Impulse Response

To fully characterize an LTI system, it suffices to excite the system
using a very special input and observe the system’s response.

This special input is called the (unit) impulse function, §(t), and the
corresponding response (under zero initial conditions) is called the
(unit) impulse response.

y(t) = L[t; 6jo,z]
This response is very special; if we know it, we know everything

there is to know about an LTI system. Therefore, the impulse
response has its own notation:

g(t) = L[t; bpo,¢]

The unit impulse function is also known as the delta function or the
Dirac function.



The Dirac function is derived from the unit square pulse function:
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Other definitions will also work: §(t): = %l_rf(l)T [h (t + Z) —h (t — %)], or even
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Note: j s(t)dt =1
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The area under the Dirac function is 1.

AISO nOte f_wf(t)a(t)dt = f(O) -100T-9T -8T -7TT -6T -ST 4T -3T ;ZT -T 0 T 2T 3T 4T &T

Proof:
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f_oof(t)(S(t)dt = %i_r;(l) f_Tf(t)S(t)dt = f(0) %i_r;(l) j_TS(t)dt = f(0)
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Canonical 15t order LTI system:
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Ty +y(t) = ku(t)

Graphical Interpretation

Time constant (T)—draw a tangent
to g(t) at t = 0, and mark the point
where the tangent crosses the
steady state value of g(t) which is
0.

dc gain (k) —calculate the initial
value of g(t) and set k = g(0) T.



Example 1 | Drug delivery dynamics

C - drug concentration [kg/m?3]

, 1
C(t) = —K,C(t) + =— R (¢t
() = ZK.C(6) Vs in(6) K, - liver constant [1/s]

liver N——— ———
LV. delivery V; - blood volume [m3]
R,, - rate of injection [kg/s]
: 1 |
C(t)+ K. C(t) = V—Rin (t) 8(?) - bolus injection
B 3
1 . ‘
—C(t)+C(t) = Rin(t
7 C(O+ €O = = Rin(0)
T k 1V




Canonical 2"d order LTI system: J(t) + 2{w,y(t) + wiy(t) = kwiu(t)

at Graphical Interpretation
7 u(t)=5(t)

[\ < =025 - Envelope: e(t) = ke ¢“nt

To find T—draw a tangent to
e(t) at t = 0, and mark the point
where the tangent crosses the
steady state value of e(t) which
is O.

dc gain (k)—calculate the initial
value of e(t), that is k = e(0).
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Overdamped 2" order LTI system

Example 2 | Excitatory/inhibitory postsynaptic potential (EPSP/IPSP)

C. elegans Vertebrates
EXP-1 e .
o ° o
o )
Na+ o ~ ° C/' o - ° Cr
. out :®: _ih
£ Y. AN
vm _N PSP vm L PSP
EPSP _\/_ EPSP _\/_
e o e e \ --------------- )K Efm e e mmnm—-
excitation || inhibition (k < 0)

dc gain negative




Impulse Response of Time-discrete Systems

The special input that fully characterizes a time-discrete LTI system is
called the discrete (unit) impulse function, 6[k], and the corresponding
response (under zero initial conditions) is called the discrete (unit)
impulse response.

ylk] = L[k; pox]

This response is very special, if we know it, we know everything there is
to know about the LTI system. Therefore, the impulse response has its
own notation:

glk] = Llk; o101

The unit impulse function in the discrete domain is also known as: the
delta function or the Kronecker function.



Kronecker function is easily defined

Note that:

> olil=1  and i f118[1] =

i=—oco l=—00

f10]

o[k]
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Also note that: 6[k] := h[k] — h[k — 1]

where h[k] is the discrete unit step (Heaviside) function.

hlk] = {1’ k=01,
0, ow. h[k]
b f;—orroro—orooooou
The response of a LTI system to the
unit step function h[k] (under zero
initial conditions) is called the
discrete (unit) step response: |
y[k] = Llk; hpox] SARANT AN z 5 10
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Convolution
Recall the state-space model of a time-continuous LTI system.

x(t) = Ax(t) + Bu(t) — state equation
y(t) = Cx(t) + Du(t) — output equation

Let us solve the state equation. The Lagrange (variation of constant)
formula:

A=A — characteristic equation
x(t) = e4tC(t) — general solution
x(t) = AedtC(t) + et C(t)

Note: e4t s a matrix. It’s called the state transition matrix! Its
Maclaurin series expansion is:

A =T+ At+ + + e =
€ 2 6
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Plug this back to the state equation:

