

(b) ot(x; r), that is, the unique ordinal � suh that hx; ri is isomorphi

to h�;2��i if r wellorders x and 0 otherwise.

Proof. That r linearly orders x is expressible by a �

0

formula.

Suppose that r wellorders x. Then every non-empty subset of x has an

r-least element. Let y 2 M be suh that (y � x)

M

and (y 6= ;)

M

. Then

y � x and y 6= ;. Let z be an r-least element of y. Then z 2 M and it is

true in M that z is the r-least element of y.

Now suppose that \r wellorders x" is true in M . Sine the proof of

Theorem 1.14 goes through in ZF � Power Set, it is true in M that there

is an ordinal number � suh that hx; ri is isomorphi to h�;2��i. Let f be

suh that in M it is true that f is an isomorphism between h�;2 ��i and

hx; ri. By the absoluteness of the relevant notions, this is also true in V .

Hene r wellorders x.

The argument just given proves (a), but it also shows that if r wellorders

x then ot

M

(x; r) = ot(x; r). By (a) and the absoluteness of 0, we have (b).

�

We an extend our notion of absolute de�nable relations to relations

de�ned from set parameters. For simpliity, we make this extension only

for unary relations, i.e., for lasses. Fix a lass M . If A is the lass fx j

'(x; a

1

; : : : ; a

n

)g, let us say that A is de�ned in M if a

1

; : : : ; a

n

are elements

of M . If A is de�ned in M , then

A

M

= fx 2M j '

M

(x; a

1

; : : : ; a

n

)g :

We say that A is absolute for M if A is de�ned in M and A

M

= A \M .
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In an analogous fashion we now introdue the notion of absolute lass

funtions. For a lass funtion F = fhx; yi j '(hx; yi; a

1

; : : : ; a

n

)g, let us say

that F is de�ned in M (as a funtion) if a

1

; : : : ; a

n

are elements of M and

\F is a funtion" is true in M . If F is de�ned in M , then

F

M

= fhx; yi 2M j '

M

(hx; yi; a

1

; : : : ; a

n

)g :

We say that F is absolute for M (as a funtion) if F is de�ned in M and

F

M

= F �M (so that, in partiular, domain (F

M

) = domain (F ) \M).

Remarks:

(a) Being de�ned in M and being absolute for M depend upon the

de�ning formula and parameters and not just on the lass or funtion.

(b) De�nability in M ould be de�ned in a natural way for de�ned op-

erations, although we have not done so.

() We have required that de�ned operations of n arguments be de�ned

on any x

1

; : : : ; x

n

, but we allow absolute lass funtions to have domains

that are not all of V .

Lemma 6.24. Let F : V ! V . Let G : ON! V be de�ned as in the proof

of Theorem 1.8. Thus

(8� 2ON)G(�) = F (G � �):

Let M be a transitive model of ZF � Power Set. Assume that F is absolute

for M . Then G is absolute for M .

Proof. Sine the proof of Theorem 1.8 goes through in ZF � Power Set

and sine (F : V ! V )

M

, we have by earlier absoluteness results that G is

de�ned in M , that G

M

: ON \M !M , and that

(8� 2ON \M)G

M

(�) = F

M

(G

M

� �) :

Using the absoluteness of F , we an prove by trans�nite indution on � 2

ON \M that G

M

(�) = G(�). �

Lemma 6.25. The operation trl is absolute for transitive models of ZF �

Power Set.

Proof. The proof of the existene of trl(x) goes through in ZF � Power

Set. That proof shows that trl(x) = U(range (g

x

)) for some g

x

de�ned by
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reursion from an absolute F

x

(de�ned from x by a formula that is indepen-

dent of x). Thus trl(x) = U(range (G

x

�!)) for the G

x

de�ned by trans�nite

reursion from this same F

x

. �

For any set x, let rank (x) be the least ordinal � suh that x 2 V

�+1

.

Sine the V

�

, � > !, may not exist in models of ZF � Power Set, let us

adopt the following de�nition of rank (x) as our oÆial de�nition. Given x,

de�ne by trans�nite reursion a funtion G

x

: ON! V by

G

x

(0) = ;

G

x

(�+ 1) = fy 2 trl(x) j y � G

x

(�)g ;

G

x

(�) = U(range (G

x

� �)) for limit ordinals �.

Then let rank (x) be the least �, suh that x � G

x

(�). In ZF, one an easily

show that G

x

(�) = V

�

\ trl(x), and so that the two de�nitions of rank (x)

are equivalent in ZF.

