Equilibrium States and Phase Portraits

Recall the definition of equilibrium x_e

The state (of a dynamic system) x_e is called the equilibrium state if and only if:

$$x(t) = x_e \quad \forall t \in [t^*, \infty)$$

and under <u>no input</u> conditions.

In other words, once the system reaches the state x_e at time t^* , the system never leaves it (unless input is applied).

Consequence:

$$\begin{aligned} x(t) &= x_e \quad \forall t \in [t^*, \infty) \\ \text{or} \\ \dot{x}_e &= 0 \end{aligned}$$

For LTI systems: $x_e = 0$ is always an equilibrium point.*

The number of equilibria in LTI systems is dictated by the state space matrix A.*

What about nonlinear systems? $\frac{dx(t)}{dt} = f(x(t), u(t), t)$

Time-invariance: $\frac{dx(t)}{dt} = f(x(t), u(t))$ (no explicit dependence on *t*)

For equilibria (no inputs): $\frac{dx(t)}{dt} = f(x(t))$

To find x_e , set $\frac{dx(t)}{dt} = 0$ or $f(x_e) = 0$ and solve for x_e .

It is not uncommon for nonlinear systems to have multiple equilibria.

Example 1: Logistic equation (population growth)

$$\frac{dN(t)}{dt} = rN(t) \left[1 - \frac{N(t)}{K} \right]$$

r - growth rate*K* - carrying capacity

Example 2: Pendulum $mL\ddot{\theta}(t) + bL\dot{\theta}(t) + mg\sin(\theta(t)) = F(t)$

Phase Portrait

Dynamical system: $\frac{dx(t)}{dt} = f(x(t), u(t), t)$

Time-invariant: $\frac{dx(t)}{dt} = f(x(t), u(t))$ (no explicit dependence on t)

For equilibrium (u(t) = 0): $\frac{dx(t)}{dt} = f(x(t))$ (*)

Initial condition: $x(0) = x_0$.

A function x(t) that solves the differential equation above (*), while satisfying the initial condition is called the solution.

Collection of all solutions to (*) plotted as curves in the state space is called the <u>phase portrait of</u> (*). Phase portraits typically refer to 2-D (second order) systems

Note: Phase portrait is not a plot of x(t) vs. t.

Example 3: Harmonic Oscillator:

$$\begin{aligned} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -x_1(t) \quad x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \end{aligned}$$

Time is lost in the phase portrait, but a lot is gained—geometry. Whether plotted as a function of time, or as a phase portrait, x(t) is called the trajectory of a system.

For any point $(x_1(t), x_2(t))$ on the trajectory, f(x(t)) is a 2-D vector.

In mathematics, this is called a vector field.

Since f(x(t)) is parameterized by t, such a vector field is often called the <u>flow of the system</u>

What about phase portraits, vector fields and flows of 1-D systems?

Technically, f(x(t)) is not a vector field. Still the same formalism is useful.

Example 5: Logistic Equation*

$$\frac{dN(t)}{dt} = \underbrace{r N(t) \left[1 - \frac{N(t)}{K} \right]}_{f(N(t))}$$

Phase Portraits of 2-D LTI Systems

$$\dot{x}(t) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} x(t) \qquad x(0) = x_0$$

Solution:
$$x(t) = e^{At}x_0$$
 $e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$

x(t) - depends on the eigenvalues of A!

$$det(sI - A) = 0$$
$$s_{1,2} = \frac{\tau \pm \sqrt{\tau^2 - 4\Delta}}{2}$$

where $\tau = a + d = \operatorname{trace}(A)$ and $\Delta = ad - bc = \det(A)$

Case I Complex-Conjugate Poles ($s_{1,2} \in \mathbb{C}^{1 \times 1}$)

- stable focus (spiral)
- unstable focus (spiral)
- center (marginally stable)

```
Case II Real Poles (s_{1,2} \in \mathbb{R}^{1 \times 1})
```

```
case i0 > s_1 > s_2(stable node)case iis_1 > s_2 > 0(unstable node)case iiis_1 > 0 > s_2(saddle point)case ivs_1 > s_2 = 0(unstable line)case v0 = s_1 > s_2(stable line)case vis_1 = s_2 > 0(2 lin. ind. eigenvec.)case viis_1 = s_2 < 0(stable star)s_1 = s_2 < 0(1 lin. ind. eigenvec.)(unstable degenerate node)case viiis_1 = s_2 < 0(stable degenerate node)case viiis_1 = s_2 = 0(outrageously trivial)
```

Play with equilibrium_points.m

Cases shown in **blue** are called **hyperbolic equilibria**.