AeltC(t) + eAtC(t) = AedtC(t) + Bu(t)
0 - 0
eAtC(t) = Bu(t)
C(t) = e AtBu(t)
dC(t) = e 2 Bu(t)dt
¢

L tdC (7) = f e 4"Bu(t)dr

0 to
t

C(t) — C(ty) = j e~4TBu(r)dr

to

t

C(t) = C(ty) + e A"Bu(t)dr

t
to be found later “ ‘0
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Go back to the solution x(t):

x(t) = edtC(t) = et [C(to) + jte_ATBu(T)dT]
t

0

This has to hold for any ¢, therefore:

0

to
x(ty) = edto lC(tO) + f e‘ATBu(T)dT]
t

0
C(ty) = e “tox(ty)

Go back to the solution x(t):

t
x(t) = edt le"AtOx(to) + j e"ATBu(T)dT]
t

0
t

x(t) = eAlt-todx(t,) +j eAt=DBu(t)dr
Lo
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t
eAlt=to) x(t,) + j eAlt-DBu(1)dr
' t

0

x(t) =

state transition matrix

1) x(t) is the general solution
2) it is good for any choice of admissible input u(t) (operator

theory approach, rather than a classical ODE approach)
3) the state transition matrix satisfies the semigroup property:

eAlt=t1) = pAlt=to)pAlto=t1) vt € [t,,t],Vt; <t

which has an important corollary:
t

x(t) = eAlt=tolx(t,) +f eAt=DBu(t)dt
to

to
x(ty) = eAlttotx(¢t)) +j eAlto=D By (7)dt
ty
U
t
x(t) = eAl-t)x(t)) +j eAt=D By (t)dr
ty
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Although we start integrating from t, onwards, a dynamic system
has some history (whatever happened to it prior to t,).

This history may go very far (in fact to —o).

x(ty) t
A » x(t) = eAt-tx(t,) +f eAt-D By (1t)dt
B 2!
Ulty,t]
'r\ Y /1' I
x(t t
2 (to) ‘ _ _A(t—tp) A(t-1)
A »x(t) =e x(tg))+ | e Bu(t)drt
B to
Ulto,t]

The system’s whole history is captured by x(t,). This is why the concept

of state is so important!
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t

x(t) = eAlt=to)x(t,) +J eAt=DBu(t)dr
Lo

Going back to the output equation:

y(t) = Cx(t) + Du(t)
t

y(t) = CeAlt-todx(¢,) +J CeAt=DBu(r)dt + Du(t)
to

-

convolution

If the system is causal the output at time t can only depend on inputs
prior to time t.

Taken care of by the integral running up to t.

For truly causal systems, even the direct feed-through term (Du(t)) is not
allowed.

This would mean that u(t) is immediately seen by y(t), i.e. a part of the
system would be static.
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Thus, for truly causal systems: D = 0.

x(t) = Ax(t) + Bu(t) — state equation
y(t) = Cx(t) + 2 u(t) — output equation
0
Therefore:
t
y(t) =  CeAlt-tox(t,) + j CeAt=DBy(t)dt

to
zero—state résponse (ZSR)

zero—input response (ZIR)

Recall now the abstract notation: y(t) = Ll¢; to,x(to),u[to,t]]. We finally
know what it is:

t
y(t) = L[t; to, x(to), upey ] = CeAt™t0x(ty) +J CeAt=DBu(r)dt
to

= L[t; to, x(to)] + L|t; to, upe, 1]
ZIR ZSR
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Recall that for time-invariant systems the choice of ¢, is irrelevant,

thus we’ll assume t, = 0:

t
y(t) = L|t; x(0), u,,] = Cetx(0) +f CeAt-DBy(1)dt
0
= L[t; x(0)] + L[t,' u[o,t]]

ZIR 7SR

Our final claim with respect to convolution: Ce“tB = g(t)

. N’
impulse response

Impulse response g(t) is the response of the system y(t) when
u(t) = 48(t) and all initial conditions are 0.

