Feedback and Control Systems

Recall that for LTI systems we have:
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(time domain, i.c.=0) (complex domain, i.c.=0)
We shall work in the complex domain (a.k.a. frequency domain):
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If perturbed from the equilibrium x, = 0 the system would never come back to x, (in
fact it would explode)

In particular, if any non-trivial input u(t) is applied, the system’s output y(t) would
exponentially diverge!



Simple concept—feedback stabilization
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Thepole: s*—1+k=0=>s"=1—-k
For stability we need: R,(s*) < 0, therefore1 —k < 0=k > 1.

Conclusion: the presence of negative feedback with a sufficiently high gain k stabilizes
the system.

The basic idea behind control is simple.
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Goal: find u(t) that will make this possible



Open-loop Control

Example: canonical 1t order system
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Assume: yr(t) = h(t) (Heaviside function)
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This control strategy is called open-loop control. It is not very efficient.

* If the parameters k and t are not accurately estimated, y(t) will diverge from yg (t)
* If the system is affected by a disturbance d(t), y(t) will not follow yz(t)



Feedback Control

Let us calculate t

controller
Ya(s)!' +~ E( U +

he transfer function. Keep in mind that this is a MIMO system, as there

are two inputs (Yr and D) and one output (Y).

Goal: we want
disturbance d(t)

Y(s) = T(s)[D(s) + U(s)]

Y(s) =T(s)[D(s) + C(s)E(s)]

Y(s) = T(s)[D(s) + C(5) (Ya(s) — Y ()]
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y(t) to track yp(t) (asymptotically) and we want to reject the
(asymptotically). Can we do this?



How do we choose C(s) (the controller)?

Example: T(s) = TL 15t order system
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C(s) = k, - proportional controller (static system)
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It may be challenging to test the behavior of the closed-loop system for arbitrary Yy
and D. Typically, unit-step changes are assumed, i.e. Yz(s) = % and D(s) = %
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If k,, is very large (k,, > k):

however, the tracking will not be perfect (there will be little bias in y(t)).

C(s) = ks - differential controller
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Conclusion: D-controller has no effect on either the tracking of Y, or rejection of D.



Finally, C(s) = ki% - integral controller
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Conclusion: I-controller achieves exactly what is necessary (asymptotically tracks yr (t)
and rejects d(t)). Depending on T'(s), a controller is chosen. Combinations of the

above controllers are common: C(s) = k, + kgs (PD), C(s) =k, + k (PI) C(s) =
kys + ki; (ID), C(s) = kp + kgs + ki; (PID)



