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Impulse Response

To fully characterize an LTI system, it suffices to excite the system

using a very special input and observe the system’s response.

This special input is called the (unit) impulse function, 𝛿(𝑡), and the

corresponding response (under zero initial conditions) is called the

(unit) impulse response.

𝑦(𝑡) = 𝐿[𝑡; 𝛿[0,𝑡]]

This response is very special; if we know it, we know everything

there is to know about an LTI system. Therefore, the impulse

response has its own notation:

𝑔(𝑡) = 𝐿[𝑡; 𝛿[0,𝑡]]

The unit impulse function is also known as the delta function or the

Dirac function.
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The Dirac function is derived from the unit square pulse function:

𝟏

𝑻
𝒉(𝒕)

𝟏

𝑻
𝒉(𝒕 + 𝑻)

𝒔(𝒕)

Other definitions will also work: 𝛿 𝑡 : = lim
𝑇→0

1

𝑇
ℎ 𝑡 +

𝑇

2
− ℎ 𝑡 −

𝑇

2
, or even

𝛿 𝑡 := lim
𝑇→0

1

𝑇
ℎ 𝑡 − ℎ 𝑡 − 𝑇

𝑠 𝑡 ≔
1

𝑇
ℎ 𝑡 + 𝑇 − ℎ 𝑡

𝛿 𝑡 = lim
𝑇→0

𝑠 𝑡 = lim
𝑇→0

1

𝑇
ℎ 𝑡 + 𝑇 − ℎ 𝑡

Note: න
−∞

∞

𝑠 𝑡 𝑑𝑡 = න
−𝑇

0 1

𝑇
𝑑𝑡 = 1
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Note: 

Also note: 

Proof: 

The area under the Dirac function is 1. 

න
−∞

∞

𝛿 𝑡 𝑑𝑡 = 1

න
−∞

∞

𝑓(𝑡)𝛿 𝑡 𝑑𝑡 = 𝑓(0)

න
−∞

∞

𝑓(𝑡)𝛿 𝑡 𝑑𝑡 = lim
𝑇→0

න
−𝑇

0

𝑓 𝑡 𝑠 𝑡 𝑑𝑡 = 𝑓 0 lim
𝑇→0

න
−𝑇

0

𝑠 𝑡 𝑑𝑡

1

= 𝑓(0)
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Canonical 1
st

order LTI system:

Graphical Interpretation

Time constant (𝑇)—draw a tangent

to 𝑔(𝑡) at 𝑡 = 0, and mark the point

where the tangent crosses the

steady state value of 𝑔(𝑡) which is

0.

dc gain (𝑘) —calculate the initial

value of 𝑔(𝑡) and set 𝑘 = 𝑔(0) 𝑇.

𝑇 ሶ𝑦 𝑡 + 𝑦 𝑡 = 𝑘𝑢 𝑡
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Example 1 Drug delivery dynamics

𝐶 - drug concentration [kg/m
3
]

𝐾𝐿 - liver constant [1/s]

𝑉𝐵 - blood volume [m
3
]

𝑅in - rate of injection [kg/s]

I.V. drip

ሶ𝐶 𝑡 = −𝐾𝐿𝐶(𝑡) +
liver

1

𝑉𝐵
𝑅in(𝑡)

I.V. delivery

ሶ𝐶 𝑡 + 𝐾𝐿𝐶 𝑡 =
1

𝑉𝐵
𝑅in 𝑡

ด

1

𝐾𝐿
𝑇

ሶ𝐶 𝑡 + 𝐶 𝑡 =
ถ

1

𝑉𝐵𝐾𝐿
𝑘

𝑅in 𝑡
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Canonical 2
nd

order LTI system:

To find 𝑇—draw a tangent to

𝑒(𝑡) at 𝑡 = 0, and mark the point

where the tangent crosses the

steady state value of 𝑒(𝑡) which

is 0.

dc gain (𝑘)—calculate the initial

value of 𝑒(𝑡), that is 𝑘 = 𝑒(0).