Lemma 6.26. The operation rank is absolute for transitive models of ZF

� Power Set.

Lemma 6.27. Let M be a transitive model of ZF. Then

(a) P

M

(x) = P(x) \M for x 2M ;

(b) V

M

�

= V

�

\M for � 2 ON \M .

Proof. (a) follows from the absoluteness of �. (b) follows from the abso-

luteness of rank. �

The following lemma gives the relation between the relativization of a

formula to a set and the satisfation of that formula by the model determined

by that set.

Lemma 6.28. Let '(x

1

; : : : ; x

n

) be a formula and let b be a set. Then, for

any a

1

; : : : ; a

n

belonging to b,

'

b

(a

1

; : : : ; a

n

) $ (b;2) j= '[a

1

; : : : ; a

n

℄ :

Proof. We an show by indution on omplexity that all instanes of this

shema are provable. �

For any set x let FODO(x) be the set of all u � x suh that, for some

formula '(v

0

; : : : ; v

n

) and some sequene hy

1

; : : : ; y

n

i of elements of x (i.e.,

some f : n! x),

u = fy

0

2 x j (x;2) j= '[y

0

; : : : y

n

℄g :
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Lemma 6.29. For any set x,

(a) FODO(x) � P(x) ;

(b) if x is transitive, then x � FODO(x) ;

() every �nite subset of x belongs to FODO(x) ;

(d) (Uses Choie) if ard (x) � ! then ard (FODO(x)) = ard (x).

Proof. (a) is obvious.

(b) Assume that x is transitive and let b 2 x. Let '(v

0

; v

1

) be the formula

v

0

2 v

1

. Then fa 2 x j (x;2) j= '[a; b℄g 2 FODO(x). But

fa 2 x j (x;2) j= '[a; b℄g = fa 2 x j a 2 bg

= b ;

where the last equality holds beause x is transitive.

() Let n 2 ! and let u � x with ard (u) = n. Let f : n! u be one-one

and onto. Then the formula

WW

1�i�n

v

0

= v

i

and f(0) : : : ; f(n� 1) witness

that u 2 FODO(x).

(d) Assume that ard (x) � !. By (), fyg 2 FODO(x) for every y 2 x.

Thus ard (x) � ard (FODO(x)). But ard (FODO(x)) is no greater than

the ardinal of u� v, where u is the set of all formulas and v =

<!

x. Thus

ard (FODO(x)) � �

0

� ard (x) = ard (x). �

Remark. Choie is needed for (d) only to get the existene of ard (x).

By trans�nite reursion, we de�ne a funtion L : ON! V . We write L

�

for L(�).

(a) L

0

= ; ;

(b) L

�+1

= FODO(L

�

) ;

() L

�

= U(fL

�

j � < �g) if � is a limit ordinal.

Let L = U(fL

�

j � 2 ONg). Members of L are said to be onstrutible.

Lemma 6.30. For eah ordinal �,

(a) L

�

is transitive;

(b) (8� � �)L

�

� L

�

.

Moreover L is transitive.
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Proof. We prove (a) by trans�nite indution. The ase � = 0 is trivial.

The ase that � is a limit ordinal follows from the fat that the union of

a set of transitive sets is transitive. The ase � is a suessor follows from

part (b) of Lemma 6.29.

The proof of (b) is just like the proof of the orresponding fat for V

�

.

L is transitive beause it is a union of transitive sets. �

For eah x 2 L, let �(x) (the L-rank of x) be the least ordinal � suh

that x 2 L

�+1

.

Lemma 6.31. (a) (8� 2ON)(� 2 L ^ �(�) = �) .

(b) (8� 2ON)ON \ L

�

= � .

Proof. It is easy to see that (a) and (b) are equivalent. We prove (b) by

trans�nite indution.

The ases that � is 0 or a limit ordinal are trivial.

Assume that � is � + 1. Note that the proof of part (a) of Lemma 6.20

establishes that \x is an ordinal" is equivalent in ZF � Power Set to a �

0

formula. Calling this formula Ord(x), we have, for y 2 L

�

:

L

�

j= Ord[y℄ $ Ord

L

�

(y)

$ Ord(y)

$ y is an ordinal

Thus Ord(v

0

) witnesses that L

�

\ON 2 L

�

so, by indution, that � 2 L

�

.

We have then that ON \ L

�

� �. But if  � � then  6� � and so  6� L

�

.

Thus no  � � belongs to L

�

. �

Lemma 6.32. For � � !, L

�

= V

�

. For n 2 !, V

�

is �nite, and so L

�

is

�nite.