t
y(t) =1L t;x(O),(s[O,t]] = L[t; 8j0.11] = f CeAt-DB§(1)dr
90 o0 0

L
= CeAtj e 4TBS§(7)dt = Ce'B
0

-

B
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Therefore: |g(t) = Ce“*B| — impulse response

t
y(£) = L|t; x(0), upo 1] = Cex(0) +f CeAt-DBy(1)dr

0
t

= Ce4'x(0) + J gt —Du(r)dr
0

g*u
Also note (assuming system relaxed at —o0):

t
y(t) = L|t; x(—0), uj_c0 4| = CeAt x(—0) +j CeAt=DBy(t)dr

~—————
0

t
= j g(t —t)u(r)dt — perhaps a more familiar def. of convolution

g*u



Finally, in mathematics: fi*xfo= J f1t —1)fo(T)dt

Let us assume the system is causal and let us apply the convolution above:

g*u= Jr g(t —Du(r)dr
¢ -
= J g(t —Du(r)dr + f gt —u(r)dr
=00 Jt
y(t) depends on future inputs (=0)
= y(t)

Summary:
t

y(t) = Cedtx(0)+g*u if gxu:= j gt —tu(r)dr
0

t
y(t)=g*u if gxu:= f gt —tu(r)dt and x(—o) =0
y(t)=g*u if gxu:= j gt —1tu(r)dt and x(—o) = 0 and system causal
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For LTI systems, the most common definition is:

g% = /Otg(t — Dulr)dr

So, in summary:

y(t) = L[t 2(0), ujg| = Lt (O] + L [t; ugg 4]
ZIR R
!
— peAtx(Ol+/(;CBA(t_T)B’UJ(T)d’T
ZIR > <R g
— QeAtx(Ol+g*u
ZIR ZSR

Take home message: if we know the impulse response g(t) of an LTI
system, we know the system’s response to any other admissible input u(t).

All we need to do is convolve g and u. This will give us ZSR. Note that ZIR is
simple to calculate. Very often we are given x(0) = 0, in which case ZIR = 0.
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Discrete Convolution

Concept very similar to continuous convolution (a bit easier). Recall
the state-space model of a time-discrete LTI system.

x|k + 1] = Ax[k] + Bulk] -state equation
y[k] Cz[k] + Dulk] -output equation

Solution (of the state equation) is straightforward to find:

xlko + 1] = Azlko] + Bulko]
vlko+2] = A zlko + 1] +Bulko+1]
Azx[ko]+ Bulkg]

= A%z[ko] + ABulko] + Bulko + 1]
zlko + 3] = A3z[ko] + A?Bulko] + ABulkg + 1] + Bulkg + 2]
zlko + k] = AFz[kg] + A1 Bulko] + A*"?Bulko + 1] + - --

k+ko—1 _
+ AP FBulkg+k — 1] = Afz[ko] + Y AFTRo=imlpy[4]
1=kg

22



k+ko—1

zlko + k] = Afzlko]l + Y AFTRoiTlpy[4)
izko
substitution: k—|—k0 = 7
. -1
z[j] = AT7Roz[ko]l + S AT B[]
izko
Going back to the output equation:
ylk] = Czlk] + D ulk]
k—1 |
ylk] = CcA¥Foglkol + Y CAFTITIBuli] +D ulk]
’izko J

v .
convolution

If the system is causal the output at time k can only depend on inputs
prior to time k (taken care of by the summation running up to k — 1).

For truly causal systems, even the direct feed-through (Du[k]-term) is
not allowed. This would mean that u[k] would be immediately seen by
y[k], i.e. the part of the system would be static.
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For truly causal systems: D = 0.

xlk + 1] = Az|k]+ Bul[k] -state equation

ylk] = Czl[k] + D ulk] -output equation
0
k—1 |
Therefore: ylk] = QAk_kox[kol+ > C AR =1 Bylq]
ZIR i=ko )

Y a

ZSR

Recall the abstract notation: y[k] = L[k; k¢, x[kg], ufx,x1]- We finally
know what it is:

kE—1
L{k;ko,w[ko],u[kojkﬂ = CAF Foglko]l + Y CAM T 1Bu[]
i=kg
L[k; kg, z[ko]] + L [k; ko, u[ko,kﬂ
ZIR ) ZSR J
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For time-invariant systems k,

y[k] = L [k; 2[0], ufq 4|

It is trivial to show™:

ylk] = L |k; 2[0], ujg 4]

is irrelevant (assume k, = 0):

k—1
= CAFz[0] + Y ARl Byd]
1=0
= L[k al0]]+ L kiug ]
ZIR — g
CA* B = g[k]
impulseTesponse
k—1 _
= CARz[0] + Y CcAFT Tl Bud]
1=0
k—1
= CARz[0]+ Y glk — i]uld]
ZIR =0__ )
g U
ZSR

Discrete convolution:

k—1
g*u .= Z glk — 1]u[i]
1=0
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