Envelope:

Graphical Interpretation

ሷ𝑦 𝑡 + 2𝜁𝜔𝑛 ሶ𝑦 𝑡 + 𝜔𝑛
2𝑦 𝑡 = 𝑘𝜔𝑛

2𝑢(𝑡)

𝑒 𝑡 = 𝑘𝑒−𝜁𝜔𝑛𝑡

𝑇 =
1

𝜁𝜔𝑛

𝜔 = 𝜔𝑛 1 − 𝜁2
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Example 2 Excitatory/inhibitory postsynaptic potential (EPSP/IPSP) 

Overdamped 2
nd

order LTI system  excitation inhibition (𝑘 < 0)

dc gain negative
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Impulse Response of Time-discrete Systems

The special input that fully characterizes a time-discrete LTI system is

called the discrete (unit) impulse function, 𝛿[𝑘], and the corresponding

response (under zero initial conditions) is called the discrete (unit)

impulse response.

𝑦[𝑘] = 𝐿[𝑘; 𝛿[0,𝑘]]

This response is very special, if we know it, we know everything there is

to know about the LTI system. Therefore, the impulse response has its

own notation:

𝑔[𝑘] = 𝐿[𝑘; 𝛿[0,𝑘]]

The unit impulse function in the discrete domain is also known as: the

delta function or the Kronecker function.
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Kronecker function is easily defined

Note that:

𝛿 𝑘 = ቊ
1, 𝑘 = 0
0, ow.

෍

𝑖=−∞

∞

𝛿[𝑖] = 1 ෍

𝑖=−∞

∞

𝑓[𝑖]𝛿[𝑖] = 𝑓[0]and
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Also note that:

where ℎ[𝑘] is the discrete unit step (Heaviside) function.

The response of a LTI system to the

unit step function ℎ[𝑘] (under zero

initial conditions) is called the

discrete (unit) step response:

𝑦[𝑘] = 𝐿[𝑘; ℎ[0,𝑘]]

𝛿 𝑘 ≔ ℎ 𝑘 − ℎ[𝑘 − 1]

ℎ 𝑘 = ቊ
1, 𝑘 = 0,1,⋯
0, ow.



Note: 𝑒𝐴𝑡 is a matrix. It’s called the state transition matrix! Its

Maclaurin series expansion is:

𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
𝐴2𝑡2

2
+
𝐴3𝑡3

6
+ ⋯ =෍

𝑖=0

∞ 𝐴𝑖𝑡𝑖

𝑖!
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Convolution

Recall the state-space model of a time-continuous LTI system.

Let us solve the state equation. The Lagrange (variation of constant)

formula:

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 − state equation
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 − output equation

𝜆 = 𝐴 − characteristic equation
𝑥 𝑡 = 𝑒𝐴𝑡𝐶 𝑡 − general solution
ሶ𝑥 𝑡 = 𝐴𝑒𝐴𝑡𝐶 𝑡 + 𝑒𝐴𝑡 ሶ𝐶(𝑡)
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Plug this back to the state equation: 

𝐴𝑒𝐴𝑡𝐶 𝑡 + 𝑒𝐴𝑡 ሶ𝐶 𝑡
ሶ𝑥 𝑡

= 𝐴𝑒𝐴𝑡𝐶 𝑡
𝑥 𝑡

+ 𝐵𝑢 𝑡

𝑒𝐴𝑡 ሶ𝐶 𝑡 = 𝐵𝑢 𝑡
ሶ𝐶 𝑡 = 𝑒−𝐴𝑡𝐵𝑢 𝑡

𝑑𝐶 𝑡 = 𝑒−𝐴𝑡𝐵𝑢 𝑡 𝑑𝑡

න
𝑡0

𝑡

𝑑𝐶 𝜏 = න
𝑡0

𝑡

𝑒−𝐴𝜏𝐵𝑢 𝜏 𝑑𝜏

𝐶 𝑡 − 𝐶 𝑡0 = න
𝑡0

𝑡

𝑒−𝐴𝜏𝐵𝑢 𝜏 𝑑𝜏

𝐶 𝑡 = 𝐶 𝑡0 +
to be found later

න
𝑡0

𝑡

𝑒−𝐴𝜏𝐵𝑢 𝜏 𝑑𝜏
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Go back to the solution 𝑥(𝑡):

This has to hold for any 𝑡, therefore: 

Go back to the solution 𝑥(𝑡):

𝑥 𝑡 = 𝑒𝐴𝑡𝐶 𝑡 = 𝑒𝐴𝑡 𝐶 𝑡0 +න
𝑡0

𝑡

𝑒−𝐴𝜏𝐵𝑢 𝜏 𝑑𝜏

𝑥 𝑡0 = 𝑒𝐴𝑡0 𝐶 𝑡0 +න
𝑡0

𝑡0

𝑒−𝐴𝜏𝐵𝑢 𝜏 𝑑𝜏

0

𝐶 𝑡0 = 𝑒−𝐴𝑡0𝑥(𝑡0)

