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Mathematical Models

It is important to note that most real-world systems are too complex

(nonlinear, stochastic, non-stationary, spatially distributed, etc.—recall

the last lecture) to be modeled in every detail.

Mathematical models in general represent considerably simplified

descriptions of the systems that they purport to model.

These simplifications are based on certain assumptions that need to be

carefully inspected and if possible justified.

It is reasonable to start with a very simple model and add more

complex details as necessary.



2

system: scale (spring & mass)

input: forces 𝐹(𝑡) acting upon the mass

output: 𝜉

parameters: 𝑚 [kg] and 𝑘 [N/m]

states: (will see in a minute)

Let 0 be the position of the red hand, 

when 𝐹(𝑡) = 0. Define 𝜉 as a deviation

from 0.

What happens if I step on the scale?

Example 1 Spring-mass system (scale)

𝐹 𝑡 = ณ𝑀
mymass

𝑔 = ณ𝐹
weight
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Static equilibrium: 𝐹𝑠 = 𝐹, where 𝐹𝑠 = 𝑘𝜉 (spring force—Hooke’s Law).

Note: 𝑔 = 9.81 [m/s
2
] is the gravity acceleration.

Note: 𝑘 > 0 [N/m] is the spring constant (stiffness).

Therefore 𝑘𝜉 = 𝐹, which implies that the mass will move from 𝜉 = 0 to

𝜉 = 𝐹/𝑘.

Essentially, 𝜉 = 𝐹/𝑘 represents the mathematical model of the scale

(albeit oversimplified):

ถ𝑦(𝑡)
output

=
1

𝑘
ถ𝑢(𝑡)
input

It belongs to the category of static models (see the last lecture—also try

to identify the other properties).

But what if I am interested in how the mass gets from 𝜉 = 0 to 𝜉 = 𝐹/𝑘?

In other words, how do we describe 𝜉 as a function of time?

Answering this questions (and similar ones) is the subject of dynamic

modeling.
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Dynamic balance of forces (“dynamic equilibrium”):

Demo: spring_mass_simulation.m

Conclusion: this model does not correspond to the reality (something

fundamental is missing).

Add friction forces (where 𝑏 > 0 [kg/s] is the friction coefficient):

Demo: spring_mass_simulation.m

𝑚 ሷ𝜉(𝑡)
inertia

+ 𝑘𝜉 𝑡
spring

= ณ𝐹
weight

𝑚 ሷ𝜉(𝑡)
inertia

+ 𝑏 ሶ𝜉(𝑡)
friction

+ 𝑘𝜉(𝑡)
spring

= ณ𝐹
weight
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but this would be overkill.

In general, a simpler model may be common to many seemingly

different problems, whereas highly “tuned” models are only

applicable to a single problem (overfitting).

Simple models are especially important because they can often be

treated using analytical tools, and could be valuable in the

development of new theories.

Complex models typically give rise to simulations (computational

science).

Balancing the complexity and usefulness is in itself a research

problem.

𝑚 ሷ𝜉(𝑡)
inertia

+ 𝑏( ሶ𝜉) ሶ𝜉(𝑡)
friction

+ 𝑘 𝜉 𝜉(𝑡)
spring

= ณ𝐹
weight

In reality, both the friction coefficient and spring constant are

nonlinear, e.g.
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Input-Output and State-Space Models

Eye movement model (note the analogy to the spring-mass

system)

Left hand side: output variable and its

derivatives

Right hand side: input variable (and its

derivatives)

This type of model is called the input-

output model of a system.

Example 2

𝐽 ሷ𝜃 𝑡 + 𝐵 ሶ𝜃 𝑡 + 𝐾ถ𝜃(𝑡) =
output

ถ𝜏(𝑡)
input

𝐽, 𝐵, 𝐾 − parameters
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In general, for linear time-invariant (LTI) systems, the input-output

model takes the following form:

where 𝑛 ≥ 𝑝, 𝑎𝑛 = 1 and 𝑧(𝑘)(𝑡): = 𝑑𝑘𝑧(𝑡)/𝑑𝑡𝑘. 

The order of the system, 𝑛, is equal to the order of the highest derivative 

on the left hand side of (1).

In the spirit of systems theory, high-order ODEs are converted to a first-

order ODE, i.e. the input-output model (1) can be written in the form:

state-space model of an LTI system 

෍

𝑘=0

𝑛

𝑎𝑘𝑦
(𝑘)(𝑡) = ෍

𝑘=0

𝑝

𝑏𝑘𝑢
(𝑘)(𝑡) (1)

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 − state equation
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 − output equation
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The model above is called the state-space model. 

