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Course Roadmap

Week 1-2 Introduction ◊ Basic definitions: system, system variables

(inputs, outputs, states, parameters), and models ◊

Taxonomy of systems and models ◊ Input-output and

state-space models ◊ Order of a dynamic system

Week 3-4½ 

Linear 

Systems

Canonical linear time-invariant (LTI) systems ◊ Impulse

response ◊ Convolution ◊ Laplace Transform ◊ The

Convolution Theorem ◊ Transfer function ◊ Poles ◊

Equilibrium ◊ Stability ◊ Frequency response ◊ Bode plot

◊ Feedback and Control ◊ Midterm exam (take-home)

Week 4½ -10

Nonlinear 

Systems

Equilibrium states ◊ Phase portraits ◊ Linearization ◊

Stability ◊ Attractors ◊ Isoclines ◊ Periodic orbits ◊

Elementary index theory ◊ Gradient systems ◊ Guest

lecture ◊ Poincaré-Bendixson Theorem ◊ Elementary

bifurcation theory ◊ Elementary chaos theory (time

permitting) ◊ Final exam (take-home)

BME233--Dynamic Systems in Biology and Medicine
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Q: What is the central topic of BME233?

A: To apply dynamic system theory (modeling, analysis, control) to

biomedical and biological systems.

Purpose of Systems Theory in Biology and Medicine

• Experimental science (e.g. biology) largely reductionist.

• Problems broken down into simpler sub-problems and studied one

piece at a time.

• Complex systems involve complex interactions among basic units.

• Mathematical models allow the examination of interactions that

cannot be studied by the reductionist approach.

• Mathematical models can make forecasts that cannot be extrapolated

from data (measurements).
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Example 1: [Pitfalls of Reductionism]

𝑦1 =?

input
output inputs outputs

𝑦1 = 𝑓 𝑢1 = ൝
𝑢1 , 𝑢1 < 0

0, 𝑢1 ≥ 0



4

Modeling: Find mathematical equation(s) ∗ that describe the

system.

Analysis: What can be said about the behavior of the system? Are the

outputs oscillatory, aperiodic? How quickly do they reach the steady

state? What frequencies is the system tuned to, etc.?

Control: Can we figure out how inputs affect outputs? Can we find a

set of inputs so that outputs have a certain behavior?

Sensitivity/Robustness analysis: How are the changes in

parameters affecting the behavior of the system?

Black-box model—abstraction of a system based on input-output

description (top-down approach)

White-box model—known pieces are put together (bottom-up approach)
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Deterministic 

Stochastic

Linear

Nonlinear

Time-invariant 

Time-varying

Static

Dynamic

Concentrated 

Spatially

Distributed

Time-continuous

Time-discrete

With time delay 

Without time delay
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Example 2: [Eye Movements]

deterministic ◊ spatially concentrated ◊ dynamic ◊ time-invariant 

◊ without delay ◊ linear ◊ time-continuous 

Linear Time Invariant = LTI

𝐽 ሷ휃 𝑡 + 𝐵 ሶ휃 𝑡 + 𝐾휃 𝑡 = 𝜏(𝑡)
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Example 3: [Cellular Dynamics]

demo: cellular_dynamics.m

(LTI system)

𝑉𝑚 ሶ𝐶𝑚 𝑡 = 𝑅0 𝑡 − 𝐾12 𝐶𝑚 𝑡 − 𝐶𝑐 𝑡

𝑉𝑐 ሶ𝐶𝑐 𝑡 = 𝐾12 𝐶𝑚 𝑡 − 𝐶𝑐 𝑡 − 𝐾2𝐶𝑐(𝑡)

cell_dyn_New.avi
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𝑁[𝑡] - population at year 𝑡

𝐵 - birth rate (US: 1 person in 7 sec.)

𝐷 - death rate (US: 1 person in 13 sec.)

𝐼 - immigration rate

𝐸 - emigration rate

Solution:                                                     - exponential growth

Does not quite fit the census data! Can we make better predictions?