Proof. The seond assertion is easily proved by indution. The �rst asser-

tion then follows by part () of Lemma 6.29. �

Lemma 6.33. (Uses Choie) For � � !, ard (L

�

) = ard (�).

Proof. By Lemma 6.31, ard (L

�

) � ard (�) for every �.

By trans�nite indution, we show that ard (L

�

) � ard (�) for every

� � !.

The ase � = ! follows from Lemma 6.32.
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For limit � > !,

ard (L

�

) = ard (

[

�<�

L

�

)

� ard (�� sup

�<�

ard (L

�

))

� ard (�� ard (�))

= ard (�) :

The ase that � is a suessor follows from part (d) of Lemma 6.29. �

Remark. Choie is not really needed for Lemma 6.33, as the proof of

Theorem 6.43 will show.

Lemma 6.34. All axioms of ZF exept perhaps Comprehension hold in L.

Proof. Extensionality holds, sine L is transitive.

Foundation is trivial.

To show that Pairing holds, we use Lemma 6.5. Suppose that x and

y belong to L. Let � be suh that both x and y belong to L

�

. Then

L

�

2 L

�+1

� L, and fx; yg � L

�

.

For Union, we use Lemma 6.6. Let x 2 L

�

. Sine L

�

is transitive,

x � L

�

. This fat and the transitivity of L

�

imply that U(x) � L

�

.

For Replaement, we use Lemma 6.7. Let z and w

1

; : : : ; w

n

belong to L

and assume that

(8x 2 z \ L)(9!y 2 L)'

L

(x; y; z; w

1

; : : : ; w

n

) :

By the transitivity of L and by Replaement in V , there is an � suh that

(8x 2 z)(9y 2 L

�

)'

L

(x; y; z; w

1

; : : : ; w

n

) :

For Power Set, we use Lemma 6.13. Let x 2 L. By Replaement in V ,

let � be suh that P(x) \ L � L

�

.

For In�nity, we use Lemma 6.14 and the fat that ! 2 L. �

A lass C of ordinals is losed if the union of any subset of C belongs to

C. If � is an ordinal, a losed subset of � is a subset C of � suh that the

union of any subset of C bounded in � belongs to C.

Theorem 6.35 (Reetion Shema). Let M : ON! V . (We write M

�

for M(�).) Let M =

S

�2ON

M

�

. Assume that M

�

� M

�

whenever � �

� 2 ON and that M

�

=

S

�<�

M

�

for all limit �. Let ' be a formula. Then

there is a losed, unbounded lass C of ordinals suh that ' is absolute for

(M

�

;M).
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Proof. We proeed by indution on the omplexity of ' (i.e., we show

indutively how the instanes of the shema an be proved).

If ' is atomi, then we an let C = ON.

If ' is : and C witnesses that the theorem holds for  (and M), then

C witnesses that the theorem holds for '.

If ' is  ^� and C

0

and C

00

respetively witness that the theorem holds

for  and �, then C = C

0

\ C

00

witnesses that the theorem holds for '.

Assume that ' is (9y) (x

1

; : : : ; x

n

; y). De�ne F :

n

V ! ON by

F (hx

1

; : : : ; x

n

i) =

8

<

:

�� (9y 2M

�

) 

M

(x

1

; : : : ; x

n

; y)

if (9y 2M) 

M

(x

1

; : : : ; x

n

; y) ;

0 otherwise:

For ordinals � let

G(�) = U(fF (hx

1

; : : : ; x

n

i) j hx

1

; : : : x

n

i 2

n

M

�

g) :

Let

C

0

= f� 2ON j � is a limit ordinal ^ (8� < �)G(�) < �g :

The lass C

0

is obviously losed. To see that C

0

is unbounded, let � 2 ON.

Let �

0

= � and, for i 2 !, let �

i+1

= maxf�

i

; G(�

i

)g + 1 . If � =

S

i2!

�

i

then � < � and � 2 C

0

. Let C

00

witness that the theorem holds for  . Let

C = C

0

\ C

00

. The lass C is losed and unbounded. Let � 2 C and let

x

1

; : : : ; x

n

belong to M

�

. Sine � is a limit ordinal, there is a � < � suh

that x

1

; : : : ; x

n

belong to M

�

. We have

'

M

(x

1

; : : : ; x

n

) $ (9y 2M) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

F (hx

1

;:::;x

n

i)

) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

G(�)

) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

�

) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

�

) 

M

�

(x

1

; : : : ; x

n

; y)

$ '

M

�

(x

1

; : : : ; x

n

) :

�

Theorem 6.36. All axioms of ZF hold in L.