This model is seemingly simpler than the one given by (1) (note first 

order ODE vs. 𝑛-th order ODE). 

The trick is that  𝑥 is now a vector in ℝ𝑛
. In particular (if 𝑝 = 0), 𝑥 can 

be taken in a simple form:

The variables 𝑥1(𝑡),· · · , 𝑥𝑛(𝑡) represent the state variables, and the vector  

𝑥 ∈ ℝ𝑛
defined as:

phase variables

is called the state vector.

𝑥 𝑡 ≔
𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)

𝑥1 𝑡 ≔ 𝑦 𝑡

𝑥2 𝑡 ≔
𝑑𝑦 𝑡

𝑑𝑡
⋮

𝑥𝑛 𝑡 ≔
𝑑𝑛−1𝑦 𝑡

𝑑𝑡𝑛−1
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The choice of the state variables is not unique, and the scheme above

represents one canonical choice. Going back to the eye movement

system:

This is just the eye movement input-output model written in the form

of (1). Apply the scheme for choosing the state variables (note 𝑛 = 2):

to obtain*:

ณ1
𝑎2

ถሷ𝜃(𝑡)
ሷ𝑦(𝑡)

+
ณ

𝐵

𝐽
𝑎1

ถሶ𝜃(𝑡)
ሶ𝑦 (𝑡)

+
ณ

𝐾

𝐽
𝑎0

ถ𝜃(𝑡)
𝑦(𝑡)

=
ณ

1

𝐽
𝑏0

ถ𝜏(𝑡)
𝑢(𝑡)

𝑥1 𝑡 ≔ 𝑦 𝑡

𝑥2 𝑡 ≔
𝑑𝑦(𝑡)

𝑑𝑡

ሶ𝑥1(𝑡)
ሶ𝑥2(𝑡)
ሶ𝑥(𝑡)

=
0 1

−𝐾/𝐽 −𝐵/𝐽
𝐴

𝑥1(𝑡)
𝑥2(𝑡)
𝑥(𝑡)

+
0
1/𝐽
𝐵

𝑢(𝑡)

𝑦 𝑡 = 1 0
𝐶

𝑥1(𝑡)

𝑥2 𝑡
+ ณ0

𝐷

𝑢(𝑡)



10

Example 3 Cellular dynamics

system: cell

input: the rate of synthesis 𝑅0

output: the concentration 𝐶𝑐
states: the concentrations 𝐶𝑚 and 𝐶𝑐
parameters: the rate constants 𝐾12 and 𝐾2,

volumes 𝑉𝑚 and 𝑉𝑐

The system is already in the state-space form:

𝑉𝑚 ሶ𝐶𝑚 𝑡 = 𝑅0 𝑡 − 𝐾12 𝐶𝑚 𝑡 − 𝐶𝑐 𝑡

𝑉𝑐 ሶ𝐶𝑐 𝑡 = 𝐾12 𝐶𝑚 𝑡 − 𝐶𝑐 𝑡 − 𝐾2𝐶𝑐(𝑡)

ሶ𝐶𝑚 𝑡 = −
𝐾12
𝑉𝑚

𝐶𝑚 𝑡
𝑥1 𝑡

+
𝐾12
𝑉𝑚

𝐶𝑐 𝑡
𝑥2 𝑡

+
1

𝑉𝑚
𝑅0 𝑡
𝑢 𝑡

− 1st state equation

ሶ𝐶𝑐 𝑡 =
𝐾12
𝑉𝑐

𝐶𝑚 𝑡 −
𝐾12
𝑉𝑐

+
𝐾2
𝑉𝑐

𝐶𝑐 𝑡 − 2nd state equation
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output equation 𝑦 𝑡 ∶= 𝐶𝑐 𝑡 = 𝑥2(𝑡) can be written in a matrix form:

Note: input-output and state-space models are not strictly tied to linear

systems.

In particular, they can be defined for any type of system as long as the

system is dynamic (static systems do not have states).