Example 4: [Population Dynamics] (time-discrete LTI system)

𝑁 𝑡0 + 𝑇 = 𝑁 𝑡0 1 + 𝜆 𝑇

𝑁 𝑡 + 1 = 𝑁[𝑡] + births
𝐵×𝑁[𝑡]

− deaths
𝐷×𝑁[𝑡]

+ immigration
𝐼×𝑁[𝑡]

−emigration
𝐸×𝑁[𝑡]

𝑁[𝑡 + 1] = 𝑁[𝑡] + 𝐵 − 𝐷 + 𝐼 − 𝐸
𝜆

𝑁[𝑡] = 1 + 𝜆 𝑁[𝑡]
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Time-varying system: 𝐵 = 𝐵[𝑡], 𝐷 = 𝐷[𝑡], 𝐼 = 𝐼[𝑡], 𝐸 = 𝐸[𝑡]

year  (source: US Census Bureau)

2008 0.93%

1999 0.89%

1991 1.08%

1950 2.07% (baby boomers)

Tweaking the parameters 𝐵 𝑡 , 𝐼[𝑡], etc., we can control the growth of the

population.

These manipulations are performed with the model, and predictions are

made.

E.g. China’s one-child policy from 1980 to 2015 originated from one

such model.

𝑁[𝑡 + 1] = 1 + 𝜆 𝑡 𝑁[𝑡]
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Prediction of the Chinese population growth based on a mathematical

model.

J. Song, Theoretical Population Biology, 1982

𝛽 —the average number of

childbearings per woman’s lifetime
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Example 5: [Diffusion of Oxygen in a Living Tissue]

(spatially distributed LTI system)

• 𝑦 𝜉, 휂, 휁, 𝑡 ∈ ℝ is the oxygen concentration at a point (𝜉, 휂, 휁) and 

time 𝑡

• 𝐷 is the diffusion constant 

• 𝑘 is the oxygen uptake constant

𝜕𝑦(𝜉, 휂, 휁, t)

𝜕𝑡
= 𝐷

𝜕2𝑦(𝜉, 휂, 휁, 𝑡)

𝜕𝜉2
+
𝜕2𝑦(𝜉, 휂, 휁, 𝑡)

𝜕휂2
+
𝜕2𝑦(𝜉, 휂, 휁, 𝑡)

𝜕휁2
− 𝑘𝑦(𝜉, 휂, 휁, 𝑡)
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Example 6: [Blood Pressure Dynamics]

Q
L

(inflow from 

the left heart)

Q
s

(outflow to 

systemic tissues)

P

𝑃𝑠𝑎(𝑇) – diastolic pressure

𝑃𝑠𝑎(0) – systolic pressure

t

T 3T2T

systole

diastole
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Example 7: [Drug Delivery Dynamics]

𝐶 - drug concentration in blood [kg/m
3
]

𝐾𝐿 - liver constant [1/s]

𝑉𝐵 - blood volume [m
3
]

𝑅𝑖𝑛 - rate of injection [kg/s]

I.V. drip bolus injection

ሶ𝐶 𝑡 = −𝐾𝐿𝐶(𝑡) +
liver

1

𝑉𝐵
𝑅𝑖𝑛(𝑡)

I.V. delivery
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Example 8: [Dynamics of Emotions] (S. Strogatz, Mathematics Magazine, 1988)

𝑅(𝑡) – Romeo’s love (𝑅 > 0)/hate (𝑅 < 0) for Juliet

𝐽(𝑡) – Juliet’s love (𝐽 > 0)/hate (𝐽 < 0) for Romeo

𝑎, 𝑏 > 0

Juliet’s love echoes Romeo’s. Romeo is a fickle lover. Their ill-fated 

romance consists of a never-ending cycle of love and hate. 

ሶ𝑅 𝑡 = −𝑎𝐽 𝑡
ሶ𝐽 𝑡 = 𝑏𝑅 𝑡



𝑇 𝑠 =
𝑘

𝜏 𝑠 + 1
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Canonical 1
st

Order LTI System

Transfer function (leaky integrator):

𝒚(𝒕) –level [m]

𝑨 –area [m
2
]

𝒖(𝒕) –inflow rate [m
3
/s]

𝒘(𝒕) –outflow rate [m
3
/s]

𝑨𝒐 –orifice area [m
2
] (E. Torricelli  1643) 

After linearization and change of variables:

DC gain

Time constant

𝑑𝑉(𝑡)