Proof. By Lemma 6.34, we need only show that omprehension holds in L.

Let '(v

1

; : : : ; v

n+2

) be a formula and let z and w

1

; : : : ; w

n

belong to L. By

Theorem 6.35, let � be an ordinal suh that ' is absolute for (L

�

; L) and
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suh that z and w

1

; : : : ; w

n

belong to L

�

. We have, suppressing the w

i

for

brevity,

fx 2 z j '

L

(x; z)g = fx 2 L

�

j x 2 z ^ '

L

(x; z)g

= fx 2 L

�

j x 2 z ^ '

L

�

(x; z)g

= fx 2 L

�

j (L

�

;2) j= (v

1

2 v

2

^ '(v

1

; v

2

))[x; z℄g

2 L

�+1

� L :

By Lemma 6.4, we have shown that Comprehension holds in L. �

Our next task is to prove that V = L holds in L.

Lemma 6.37. Every relation or funtion provable in ZF � Power Set to

be representable in Q is absolute for transitive models of ZF � Power Set.

Proof. We need to larify the ontent of the lemma. When we say that,

e.g., a funtion f :

n

! ! ! is provable in ZF � Power Set to be representable

in Q, we mean that f is de�ned (from no parameters) in ZF � Power Set

and ZF � Power Set proves that some formula '(v

1

; : : : ; v

n+1

) represents f

in Q.

If ' is the representing formula, then ZF � Power Set proves that '

de�nes the relation or funtion in question in the modal N. Sine S, +,

and � are the restritions of funtions suessively de�nable by trans�nite

reursion from absolute funtions, this guarantees absoluteness. �

For de�niteness, let us take the symbol 2 to be oÆially the number 25.

Lemma 6.38. The following are absolute for transitive models of ZF �

Power Set:

(a) x is a variable;

(b) n 7! v

n

;

() x 2 Formula, i.e., x is a formula of the language of set theory;

(d) hx; yi 2 Free, i.e., x is a formula and y is a variable ourring free

in x.

Proof. (a) and (b) follow from Lemma 6.37.

For (), note that the funtion n 7! Formula

n

is de�ned by reursion from

an absolute funtion. Formula is the union of the range of this funtion.

For (d), note that the funtion sending eah n to fhx; yi 2 Free j x 2

Formula

n

g is de�nable by reursion from an absolute funtion. �
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Lemma 6.39. The 3-ary relation hy; zi 2 Sat

(x;2)

is absolute for transitive

models of ZF � Power Set.

Proof. n 7! Sat

(x;2)

n

is de�ned by reursion from an absolute funtion. �

Lemma 6.40. The operation FODO is absolute for transitive models of ZF

� Power Set.

Proof. FODO is de�ned in ZF � Power Set, sine Replaement guarantees

the existene of FODO(x). Thus it is enough to show that the relation

u 2 FODO(x) is absolute. But u 2 FODO(x) if and only if u � x and

(9')(9s)(' 2 Formula ^ s 2

<!

x

^ (8i 2 !)(h'; v

i

i 2 Free! i < `h(s) + 1)

^ (8y 2 x)(y 2 u$ h'; hyi

_

si 2 Sat

(x;2)

)) :

�

Lemma 6.41. The funtion � 7! L

�

is absolute for transitive models of ZF

� Power Set.

Proof. This funtion is de�ned by trans�nite reursion from an absolute

funtion. �

Theorem 6.42. The Axiom of Construtibility V = L holds in L.

Proof. We have that

(V = L)

L

$ (8x 2 L)(9� 2 L \ON

L

)(x 2 L

�

)

L

$ (8x 2 L)(9� 2ON)x 2 L

�

$ (8x 2 L)x 2 L :

�

Theorem 6.43. The Axiom of Choie holds in L.

Proof. Fix a wellordering of Formula. By trans�nite reursion, we de�ne

a funtion � 7!<

�

. By indution we shall verify the following:

(i) <

�

is a wellordering of L

�

;

(ii) (8x 2 L

�

)(8y 2 L

�

)(�(x) < �(y)! x <

�

y) ;

(iii) (8� < �) <

�

�<

�

.
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Set <

0

= ;.

For � a limit ordinal, set <

�

=

S

�<�

<

�

. It is immediate that (iii) holds

for �. The indution hypotheses that (ii) and (iii) hold for all ordinals < �

guarantee that (ii) holds for �. Sine (ii) holds for �, any failure of (i) for �

would give a failure of (i) for some � < �.