ሶ𝑥1(𝑡)
ሶ𝑥2(𝑡)
ሶ𝑥(𝑡)

=
−𝐾12/𝑉𝑚 𝐾12/𝑉𝑚
𝐾12/𝑉𝑐 − 𝐾12 + 𝐾2 /𝑉𝑐

𝐴

𝑥1(𝑡)
𝑥2(𝑡)
𝑥(𝑡)

+
1/𝑉𝑚
0
𝐵

𝑢(𝑡)

𝑦 𝑡 = 0 1
𝐶

𝑥1(𝑡)

𝑥2 𝑡
+ ณ0

𝐷

𝑢(𝑡)
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Example 4 Simplified model of neural dynamics 

(H.R. Wilson. J. Theoret. Biol., 1999)

where, 𝑉 is the potential across the membrane, 𝑅 is the conductance of 

the potassium channels, and

Define: 𝑥1 = 𝑉, 𝑥2 = 𝑅 (states); 𝑢 = 𝐼𝑖𝑛 (input); 𝑦 = 𝑉 (output)

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
= −𝑚∞ 𝑉 𝑉 𝑡 − 0.5

sodium current

− 26𝑅 𝑡 𝑉 𝑡 + 0.95
potassium current

+ 𝐼𝑖𝑛 𝑡
inj. current

𝑑𝑅(𝑡)

𝑑𝑡
=

1

𝜏𝑅
−𝑅 𝑡 + 𝑅∞(𝑉)

𝑚∞ 𝑉 = 17.8 + 47.6𝑉 + 33.8𝑉2

𝑅∞ 𝑉 = 1.24 + 3.7𝑉 + 3.2𝑉2



13

Note: the state space model of a nonlinear system cannot be written 

in the form  

𝑑𝑥(𝑡)/𝑑𝑡 = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) and/or   𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

For nonlinear systems a more general notation is used:

ሶ𝑥 𝑡 = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) -state equation

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) -output equation

state-space model of a nonlinear system 

𝑑𝑥1 𝑡

𝑑𝑡
= −

1

𝐶
17.8 + 47.6𝑥1 𝑡 + 33.8𝑥1

2 𝑡 𝑥1 𝑡 − 0.5

−
26

𝐶
𝑥2 𝑡 [𝑥1 𝑡 + 0.95] +

1

𝐶
𝑢 𝑡

𝑑𝑥2 𝑡

𝑑𝑡
=

1

𝜏𝑅
1.24 + 3.7𝑥1 𝑡 + 3.2𝑥1

2 𝑡 − 𝑥2 𝑡

𝑦 𝑡 = 1 0
𝐶

𝑥1(𝑡)

𝑥2 𝑡
+ ณ0

𝐷

𝑢(𝑡)
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Linear Time-Invariant (LTI) Systems

Linearity

A function 𝑓 ∶ ℝ → ℝ is linear if 

(1) 𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓 𝑦 ∀𝑥, 𝑦  ℝ (additivity)

(2)   𝑓 𝑎𝑥 = 𝑎𝑓 𝑥 ∀𝑎, 𝑥  ℝ (homogeneity)

(1) and (2) can be combined into a single condition: 

𝑓 𝑎𝑥 + 𝑏𝑦 = 𝑎𝑓 𝑥 + 𝑏𝑓 𝑦 ∀𝑎, 𝑏, 𝑥, 𝑦 ℝ (superposition)

We saw last time that (*) can be anything. Using abstract notation

(operator theory), we write

Think of 𝐿 as a mapping 𝐿 ∶ 𝑢 → 𝑦, or 𝐿 ∶ 𝑈 → 𝑌, where 𝑈 and 𝑌
are sets of (admissible) inputs and outputs, respectively.

𝑦 𝑡 = 𝐿 𝑡; 𝑡0, 𝑥 𝑡0 , 𝑢 𝑡0,𝑡

function of a function
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Example 5 Show that for the following system (assume 𝑦(𝑡0) known):

the operator  𝐿 is given by*:

Hint:
𝜕

𝜕𝑡
𝑢׬ 𝑡

𝑣 𝑡
𝑓 𝑡, 𝜏 𝑑𝜏 =𝑓 𝑡, 𝑣 𝑡 ሶ𝑣 𝑡 − 𝑓 𝑡, 𝑢 𝑡 ሶ𝑢 𝑡 + 𝑢׬ 𝑡

𝑣 𝑡 𝜕

𝜕𝑡
𝑓 𝑡, 𝜏 𝑑𝜏

We will see later that 𝐿 (for linear systems) can be expressed through a

convolution operator.

Back to the definition of linearity.

Systems theory inherits the definition from mathematics:

Definition 1 The system (∗) is linear if and only if the mapping 𝐿 is

linear with respect to the initial state 𝑥(𝑡0) and the input 𝑢.