𝑥 𝑡 = 𝑒𝐴𝑡 𝑒−𝐴𝑡0𝑥 𝑡0 +න
𝑡0

𝑡

𝑒−𝐴𝜏𝐵𝑢 𝜏 𝑑𝜏

𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥(𝑡0) + න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏



𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥(𝑡0) + න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

𝑥 𝑡0 = 𝑒𝐴 𝑡0−𝑡1 𝑥(𝑡1) + න
𝑡1

𝑡0

𝑒𝐴 𝑡0−𝜏 𝐵𝑢 𝜏 𝑑𝜏

⇓

𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡1 𝑥(𝑡1) + න
𝑡1

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏
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1) 𝑥(𝑡) is the general solution

2) it is good for any choice of admissible input 𝑢(𝑡) (operator  

theory approach, rather than a classical ODE approach)

3) the state transition matrix satisfies the semigroup property:

which has an important corollary:

𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥 𝑡0
state transitionmatrix

+න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

𝑒𝐴 𝑡−𝑡1 = 𝑒𝐴 𝑡−𝑡0 𝑒𝐴 𝑡0−𝑡1 ∀𝑡0 ∈ 𝑡1, 𝑡 , ∀𝑡1 < 𝑡
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Although we start integrating from 𝑡0 onwards, a dynamic system

has some history (whatever happened to it prior to 𝑡0).

This history may go very far (in fact to −∞).

𝑥(𝑡1)
𝐴
𝐵

𝑢[𝑡1,𝑡]

𝑡1 → −∞ 𝑡𝑡0

𝑥(𝑡0)
𝐴
𝐵

𝑢[𝑡0,𝑡]

𝑡1 → −∞ 𝑡𝑡0

?

The system’s whole history is captured by 𝑥(𝑡0). This is why the concept 

of state is so important! 

𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡1 𝑥(𝑡1) + න
𝑡1

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥(𝑡0) + න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏
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Going back to the output equation: 

If the system is causal the output at time 𝑡 can only depend on inputs

prior to time 𝑡.

Taken care of by the integral running up to 𝑡.

For truly causal systems, even the direct feed-through term (𝐷𝑢(𝑡)) is not

allowed.

This would mean that 𝑢(𝑡) is immediately seen by 𝑦(𝑡), i.e. a part of the

system would be static.

𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥(𝑡0) + න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡

𝑦 𝑡 = 𝐶𝑒𝐴 𝑡−𝑡0 𝑥 𝑡0 +න
𝑡0

𝑡

𝐶𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

convolution

+ 𝐷𝑢(𝑡)
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Thus, for truly causal systems: 𝐷 = 0.

Therefore:

Recall now the abstract notation: 𝑦(𝑡) = 𝐿 𝑡; 𝑡0, 𝑥 𝑡0 , 𝑢 𝑡0,𝑡 . We finally

know what it is:

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 − state equation
𝑦 𝑡 = 𝐶𝑥 𝑡 + ณ𝐷

0

𝑢 𝑡 − output equation

𝑦 𝑡 = 𝐶𝑒𝐴 𝑡−𝑡0 𝑥 𝑡0
zero−input response (ZIR)

+ න
𝑡0

𝑡

𝐶𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

zero−state response (ZSR)

𝑦 𝑡 = 𝐿 𝑡; 𝑡0, 𝑥 𝑡0 , 𝑢 𝑡0,𝑡 = 𝐶𝑒𝐴 𝑡−𝑡0 𝑥 𝑡0 +න
𝑡0

𝑡

𝐶𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

= 𝐿 𝑡; 𝑡0, 𝑥 𝑡0
ZIR

+ 𝐿 𝑡; 𝑡0, 𝑢[𝑡0,𝑡]
ZSR
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Recall that for time-invariant systems the choice of  𝑡0 is irrelevant, 

thus we’ll assume 𝑡0 = 0:

Our final claim with respect to convolution:

Impulse response 𝑔(𝑡) is the response of the system 𝑦(𝑡) when

𝑢(𝑡) = 𝛿(𝑡) and all initial conditions are 0.