Assume � = � + 1. For n 2 !, wellorder

n

(L

�

) lexiographially, using

the ordering <

�

of L

�

. (If s and t are distint members of

n

(L

�

), then s is

less than t if, for the least m suh that s(m) 6= t(m), s(m) <

�

t(m).) Now

order

<!

(L

�

) by setting s less than t if `h(s) < `h(t) or else `h(s) = `h(t) and

s is less than t in our ordering of

`h(s)

(L

�

). Finally order Formula�

<!

(L

�

)

lexiographially. It is easy to hek that this ordering is a wellordering. For

x and y belonging to L

�

, set x <

�

y just in ase one of the following holds:

(a) x 2 L

�

^ y 2 L

�

^ x <

�

y ;

(b) x 2 L

�

^ y =2 L

�

;

() x =2 L

�

^ y =2 L

�

and the least element of Formula �

<!

(L

�

) that

witnesses x 2 L

�

is less than the least element that witnesses y 2 L

�

.

Clearly (i), (ii), and (iii) hold for �.

De�ne <

L

=

S

�2ON

<

�

. By (i){(iii), <

L

is a wellordering of L. Thus

V = L implies that <

L

wellorders V , and so V = L implies Choie. Sine

V = L holds in L, Choie holds in L. �

Lemma 6.44 (Mostowski Collapse). Let u be a set suh that Exten-

sionality holds in u. Then there is a unique transitive set v suh that

(u;2)

�

=

(v;2). Moreover there is a unique isomorphism

� : (u;2)

�

=

(v;2) :

Proof. For x 2 u we de�ne �(x) by reursion on rank (x). Set

�(x) = f�(y) j y 2 x \ ug :

Note that this is the only possible hoie of �(x) if � is to be an isomorphism

with range (�) transitive.

It is lear that

y 2 x! �(y) 2 �(x) :

To prove the onverse, it is enough to show that � is one-one, and this will

show that � : (u;2)

�

=

(range (�);2). By indution on the maximum of
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rank(x

1

) and rank(x

2

)g, we show that �(x

1

) = �(x

2

)! x

1

= x

2

. We have

�(x

1

) = �(x

2

) ! f�(y) j y 2 x

1

\ ug = f�(y) j y 2 x

2

\ ug

! (by indution) fy j y 2 x

1

\ ug = fy j y 2 x

2

\ ug

! (by Extensionality

u

) x

1

= x

2

:

�

Lemma 6.45. Let � be an unountable regular ardinal. Then L

�

is a model

of ZF � Power Set + V = L.

Proof. Showing that L

�

is a model of ZF � Power Set will be part of a

�nal examination problem. That V = L holds in L

�

follows by Lemma 6.41.

�

Lemma 6.46. Let z be a transitive model of ZF � Power Set + V = L.

There is an � suh that z = L

�

.

Proof. Let � = ON\ z. Clearly � is a limit ordinal. The funtion  7! L



is absolute for z. For x 2 z there is a  < � suh that x 2 L



holds in z. By

absoluteness, every element of z belongs to L

�

. For eah  < �, (L



)

z

= L



,

and so every element of L

�

belongs to z. �

Theorem 6.47. The Generalized Continuum Hypothesis holds in L.

Proof. Let � be an in�nite ordinal number. We show that

P(�) \ L � L

�

+ :

By Lemma 6.33, this implies that ard (P(�) \ L) � �

+

. Hene V = L

implies that 2

ard(�)

= �

+

. Sine V = L holds in L, the theorem will be

proved.

Let x � � with x 2 L. Let � > � be suh that x 2 L

�

. By Lemma 6.45,

L

�

+ is a model of ZF � Power Set + V = L.

By the L�owenheim{Skolem Theorem, let y be suh that

(i) (y;2) � (L

�

+ ;2) ;

(ii) � [ fxg � y ;

(iii) ard (y) = ard (�) .

By Lemma 6.44, Let z and � be suh that z is transitive and

� : (y;2)

�

=

(z;2) :
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Sine (z;2)

�

=

(y;2) � (L

�

+ ;2), z is a model of ZF � Power Set +

V = L. By Lemma 6.46, there is an ordinal  suh that z = L



.

Sine ard () � ard (L



) = ard (z) = ard (y) � ard (�), we have

that  < �

+

.