ሶ𝑦 𝑡 = 𝑢(𝑡)

𝑦 𝑡 = 𝐿 𝑡; 𝑡0, 𝑥 𝑡0 , 𝑢[𝑡0,𝑡] = 𝑥 𝑡0 +න
𝑡0

𝑡

𝑢 𝜏 𝑑𝜏
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1) Additivity 

2) Homogeneity: 

If 𝐿 is the operator corresponding to the system (*) and if 𝐿 satisfies

(1) and (2), we say that (*) is a linear system!

(1) and (2) can be combined into a single condition—the superposition

principle.

Definition 2 A system 𝐿 is linear if and only if it satisfies the

superposition principle.

𝐿 𝑡; 𝑡0, ҧ𝑥 𝑡0 + ҧҧ𝑥 𝑡0 , ത𝑢 𝑡0,𝑡 + തത𝑢[𝑡0,𝑡] = 𝐿 𝑡; 𝑡0, ҧ𝑥 𝑡0 , ത𝑢 𝑡0,𝑡 + 𝐿 𝑡; 𝑡0, ҧҧ𝑥 𝑡0 , തത𝑢[𝑡0,𝑡]
∀ത𝑢, തത𝑢 ∈ 𝒰, ∀ ҧ𝑥 𝑡0 , ҧҧ𝑥 𝑡0 ∈ ℝ𝑛

𝐿 𝑡; 𝑡0, 𝛼𝑥 𝑡0 , 𝛼𝑢[𝑡0,𝑡] = 𝛼𝐿 𝑡; 𝑡0, 𝑥 𝑡0 , 𝑢[𝑡0,𝑡]
∀𝛼 ∈ ℝ, ∀𝑢 ∈ 𝒰
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Example 6 Show that the system: is linear*

However, testing the linearity of a system by checking the additivity 

and homogeneity of its 𝐿 operator is far from practical.

For us, the practical test of linearity will be the equation itself.

Example 7 Input-output model:

Is this a linear ODE? Yes! Therefore, the system is linear. Alternatively

look at the state-space model. Can you write the system in the form:

so that the matrices 𝐴, 𝐵, 𝐶, and 𝐷 do not depend on 𝑥 and 𝑢 ? Yes!

Therefore, the system is linear!

ሶ𝑦 𝑡 = 𝑢(𝑡)

𝐽 ሷ𝜃 𝑡 + 𝐵 ሶ𝜃 𝑡 + 𝐾𝜃 𝑡 = 𝜏(𝑡)

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 − state equation
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 − output equation

𝐴 =
0 1

−𝐾/𝐽 −𝐵/𝐽
; 𝐵 =

0
1/𝐽

; 𝐶 = 1 0 ;𝐷 = 0
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Note: the system (*) need not be described by a (system of) ODE(s).  

Example 8 The diffusion of oxygen in a living tissue

Is this a linear PDE? Yes! Therefore, the system is linear. 

Population dynamicsExample 9

Is this a linear difference equation? Yes! Thus, the system is linear. 

𝜕𝑦(𝜉, 𝜂, 𝜁, t)

𝜕𝑡
= 𝐷

𝜕2𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝜕𝜉2
+
𝜕2𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝜕𝜂2
+
𝜕2𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝜕𝜁2
− 𝑘𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝑁 𝑡 + 1 = (1 + 𝜆)𝑁(𝑡)
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Time Invariance

Graphical interpretation:

In words: the response of a time-invariant system to the time-shifted

input 𝑢𝑑 𝑡 ≔ 𝑢(𝑡 − ∆𝑡) is equal to the time-shifted response of the

system to the input 𝑢(𝑡) (provided initial conditions are the same 𝑥(𝑡0) =
𝑥(𝑡0 + ∆𝑡)).

Put differently: ത𝑦 𝑡 + Δ𝑡 = 𝑦𝑑 𝑡 + Δ𝑡 = 𝑦(𝑡).
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Let us write ത𝑦 𝑡 + Δ𝑡 explicitly:

Definition 2 A dynamic system 𝑦(𝑡) = 𝐿[𝑡; 𝑡0, 𝑥(𝑡0), 𝑢[𝑡0,𝑡]] is time

invariant if

for all admissible 𝑢, 𝑡 and  ∆𝑡, where 𝑢𝑑(𝑡) = 𝑢(𝑡 − ∆𝑡)

Consequence: for LTI systems the choice of 𝑡0 is arbitrary,

therefore 𝑡0 = 0 is the easiest choice.

