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Linearization

Assume a nonlinear time-invariant (NLTI) system:

with an equilibrium point:

Let us linearize the vector field 𝑓(𝑥) around 𝑥⋆:

Note:   𝑥 𝑡 =

𝑥1(𝑡)
𝑥2(𝑡)
⋮

𝑥𝑛(𝑡)

→ state of 𝑛-dimensional dynamic system

𝑓 𝑥 𝑡 =

𝑓1(𝑥1 𝑡 , 𝑥2 𝑡 ,⋯ , 𝑥𝑛(𝑡))

𝑓2(𝑥1 𝑡 , 𝑥2 𝑡 ,⋯ , 𝑥𝑛(𝑡))
⋮

𝑓𝑛(𝑥1 𝑡 , 𝑥2 𝑡 , ⋯ , 𝑥𝑛(𝑡))

→ 𝑛 nonlinear functions

Short notation: 𝑓 𝑥 𝑡 =

𝑓1(𝑥(𝑡))

𝑓2(𝑥 𝑡 )
⋮

𝑓𝑛(𝑥 𝑡 )

ሶ𝑥 𝑡 = 𝑓(𝑥 𝑡 )

𝑥⋆ (𝑓 𝑥⋆ = 0)



𝑑𝑥 𝑡

𝑑𝑡
= 𝑓 𝑥 𝑡

NLTI system

linearization 𝑑𝑧 𝑡

𝑑𝑡
= 𝐴𝑧(𝑡)

LTI system

Major questions:

Q1: By analyzing the stability of a linearized model (LTI system),

what can be said about the stability of the original (NLTI) system?

E.g. if the linearized model is stable, is the nonlinear model stable

too?

Q2: By analyzing the type of equilibria of linearized model, what

can be said about the type of equilibria of the original (NLTI)

system? E.g. if the linearized equilibrium is of a certain type, say a

node, is the equilibrium of the original system also a node.
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𝑑𝑥(𝑡)/𝑑𝑡 = 𝑓(𝑥(𝑡)) find equilibrium 𝑥⋆ such that 𝑓(𝑥⋆) = 0.

Linearize 𝑓(𝑥) around 𝑥⋆ using Taylor series expansion. This can be done

for any number of dimensions 𝑛.

𝑑𝑥(𝑡)/𝑑𝑡 = 𝐷𝑓(𝑥⋆) [𝑥(𝑡) − 𝑥⋆] + H. O. T.

𝑧(𝑡) ∶= 𝑥(𝑡) – 𝑥⋆

𝑑𝑧(𝑡)/𝑑𝑡 = 𝐷𝑓(𝑥⋆) 𝑧(𝑡) = 𝐴 𝑧(𝑡) (H. O. T. neglected)

𝐷𝑓(𝑥⋆) – Jacobian matrix (𝑛 𝑥 𝑛)

Q1: By analyzing 𝑑𝑧(𝑡)/𝑑𝑡 = 𝐴 𝑧(𝑡), what can be said about the stability of

the system 𝑑𝑥(𝑡)/𝑑𝑡 = 𝑓(𝑥(𝑡))?

If 𝑧⋆ is a hyperbolic equilibrium (no eigenvalue of A has zero real part), we

say that the stability of 𝑧⋆ determines the stability of 𝑥⋆ , and in turn, the

stability of the nonlinear system 𝑑𝑥(𝑡)/𝑑𝑡 = 𝑓(𝑥(𝑡)).

If 𝑧⋆ is a non-hyperbolic equilibrium, then nothing can be said about

stability (H.O.T. are important).
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If we restrict ourselves to 𝑛 = 2 (2-D or 2
nd

order systems) even stronger

results are possible, but conditions are more restrictive.

Q2: By analyzing the phase portrait of 𝑑𝑧(𝑡)/𝑑𝑡 = 𝐴 𝑧(𝑡), what can be said

about the phase portrait of the system 2-D nonlinear system:

𝑑𝑥(𝑡)/𝑑𝑡 = 𝑓(𝑥(𝑡)) (at least locally around 𝑥⋆)?

As long as 𝑧⋆ is not one of the borderline cases (line, center, star,

degenerate node), i.e. 𝑧⋆ is a saddle point, node or focus, 𝑥⋆ is also a

saddle point, node or focus. In other words the phase portraits of

𝑑𝑧(𝑡)/𝑑𝑡 = 𝐴 𝑧(𝑡) and 𝑑𝑥(𝑡)/𝑑𝑡 = 𝑓(𝑥(𝑡)) are qualitatively similar (at least

locally around 𝑥⋆).

If 𝑧⋆ is one of the borderline cases, H.O.T. are important and cannot be

neglected.

Example: van der Pol Oscillator (we will demonstrate both of these points).

ሷ𝑦 𝑡 + 𝜇 𝑦2 𝑡 − 1 ሶ𝑦 𝑡 + 𝑦 𝑡 = 0
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ሷ𝑦 𝑡 + 𝜇 𝑦2 𝑡 − 1 ሶ𝑦 𝑡 + 𝑦 𝑡 = 0

𝑥1 𝑡 ≔ 𝑦 𝑡

𝑥2 𝑡 ≔ ሶ𝑦 𝑡

ሶ𝑥1 𝑡 = ሶ𝑦 𝑡 = 𝑥2 𝑡

ሶ𝑥2 𝑡 = ሷ𝑦 𝑡 = −𝜇 𝑦2 𝑡 − 1 ሶ𝑦 𝑡 − 𝑦 𝑡

= −𝜇 𝑥1
2 𝑡 − 1 𝑥2 𝑡 − 𝑥1 𝑡

𝑓1 𝑥1, 𝑥2 = 𝑥2

𝑓2 𝑥1, 𝑥2 = −𝜇 𝑥1
2 − 1 𝑥2 − 𝑥1

Equilibrium point:

𝑓 𝑥⋆ = 0

𝑓1 𝑥1
⋆, 𝑥2

⋆ = 𝑥2
⋆ = 0

𝑓2 𝑥1
⋆, 𝑥2

⋆ = −𝜇 𝑥1
⋆2 − 1 ด𝑥2

⋆

0

− 𝑥1
⋆ = 0 ⇒ 𝑥1

⋆ = 0
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Therefore:

𝑥∗ =
0
0

is and equilibrium point

𝑓1 𝑥1, 𝑥2 = 𝑥2 already linear (nothing to linearize)

𝑓2 𝑥1, 𝑥2 = −𝜇 𝑥1
2 − 1 𝑥2 − 𝑥1

𝑓2 𝑥1, 𝑥2 = 𝑓2 𝑥1
∗, 𝑥2

∗

0

+
𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2 𝑥∗

𝑥1 − 𝑥1
∗

𝑥2 − 𝑥2
∗

𝑓2 𝑥1, 𝑥2 = −2𝜇𝑥1𝑥2 − 1 −𝜇 𝑥1
2 − 1 𝑥∗

𝑥1
𝑥2

𝑓2 𝑥1, 𝑥2 = −1 𝜇
𝑥1
𝑥2

𝑓2 𝑥1, 𝑥2 = −𝑥1 + 𝜇𝑥2
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Substitution: 𝑧1 = 𝑥1; 𝑧2 = 𝑥2

ሶ𝑧1(𝑡)
ሶ𝑧2(𝑡)

=
0 1
−1 𝜇

𝐴

𝑧1(𝑡)

𝑧2 𝑡

det 𝑠𝐼 − 𝐴 =
𝑠 −1
1 𝑠 − 𝜇

= 𝑠2 − 𝜇𝑠 + 1 = 0

𝑠1,2 =
𝜇± 𝜇2−4

2

Case I 𝜇 = 1 ⇒ 𝑠1,2 =
1±𝑗 3

2

𝑅𝑒 𝑠1,2 ≠ 0 -hyperbolic equilibrium

Complex conjugate poles and 𝑅𝑒 𝑠1,2 > 0 ⇒ 𝑧∗ is an unstable focus (spiral)

It follows that 𝑥∗ is also an unstable focus (spiral), moreover, at least locally

around (0,0), the phase portraits of the linearized and the original system

look similar!

Play with linearized_vanderpol.m
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𝝁 = 𝟏

𝝁 = −𝟏

unstable

focus

(locally)
unstable

focus

stable

focus

(locally)

stable

focus
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Case II 𝜇 = 2; 𝑠1,2 =
2± 4−4

2
= 1

𝑅𝑒 𝑠1,2 ≠ 0 -hyperbolic equilibrium

Do we have 2 linearly independent eigenvector?

We do not have 2 linearly independent eigenvectors
*

𝑧∗ =
0
0

is a degenerate node (unstable since 𝑅𝑒 𝑠1,2 > 0)

𝑥∗ =
0
0

is also unstable

But we have no guarantee that 𝑥∗ is a degenerate node. In fact, it is not (it’s

an unstable focus). Locally, 𝑥∗ and 𝑧∗ do not look similar.

Summary: For stability based on non-hyperbolic equilibria, H.O.T. are

important (linearization alone is not sufficient). In addition, H.O.T. are also

important (i.e. linearization alone is not sufficient) when investigating the

local phase portrait properties of borderline cases.
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𝝁 = 𝟐

unstable

focus

(locally)

unstable

degenerate

node
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Stability

ሶ𝑥(𝑡) = 𝑓 𝑥 𝑡 𝑥 0 = 𝑥0 (1)

Definition [Lyapunov stability]: Let 𝑥∗ be an equilibrium state of

system (1) (𝑓(𝑥∗) = 0). We say that 𝑥∗ is Lyapunov stable if for every

𝜀 > 0 there exists 𝛿 = 𝛿 𝜀 , such that for every 𝑥0 that satisfies ԡ
ԡ

𝑥0 −
𝑥∗ < 𝛿 we have 𝑥(𝑡; 𝑥0) − 𝑥∗ < ε for all 𝑡 ≥ 0.

Note: 𝑥 represents the Euclidean norm.





x*

x
0

x(t;x
0
)
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Definition: Let 𝑥∗ be an equilibrium state of system (1) (𝑓(𝑥∗) = 0). We

say that 𝑥∗ is attractive if there exists  > 0 , such that 𝑥0 – 𝑥
∗ < 

implies lim
𝑡→∞

𝑥 𝑡; 𝑥0 = 𝑥∗ . If this is true for any  > 0 , we say 𝑥∗ is

globally attractive.

Consequently, 𝑥∗ is called the attractor or global attractor. 

x*

x
0

x(t;x
0
)

The set 𝐴(𝑥∗) of all initial conditions 𝑥0 such that lim
𝑡→∞

𝑥 𝑡; 𝑥0 = 𝑥∗ is

called the region of attraction of 𝑥∗.
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Note: If 𝑥∗ is Lyapunov stable, it need not be attractive. Example: center.

𝒙∗

𝒙𝟏

𝒙𝟐

𝜺

𝛿 = 𝜀
𝑥 𝑡; 𝑥0 − ณ𝑥∗

0

< 𝜀

∀𝑥0 ∈ ℝ𝑛: 𝑥0 < 𝛿



16

If an equilibrium 𝑥∗ is attractive, it need not be Lyapunov stable. 

Examples are not so numerous, but here is one:

ሶ𝑥 𝑡 = 𝑥2 𝑡 𝑥 𝑡; 𝑥0 =
𝑥0

1 − 𝑡𝑥0

𝑥(𝑡)

𝑥 𝑡; 𝑥0

𝑥0

𝑥 𝑡; 𝑥0

𝑡∗ =
1

𝑥0
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Definition: Let 𝑥∗ be an equilibrium state of system (1) (𝑓(𝑥∗) = 0). We

say that 𝑥∗ is asymptotically stable if:

i) 𝑥∗ is Lyapunov stable

ii) 𝑥∗ is attractive

Definition: Let 𝑥∗ be an equilibrium state of system (1) (𝑓(𝑥∗) = 0). We

say that 𝑥∗ is globally asymptotically stable if:

i) 𝑥∗ is Lyapunov stable

ii) 𝑥∗ is globally attractive

Definition: The system (1) is stable if its equilibrium state 𝑥∗ is globally

asymptotically stable.
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(1) (2) (3) (4)

(4) – with no friction

• Lyapunov stable

• Not attractive

(globally) marginally 

stable

(4) – with friction

• Lyapunov stable

• Globally attractive

(globally) asymptotically

stable

(1)

• Not Lyapunov stable

• Not attractive

unstable

(2) – with no friction

• Lyapunov stable

• Not attractive

(locally) marginally 

stable

(2) – with friction

• Lyapunov stable

• Locally attractive

(locally) asymptotically

stable

system stable