It suÆes then to prove that x 2 L



. Sine x 2 y, we need only show

that �(x) = x. First we show by indution on � < � that �(�) = �. We

have

�(�) = f�(�) j � 2 � \ yg

= (sine � � y) f�(�) j � 2 �g

= (by indution) f� j � 2 �g

= � :

Finally we note that

�(x) = f�(�) j � 2 x \ yg = f�(�) j � 2 xg = f� j � 2 xg = x :

�

Remark. One an onstrut a sentene � suh that, for any transitive

lass M , � holds in M if and only if M = L or there is an ordinal � suh

that M = L

�

. Thus L

�

rather than L

�

+ ould in priniple have been used

in the proof.

Theorem 6.48. If ZF is onsistent then so are

(a) ZFC + V = L;

(b) ZFC + GCH.

Proof. Assume that ZF is onsistent. Then (a) follows from Lemma 6.1

together with Lemmas 6.42 and 6.43. (b) then follows from (a) and Theo-

rem 6.47. �

The Axiom of Construtibility settles most interesting set-theoreti ques-

tions. A number of them an be answered using Jensen's ombinatorial

priniple �. � is the assertion that there is a sequene hA

�

j � < !

1

i (i.e.,

a funtion � 7! A

�

with domain !

1

) suh that eah A

�

� � and suh that,

for any A � !

1

and any losed, unbounded subset C of !

1

,

(9� 2 C)A \ � = A

�

:

Theorem 6.49. V = L! �.
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Proof. Assume V = L. We de�ne A

�

by reursion. For � not a limit

ordinal, set A

�

= ;. Assume that � is limit ordinal and that A

�

is de�ned

for � < �. Let �

�

be the least ordinal � suh that there are A and C

belonging to L

�

suh that A � �, C is a losed, unbounded subset of �, and

(8� 2 C)A \ � 6= A

�

if suh a � exists. In this ase let A

�

and C

�

be the lexiographially least

A and C (using <

L

). If �

�

does not exist, let A

�

= ;.

Suppose that hA

�

j � < !

1

i does not witness that � holds. Let � be

the least ordinal suh that some ounterexample sets A and C belong to L

�

.

Let A and C be the lexiographially least suh pair (again using <

L

). Note

that � < !

2

.

Let (y;2) � (L

!

2

;2) with y ountable and with

f!

1

; �; A;C; hA

�

j � < !

1

ig � y :

Let z and � be suh that z is transitive and � : (y;2)

�

=

(z;2). Let Æ < !

1

be suh that z = L

Æ

.

Let � = �(!

1

). By �nal examination problem 4(a), we have that � � y.

It follows that

(i) A \ � = �(A);

(ii) C \ � = �(C);

(iii) hA

�

j � < �i = �(hA

�

j � < !

1

i).

Using (i){(iii), the de�nitions of �, A, and C, and the fat that �

�1

is an

elementary embedding of (L

Æ

;2) into (L

!

2

;2), we get that �(�), A\�, and

C \ � satisfy in L

Æ

the de�nitions of �

�

, A

�

, and C

�

respetively. Thus

(a) �(�) = �

�

;

(b) A \ � = A

�

;

() C \ � = C

�

.

Sine C\� = �(C), C\� is an unbounded subset of �. Sine C is losed, it

follows that � 2 C. This fat and (b) ontradit the de�nitions of A and C.

�

One of the earliest appliations of � was to show that Souslin's Hypoth-

esis fails in L.

To state Souslin's Hypothesis, we need some de�nitions. Let R be a

linear ordering of a set X. If every R-bounded subset of X has a least upper
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bound, then (X;R) is said to be omplete. If every set of disjoint open (in

the obvious sense) R-intervals is ountable, then (X;R) is : satis�es the

ountable hain ondition. Give X the order topology: the basi open sets

are the open intervals. If X has a ountable dense subset then (X;R) is

separable.

The set R of reals, with its usual ordering, is|up to isomorphism|

the unique separable, omplete, dense linear ordering without endpoints.

Souslin's hypothesis says this haraterization ontinues to hold when \sep-

arable" is replaed by \." Clearly the failure of Souslin's Hypothesis is

equivalent to the existene of a Souslin line, a , omplete, dense linear

ordering that is not separable.

The existene of a Souslin line is an be shown equivalent to the existene

of a Souslin tree: a (T ;C) suh that

(1) C is a partial ordering of T ;

(2) For all x 2 T , fy 2 T j xC yg is wellordered by C;

(3) ard(T ) = �

1

;

(4) (T ;C) has no unountable branhes and no unountable antihains.

Here a branh is a maximal subset of T linearly ordered by C, and an

antihain is a set of pairwise C-inomparable elements of T .

Conditions (1) and (2) de�ne the (set-theoreti) onept of a tree. Let

us all a tree (T ;C) ultranormal if

(i) T � !