𝑑𝑡
= inflow rate − outflow rate

𝐴 ሶ𝑦 𝑡 = 𝑢 𝑡 − ถ𝑤 𝑡

𝜇𝐴𝑜 2𝑔𝑦 𝑡

𝐴 ሶ𝑦 𝑡 + 𝜇𝐴𝑜 2𝑔𝑦(𝑡) = 𝑢(𝑡)

𝜏 ሶ𝑧 𝑡 + 𝑧 𝑡 = 𝑘𝑣(𝑡)



𝑇 𝑠 =
𝑘𝜔𝑛

2

𝑠2 + 2 휁 𝜔𝑛 𝑠 + 𝜔𝑛
2
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Canonical 2
nd

Order LTI System

Transfer function:

Natural frequencyDamping factor

𝐽 ሷ휃 𝑡 + 𝐵 ሶ휃 𝑡 + 𝐾휃 𝑡 = 𝜏(𝑡)

𝜔𝑛≔
𝐾

𝐽

if 𝐵2 − 4𝐾𝐽 < 0, 휁 ≔
𝐵

2 𝐾𝐽

𝑇 ≔
2𝐽

𝐵

ሷ휃 𝑡 + 2휁𝜔𝑛
ሶ휃 𝑡 + 𝜔𝑛

2휃 𝑡 = 𝑘𝜔𝑛
2𝜏(𝑡)
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Equilibrium, Stability

(A. Lyapunov 1892)

ณሶ𝑥𝑒
0

= 𝐴𝑥𝑒 + 𝐵ณ𝑢
0

𝐴𝑥𝑒 = 0
𝑥𝑒 = 0
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Feedback and Control

(unstable system)

k

(stable system)

asymptotic 

i) reference tracking 

ii) disturbance rejection 
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Nonlinear Systems

•Compared to linear systems, nonlinear systems are poorly understood.

•Nonlinear systems are by far more interesting than linear systems.

•Virtually all systems in nature are nonlinear.

Some Distinct Properties:

1) Frequency Mixing

2) Intermodulation Distortion

3) Resonant Jump Phenomenon

4) Limit Cycle Phenomenon 

5) Finite Escape Time

6) Strange Attractors/Chaos

closed but not isolated closed and isolated

ሶ𝑦 𝑡 = 𝑦2 𝑡

𝑦 𝑡 =
𝑦(𝑡0)

1 − 𝑡 − 𝑡0 𝑦(𝑡0)
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Example 9: [Predator-prey equations] (Lotka-Volterra)

(time invariant, nonlinear system)

𝑥 - the size of prey population at time 𝑡; 
𝑦 - the size of predator population at time 𝑡;
𝛼, 𝛽, 𝛾, 𝛿 - parameters representing the interaction of the two species. 

ሶ𝑥 𝑡 = 𝛼𝑥 𝑡 − 𝛽𝑥 𝑡 𝑦 𝑡
ሶ𝑦 𝑡 = 𝛿𝑥 𝑡 𝑦 𝑡 − 𝛾𝑦(𝑡)



21

𝐸 - enzyme, 𝑆 - substrate, 𝐸𝑆 - enzyme-substrate complex, 𝑃 - product

𝑘1, 𝑘2, 𝑘−1 - the reaction rate constants

[𝑆], [𝐸𝑆], [𝑃] - concentrations

Example 10: [Enzyme Kinetics] (Michaelis-Menten)

Can predict (and manipulate) the rate of product formation.

𝐸 + 𝑆
𝑘1
⇄
𝑘−1

𝐸𝑆՜
𝑘2
𝐸 + 𝑃

𝑑 𝑆

𝑑𝑡
= −𝑘1 𝐸 𝑆 + 𝑘−1 𝐸𝑆

𝑑 𝐸𝑆

𝑑𝑡
= 𝑘1 𝐸 𝑆 − 𝑘−1 𝐸𝑆 − 𝑘2 𝐸𝑆

𝑑 𝑃

𝑑𝑡
= 𝑘2 𝐸𝑆
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(spatially distributed, nonlinear system)

𝑦(𝜉, 휂, 𝑡) - degree of infection at place (𝜉, 휂) and time 𝑡.

𝑢(𝜉, 휂, 𝑡) - control variable (slaughter, vaccinate, etc.)

What is the best control strategy?