More good news: 𝑦(𝑡) = 𝐿[𝑡; 𝑥(0), 𝑢[0,𝑡]]

ത𝑦 𝑡 + Δ𝑡 = 𝐿 𝑡 + Δ𝑡; 𝑡0 + Δ𝑡, 𝑥 𝑡0 + Δ𝑡
𝑥 𝑡0

, 𝑢 𝑡0+Δ𝑡,𝑡+Δ𝑡
𝑑

= 𝐿 𝑡 + Δ𝑡; 𝑡0 + Δ𝑡, 𝑥 𝑡0 , 𝑢 𝑡0+Δ𝑡,𝑡+Δ𝑡
𝑑

Therefore, ത𝑦 𝑡 + Δ𝑡 = 𝑦 𝑡 implies:

𝐿 𝑡 + Δ𝑡; 𝑡0 + Δ𝑡, 𝑥 𝑡0 , 𝑢 𝑡0+Δ𝑡,𝑡+Δ𝑡
𝑑 = 𝐿 𝑡; 𝑡0, 𝑥 𝑡0 , 𝑢 𝑡0,𝑡

𝑦(𝑡)

𝐿 𝑡 + Δ𝑡; 𝑡0 + Δ𝑡, 𝑥 𝑡0 , 𝑢 𝑡0+Δ𝑡,𝑡+Δ𝑡
𝑑 = 𝐿 𝑡; 𝑡0, 𝑥 𝑡0 , 𝑢 𝑡0,𝑡

𝑦(𝑡)
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Example 10 Show that the system: is time invariant*

However, testing the time invariance of a system by definition may be  

cumbersome. Moreover this test requires us to know  𝐿.

For us, the practical test of time-invariance will be the equation itself.

Example 11 Input-output model:

Do the parameters depend explicitly on time? No! Therefore, the

system is time invariant. Alternatively, look at the state-space

model. Can you write the system in the form:

so that the matrices 𝐴, 𝐵, 𝐶, and 𝐷 do not depend on 𝑡 explicitly? Yes!

Therefore, the system is time invariant!

ሶ𝑦 𝑡 = 𝑢(𝑡)

𝐽 ሷ𝜃 𝑡 + 𝐵 ሶ𝜃 𝑡 + 𝐾 ถ𝜃(𝑡)
output

= ถ𝜏(𝑡)
input

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 − state equation
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 − output equation

𝐴 =
0 1

−𝐾/𝐽 −𝐵/𝐽
; 𝐵 =

0
1/𝐽

; 𝐶 = 1 0 ;𝐷 = 0
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Check whether the following system is time invariant?Example 12

We figure out that 𝐴 = 0, 𝐵 = 1, 𝐷 = 0, but 𝐶 = 𝐶(𝑡) (explicit

dependence on time), thus this is a time-varying system.

Explicit dependence on time is indeed necessary for non-stationarity.

Here is a simple example that shows 𝐶 ≠ 𝑐𝑜𝑛𝑠𝑡., yet the system is not

time-varying.

ሶ𝑥 𝑡 = 𝑢 𝑡
𝑦 𝑡 = 𝐶 𝑡 𝑥(𝑡)
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Check whether the following system is time invariant?Example 13

We figure out that 𝐴 = 0, 𝐵 = 1, 𝐷 = 0, but 𝐶 = 𝐶(𝑥) (no explicit

dependence on time), thus this is a time-invariant system.

Keep in mind that 𝐶 = 𝐶(𝑥) and 𝑥 = 𝑥(𝑡), thus 𝐶 depends on time. This

dependence, however, is through the state vector (implicit).

E.g. 𝐶(𝑥) = −𝑥, yields:

No parameters depend on  𝑡 explicitly, thus the system is time-invariant, 

though nonlinear.

ሶ𝑥 𝑡 = 𝑢 𝑡
𝑦 𝑡 = 𝐶 𝑥 𝑥(𝑡)

ሶ𝑥 𝑡 = 𝑢 𝑡
𝑦 𝑡 = −𝑥2(𝑡)
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Note: the system (*) does not have to be described by ODE(s).  

Example 14 The diffusion of oxygen in a living tissue

Are the parameters of this PDE explicitly time dependent? No!

Therefore, the system is time-invariant.

Population dynamicsExample 15

Are the parameters of this difference equation explicitly time

dependent? Yes! Thus, the system is time-varying.

𝜕𝑦(𝜉, 𝜂, 𝜁, t)

𝜕𝑡
= 𝐷

𝜕2𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝜕𝜉2
+
𝜕2𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝜕𝜂2
+
𝜕2𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝜕𝜁2
− 𝑘𝑦(𝜉, 𝜂, 𝜁, 𝑡)

𝑁 𝑡 + 1 = 1 + 𝜆 𝑡 𝑁(𝑡)