1

;

(ii) for � and  2 T , � C  ! � < ;

(iii) T has a C-least element;

(iv) For eah � < !

1

, the set of all � 2 T suh that level(�) = � is

ountable, where level(�) is the C order type of f 2 T j  C �g;

(v) if � 2 T then � has in�nitely many immediate suessors with respet

to C;

(vi) for eah � 2 T and eah � suh that level(�) < � < !

1

, there is a

 2 T suh that level() = � and � C ;

(vii) if � and  are elements of T with the same limit level and the same

C-predeessors, then � = .

Lemma 6.50. If there is an ultranormal Souslin tree, then there is a Souslin

line.
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Proof. We �rst observe that it is enough to onstrut a , dense, linear

ordering (X;R) that is not separable. If we have suh an (X;R), then we

an let X

0

be the set of all Dedekind uts in (X;R), i.e., the set of all

bounded initial segments of (X;R) without R-greatest elements, and we

an let x

0

R

0

y

0

$ x

0

� y

0

. Clearly (X

0

;R

0

) a linear ordering. The funtion

x 7! fy 2 X j y Rxg embeds (X;R) into (X

0

;R

0

) and has dense range.

Therefore (X

0

;R

0

) is dense, , and not separable. If A is an R

0

-bounded

subset of X

0

, then

S

R

0

is the least upper bound of A; hene (X

0

;R

0

) is

omplete.

Let (T ;C) be an ultranormal Souslin tree. Let

X = fb j b is a branh of Tg :

To de�ne an ordering R on X, let us �rst �x, for eah � 2 T , an ordering <

�

of the the immediate suessors of � with respet to C. By (iv) and (v), we

an|and do|make <

�

isomorphi to the standard ordering of the rationals.

Let b and b

0

be distint branhes of (T ;C). By (vii), there is a C-greatest �

that belongs to both b and b

0

. Let  and 

0

be the immediate C-suessors

of � that belong to b and b

0

respetively. De�ne

bR b

0

$  <

�



0

:

It is easy to see that R is a linear ordering of X. Suppose that I is

an open interval of (X;R). let I = (b; b

0

). De�ne �, , and 

0

as in the

preeding paragraph. Let Æ

I

be suh that  <

�

Æ

I

<

�



0

. Observe that every

branh ontaining Æ

I

belongs to the interval I. Observe also that if I

1

and

I

2

are disjoint intervals, then Æ

I

1

and Æ

I

2

are C-inomparable. The �rst fat

implies that the (X;R) is a dense ordering, and the seond fat implies that

(X;R) has the . For non-separability, let B be any ountable subset of

X. Sine every member of B is ountable,

S

b2B

b is ountable. Let � 2 T be

> every member of this ountable set. Then the set of branhes ontaining

� is a neighborhood witnessing that B is not dense. �

Theorem 6.51. If � holds, then there is an ultranormal Souslin tree.

Proof. Let hA

�

j � < !

1

i witness that � holds.

We shall de�ne an ultranormal tree (T ;C) by trans�nite reursion. More

preisely, we shall de�ne for eah � < !

1

a tree (T

�

;C

�

), and we shall

arrange that

(a) for �

0

< � < !

1

, T

�

0

is the set of all elements of T

�

of C

�

-level � �

0

,

and C

�

0

is the restrition of C

�

to T

0

�

;
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(b) for � < !

1

, (i)-(vii) hold with (T

�

;C

�

) replaing (T ;C) and with the

�+ 1 replaing !

1

..

We shall then let T =

S

�<!

1

T

�

and C =

S

�<!

1

C

�

. The only task that

will remain to us is the veri�ation that (T ;C) satis�es ondition (4) in the

de�nition of a Souslin tree.

Let � < !

1

and assume that (T

�

0

;C

�

0

) is de�ned for �

0

< � in suh a

way that (a) and (b) are not violated.

If � = 0 let T

0

= f0g and stipulate that 0 does not bear C

0

to itself.

If � = �

0

+ 1 for some �

0

, then assign to the ordinals � 2 T

�

0

of level

�

0

disjoint ountable in�nite sets B

�

� !

1

. Do this so that � <  =2 T

�

0

for

eah  2 B

�

. Let

T

�

= T

�

0

[

[

fB

�

j � 2 T

�

0

^ level(�) = �

0

g :

Let

C

�

= C

0

�

[ fh�; i j � 2 T

�

0

^ level(�) = �

0

^  2 B

�

g :

Assume that � is a limit ordinal. Let h�

i

j i 2 !i be a stritly inreasing

sequene of ordinals with supremum �. Let

T

�

�

=

S

�

0

<�

T

�

0

( =

S

i2!