Example 11: [Disease Outbreak] (foot and mouth disease, UK 2001, 

Ferguson et al., Science, 2001)

ℱ
𝜕𝑦 𝜉, 휂, 𝑡

𝜕𝑡
,
𝜕𝑦 𝜉, 휂, 𝑡

𝜕𝜉
,
𝜕𝑦 𝜉, 휂, 𝑡

𝜕휂
, 휃 𝜉, 휂, 𝑡 ,⋯ = 𝑢(𝜉, 휂, 𝑡)

𝜉

휂
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Example 12: [Model of Barnacle Giant Muscle Fiber] (Morris & Lecar, Biophys.J., 

1981)
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Example 13 : [Heart Dynamics] (Zeeman, 1972)

휀 ሶ𝑥 𝑡 = − 𝑥3 𝑡 − 𝑇𝑥 𝑡 + 𝑏 𝑡
ሶ𝑏 𝑡 = 𝑥 𝑡 − 𝑥𝑑 + 𝑥𝑑 − 𝑥𝑠 𝑢(𝑥 𝑡 , 𝑏 𝑡 )

𝑢 𝑥, 𝑏 =
1, ൝

𝑖 𝑏𝑑 ≤ 𝑏 ≤ 𝑏𝑠 and 𝑥3 − 𝑇𝑥 + 𝑏 > 0

𝑖𝑖 𝑏 > 𝑏𝑠 ∀𝑥

0, otherwise

where

healthy_heart_dyn_New.avi
overstretched_heart_dyn_New.avi


25

Example 14: [Genetic Toggle Switch (E. Coli)]

𝑢(𝑡) – concentration of repressor #1,

𝑣(𝑡) – concentration of repressor #2 

bi-stable system 

(Gardner et al. Nature, 2000)

Each repressor inhibits the synthesis of the mRNA for the other. By

analyzing these equations, new bacteria can be engineered that have

specific properties (e.g. we can design a gene network that is bi-stable)

ሶ𝑢 𝑡 = −𝑢 𝑡 +
𝛼𝑢

1 + 𝑣 𝑡 𝛽

ሶ𝑣 𝑡 = −𝑣 𝑡 +
𝛼𝑣

1 + 𝑢 𝑡 𝛾
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Example 15: [Brain Dynamics]

(courtesy of Prof. F. Kruggel) 

standard deviant novel
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Example 16: [Winnerless Competition Neural Dynamics]

Heteroclinic Orbit

𝛼, 𝜌 - inhibitory coupling 

coefficients

ሶ𝑎1 𝑡 = 𝑎1 𝑡 1 − (𝑎1 𝑡 + 𝜌𝑎2 𝑡 + 𝛼𝑎3 𝑡 )
ሶ𝑎2 𝑡 = 𝑎2 𝑡 1 − (𝑎2 𝑡 + 𝛼𝑎1 𝑡 + 𝜌𝑎3 𝑡 )
ሶ𝑎3 𝑡 = 𝑎3 𝑡 1 − (𝑎3 𝑡 + 𝜌𝑎1 𝑡 + 𝛼𝑎2 𝑡 )
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Example 17: [Firefly Phase Dynamics]

demo: 

firefly_synch_neighbor.m

ሶ휃𝑖 𝑡 = 𝜔𝑖 + 𝑎σ𝑗≠𝑖
𝑁𝑛 sin 휃𝑗 𝑡 − 휃𝑖 𝑡 , ∀𝑖 = 1,2,⋯ ,𝑁
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Example 18: [Sierpinski triangle—stochastic chaos]

A
B

C

Barnsley’s fern

demo:  fern_simulation.m
fern.m

𝑥𝑛+1 =
1

2
𝑥𝑛 + 𝑥𝑝

𝑦𝑛+1 =
1

2
𝑦𝑛 + 𝑦𝑝

𝑝 = 𝐴, 𝐵, 𝐶

𝑃 𝑝 =
1

3
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And many other examples:

• Modeling and controlling the depth of anesthesia.

• Modeling the lead uptake in children (lead exposure remains a

problem)

• Modeling of arsenic transport and metabolism in animals, and

generalizing models to humans.

• Modeling cancer spread and chemotherapy.

• Modeling chemical reaction (e.g. Belousov-Zhabotinsky), and

designing new chemical experiments.

• etc.