ถ𝑦(𝑡)
𝑔(𝑡)

= 𝐿 𝑡;ถ𝑥 0
0

, 𝛿[0,𝑡] = 𝐿 𝑡; 𝛿[0,𝑡] = න
0

𝑡

𝐶𝑒𝐴 𝑡−𝜏 𝐵𝛿 𝜏 𝑑𝜏

= 𝐶𝑒𝐴𝑡න
0

𝑡

𝑒−𝐴𝜏𝐵𝛿 𝜏 𝑑𝜏

𝐵

= 𝐶𝑒𝐴𝑡𝐵

𝑦 𝑡 = 𝐿 𝑡; 𝑥 0 , 𝑢 0,𝑡 = 𝐶𝑒𝐴𝑡𝑥 0 + න
0

𝑡

𝐶𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

= 𝐿 𝑡; 𝑥 0
ZIR

+ 𝐿 𝑡; 𝑢[0,𝑡]
ZSR

𝐶𝑒𝐴𝑡𝐵
impulse response

= 𝑔(𝑡)
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Therefore:

Also note (assuming system relaxed at  −∞):

𝑔 𝑡 = 𝐶𝑒𝐴𝑡𝐵 − impulse response

𝑦 𝑡 = 𝐿 𝑡; 𝑥 0 , 𝑢 0,𝑡 = 𝐶𝑒𝐴𝑡𝑥 0 + න
0

𝑡

𝐶𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

= 𝐶𝑒𝐴𝑡𝑥 0 + න
0

𝑡

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏

𝑔⋆𝑢

𝑦 𝑡 = 𝐿 𝑡; 𝑥 −∞ , 𝑢 −∞,𝑡 = 𝐶𝑒𝐴𝑡 𝑥 −∞
0

+න
−∞

𝑡

𝐶𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

= න
−∞

𝑡

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏

𝑔⋆𝑢

− perhaps a more familiar def. of convolution
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Finally, in mathematics:

Let us assume the system is causal and let us apply the convolution above:

Summary:

𝑓1 ⋆ 𝑓2 ≔ න
−∞

∞

𝑓1 𝑡 − 𝜏 𝑓2 𝜏 𝑑𝜏

𝑔 ⋆ 𝑢 = න
−∞

∞

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏

= න
−∞

𝑡

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏

𝑦(𝑡)

+ න
𝑡

∞

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏

depends on future inputs (=0)

= 𝑦(𝑡)

𝑦 𝑡 = 𝐶𝑒𝐴𝑡𝑥 0 + 𝑔 ⋆ 𝑢 if 𝑔 ⋆ 𝑢 ∶= න
0

𝑡

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏

𝑦 𝑡 = 𝑔 ⋆ 𝑢 if 𝑔 ⋆ 𝑢 ∶= න
−∞

𝑡

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏 and 𝑥 −∞ = 0

𝑦 𝑡 = 𝑔 ⋆ 𝑢 if 𝑔 ⋆ 𝑢 ∶= න
−∞

∞

𝑔 𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏 and 𝑥 −∞ = 0 and system causal
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For LTI systems, the most common definition is:

So, in summary:

Take home message: if we know the impulse response 𝑔(𝑡) of an LTI

system, we know the system’s response to any other admissible input 𝑢(𝑡).

All we need to do is convolve 𝑔 and 𝑢. This will give us ZSR. Note that ZIR is

simple to calculate. Very often we are given 𝑥(0) = 0, in which case ZIR = 0.
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Discrete Convolution

Concept very similar to continuous convolution (a bit easier). Recall 

the state-space model of a time-discrete LTI system.

Solution (of the state equation) is straightforward to find: 
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Going back to the output equation: 

If the system is causal the output at time 𝑘 can only depend on inputs

prior to time 𝑘 (taken care of by the summation running up to 𝑘 − 1).

For truly causal systems, even the direct feed-through (𝐷𝑢[𝑘]-term) is

not allowed. This would mean that 𝑢[𝑘] would be immediately seen by

𝑦[𝑘], i.e. the part of the system would be static.
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For truly causal systems: 𝐷 = 0.

Therefore:

Recall the abstract notation: 𝑦[𝑘] = 𝐿[𝑘; 𝑘0, 𝑥[𝑘0], 𝑢[𝑘0,𝑘]]. We finally 

know what it is:
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For time-invariant systems 𝑘0 is irrelevant (assume 𝑘0 = 0):

It is trivial to show*:

Discrete convolution:


