Equilibrium States and Phase Portraits

Recall the definition of equilibrium x_{e}
The state (of a dynamic system) x_{e} is called the equilibrium state if and only if:

$$
x(t)=x_{e} \quad \forall t \in\left[t^{*}, \infty\right)
$$

and under no input conditions.
In other words, once the system reaches the state x_{e} at time t^{*}, the system never leaves it (unless input is applied).

Consequence:

$$
\begin{aligned}
& x(t)=x_{e} \quad \forall t \in\left[t^{*}, \infty\right) \\
& \text { or } \\
& \dot{x}_{e}=0
\end{aligned}
$$

For LTI systems: $x_{e}=0$ is always an equilibrium point.*
The number of equilibria in LTI systems is dictated by the state space matrix A.*

What about nonlinear systems? $\frac{d x(t)}{d t}=f(x(t), u(t), t)$
Time-invariance: $\frac{d x(t)}{d t}=f(x(t), u(t))$ (no explicit dependence on t)
For equilibria (no inputs): $\frac{d x(t)}{d t}=f(x(t))$
To find x_{e}, set $\frac{d x(t)}{d t}=0$ or $f\left(x_{e}\right)=0$ and solve for x_{e}.
It is not uncommon for nonlinear systems to have multiple equilibria.
Example 1: Logistic equation (population growth)

$$
\frac{d N(t)}{d t}=r N(t)\left[1-\frac{N(t)}{K}\right]
$$

r - growth rate
K - carrying capacity
Example 2: Pendulum

$$
m L \ddot{\theta}(t)+b L \dot{\theta}(t)+m g \sin (\theta(t))=F(t)
$$

Phase Portrait

Dynamical system: $\frac{d x(t)}{d t}=f(x(t), u(t), t)$
Time-invariant: $\frac{d x(t)}{d t}=f(x(t), u(t)) \quad$ (no explicit dependence on t)
For equilibrium $(u(t)=0): \quad \frac{d x(t)}{d t}=f(x(t)) \quad(*)$
Initial condition: $x(0)=x_{0}$.
A function $x(t)$ that solves the differential equation above (*), while satisfying the initial condition is called the solution.

Collection of all solutions to (*) plotted as curves in the state space is called the phase portrait of (*). Phase portraits typically refer to 2-D (second order) systems

Note: Phase portrait is not a plot of $x(t)$ vs. t.
Example 3: Harmonic Oscillator:

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t) \\
& \dot{x}_{2}(t)=-x_{1}(t) \quad x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Time is lost in the phase portrait, but a lot is gained-geometry. Whether plotted as a function of time, or as a phase portrait, $x(t)$ is called the trajectory of a system.

Note: velocity (at any point) is the tangent vector to trajectory.

$$
\text { Velocity }=\frac{d x(t)}{d t}
$$

On the other hand: $\quad \frac{d x(t)}{d t}=f(x(t))$
For any point $\left(x_{1}(t), x_{2}(t)\right)$ on the trajectory, $f(x(t))$ is a 2-D vector.
In mathematics, this is called a vector field.

Example 4: Harmonic Oscillator $\frac{d x(t)}{d t}=\underbrace{A x(t)}_{\text {vector field }} \quad A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

$$
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] x(t)=\underbrace{\left[\begin{array}{c}
x_{2}(t) \\
-x_{1}(t)
\end{array}\right]}_{\text {vector field }}
$$

$$
\dot{x}(I)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \dot{x}(I I)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \dot{x}(I I I)=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \dot{x}(I V)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Since $f(x(t))$ is parameterized by t, such a vector field is often called the flow of the system

What about phase portraits, vector fields and flows of 1-D systems?

Technically, $f(x(t))$ is not a vector field. Still the same formalism is useful.

Example 5: Logistic Equation*

$$
\frac{d N(t)}{d t}=\underbrace{r N(t)\left[1-\frac{N(t)}{K}\right]}_{f(N(t))}
$$

Phase Portraits of 2-D LTI Systems

$$
\dot{x}(t)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] x(t) \quad x(0)=x_{0}
$$

Solution: $\quad x(t)=e^{A t} x_{0} \quad e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}$
$x(t)$ - depends on the eigenvalues of A !

$$
\begin{aligned}
& \operatorname{det}(s I-A)=0 \\
& s_{1,2}=\frac{\tau \pm \sqrt{\tau^{2}-4 \Delta}}{2}
\end{aligned}
$$

where $\tau=a+d=\operatorname{trace}(A)$ and $\Delta=a d-b c=\operatorname{det}(A)$

Case I Complex-Conjugate Poles ($s_{1,2} \in \mathbb{C}^{1 \times 1}$)

- stable focus (spiral)
- unstable focus (spiral)
- center (marginally stable)

Case II Real Poles ($s_{1,2} \in \mathbb{R}^{1 \times 1}$)

Play with equilibrium_points.m
Cases shown in blue are called hyperbolic equilibria.