T

�

i

);

C

�

�

=

S

�

0

<�

C

�

0

( =

S

i2!

C

�

i

):

For � 2 T

�

�

, de�ne h�

i

j i 2 !i by reursion as follows. If A

�

is not a

maximal antihain in the tree (T

�

�

;C

�

�

) or if there is a � 2 A

�

suh that

� C

�

�

�, then set �

0

= �. Otherwise there is a � 2 A

�

suh that � C

�

�

�. Let

�

0

be some suh �. If level(�

i

) � �

i

, then let �

i+1

= �

i

. If level(�

i

) < �

i

, let

�

i+1

2 T

�

i

be suh that �

i

C

�

i

�

i+1

and level(�

i+1

) = �

i

. (Suh a �

i+1

exists

by ondition (vi) on (T

�

i

;C

�

i

).) Let b

�

be the unique branh ontaining all

the �

i

. Let B

�

be the set of all the b

�

for � 2 T

�

�

. For eah b 2 B

�

, let 

b

be

a ountable ordinal  suh that  =2 T

�

�

and  > every member of b. Make

sure that the funtion b 7! 

b

is one-one. Let

T

�

= T

�

�

[ f

b

j b 2 B

�

g :

Let

C

�

= C

�

�

[ fhÆ; 

b

i j (b 2 B

�

^ Æ 2 b)g :

To verify that (T ;C) satis�es ondition (4), we �rst show that if (T ;C)

has an unountable branh then it has an unountable antihain. Let b be
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an unountable branh. By ondition (v), eah � 2 b has an immediate

C-suessor that does not belong to b. Let

A = f j  =2 b ^ (9� 2 b)  is an immediate C-suessor of �g :

The unountable set A is learly an antihain of (T ;C).

Sine every antihain an be extended to a maximal antihain, it suÆes

to prove that (T ;C) has no unountable maximal antihains.

Let A be a maximal antihain of (T ;C). For limit � < !

1

, let (T

�

�

;C

�

�

)

be de�ned as above. Note that T

�

�

is the set of � 2 T suh that, with respet

to C, level(�) < �. Note also that C

�

�

is just the restrition of C to T

�

�

.

Let C be the set of all limit � < !

1

suh that

(a) T

�

�

= T \ �;

(b) A \ � is a maximal antihain of (T

�

�

;C

�

�

).

We shall prove that C is losed and unbounded in !

1

.

By the de�nition of T

�

�

, it is lear that f� j T

�

�

= T \ �g is losed in

!

1

. To show that C is losed, it is therefore enough to show that the set of

all � that satisfy (b) is losed in !

1

. Suppose that h�

i

j i 2 !i is a stritly

inreasing sequene of ountable ordinals suh that for eah i, A \ �

i

a

maximal antihain of (T

�

�

i

;C

�

�

i

). Let � =

S

i2!

�

i

. Let � 2 T

�

�

. For any

suÆiently large i 2 !, � 2 T

�

�

i

. Thus � is omparable with some  2 A\�

i

� A \ �. This shows that A \ � is a maximal antihain in (T

�

�

;C

�

�

).

For � < !

1

, let

f(�) = �Æ (8� 2 T

�

�

)� < Æ;

g(�) = �Æ (8� 2 T

�

�

)(9 2 A \ Æ)  is C-omparable with �:

That f(�) and g(�) are de�ned for every � follows from the fat that T

�

�

is

ountable (by (iv)) and the fat that A is an maximal antihain of (T ;C).

By an argument like one in the proof of Theorem 6.35, the set C

0

of all

ountable ordinals losed under f and g is an unbounded subset of !

1

.

By (ii), T \ � � T

�

�

for every � < !

1

. Therefore every � 2 C

0

satis�es (a)

and (b).

Sine hA

�

j � < !

1

i witnesses the truth of �, let � 2 C be suh that

A \ � = A

�

. By (b), A

�

is a maximal antihain of T

�

�

. By the de�nition of

B

�

, every b 2 B

�

ontains a member of A

�

. For b 2 B

�

, every member of b

is C

�



b

and so is C 

b

. Hene for eah b 2 B

�

there is a � 2 A

�

suh that

� C 

b

. If � 2 T n T

�

, then there is a b suh that 

b

C �. Putting all these

fats together, we get that every element of T is C-omparable with some

element of A

�

. In other words, A

�

|i.e., A \ �|is a maximal antihain of

T . But this means that A = A \ �. Hene A is ountable. �
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