Gradient (Potential) Systems

$$
\frac{d x(t)}{d t}=f(x(t)) \quad x \in \mathbb{R}^{n}
$$

If there exists a continuously differentiable function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that $f(x)=-\nabla V(x)$, then the system above is called a gradient system with the potential V.

Note: $V(x)$ is a real-valued scalar function.
What does $f(x)=-\nabla V(x)$ mean?

$$
\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right]=f(x)=-\nabla V(x)=-\underbrace{\left[\begin{array}{c}
\frac{\partial V(x)}{\partial x_{1}} \\
\frac{\partial V(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial V(x)}{\partial x_{n}}
\end{array}\right]}_{\text {gradient of } V}
$$

Hence, $f_{i}(x(t))=-\frac{\partial V(x(t))}{\partial x_{i}}, \forall i=1,2, \cdots, n$

Note: continuous differentiability is indeed necessary. It means that $\partial V / \partial x_{i}$ are continuous functions, which implies that $f_{i}(x)=-\partial V / \partial x_{i}$ are continuous, which in turn guarantees the existence of the solution $x\left(t ; t_{0}, x\left(t_{0}\right)\right)$.

If the potential $V(x)$ is known, it is trivial to find the corresponding gradient system.

$$
\dot{x}(t)=-\nabla V(x)
$$

Example: Find a gradient system whose potential is $V(x)$:

$$
\begin{aligned}
& \underbrace{V(x)}_{\text {potential }}=x_{1}^{2}+x_{2}^{2} \\
& \frac{\partial V}{\partial x_{1}}=2 x_{1} \\
& \frac{\partial V}{\partial x_{2}}=2 x_{2} \\
& \dot{x}_{1}=-\frac{\partial V}{\partial x_{1}}=-2 x_{1} \\
& \dot{x}_{2}=-\frac{\partial V}{\partial x_{2}}=-2 x_{2}
\end{aligned}
$$

Conclusion: $\dot{x}(t)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right] x(t)$. Note that we obtained a linear system since $V(x)$ was a $2^{\text {nd }}$ order polynomial.

Example: Find a gradient system whose potential is $V(x)$:

$$
\begin{aligned}
& \underbrace{V(x)}_{\text {potential }}=x_{1}^{2}-x_{2}^{2} \\
& \frac{\partial V}{\partial x_{1}}=2 x_{1} \\
& \frac{\partial V}{\partial x_{2}}=-2 x_{2} \\
& \dot{x}_{1}=-\frac{\partial V}{\partial x_{1}}=-2 x_{1} \\
& \dot{x}_{2}=-\frac{\partial V}{\partial x_{2}}=2 x_{2}
\end{aligned}
$$

Conclusion: $\dot{x}(t)=\left[\begin{array}{cc}-2 & 0 \\ 0 & 2\end{array}\right] x(t)$. Again, we obtained a linear system since we picked a very simple $V(x)$ ($2^{\text {nd }}$ order polynomial). In general, this does not have to be the case.

Example: Consider a general nonlinear time-invariant (NLTI) system:

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Note, it is time-invariant since f_{1} and f_{2} do not explicitly depend on t. If this is a gradient system, then: $\frac{\partial f_{1}}{\partial x_{2}}=\frac{\partial f_{2}}{\partial x_{1}}$

To see this, note that:

$$
\begin{aligned}
& f_{1}=-\frac{\partial V}{\partial x_{1}} \Rightarrow \frac{\partial f_{1}}{\partial x_{2}}=\frac{\partial}{\partial x_{2}}\left(-\frac{\partial V}{\partial x_{1}}\right)=-\frac{\partial^{2} V}{\partial x_{2} \partial x_{1}} \\
& f_{2}=-\frac{\partial V}{\partial x_{2}} \Rightarrow \frac{\partial f_{2}}{\partial x_{1}}=\frac{\partial}{\partial x_{1}}\left(-\frac{\partial V}{\partial x_{2}}\right)=-\frac{\partial^{2} V}{\partial x_{1} \partial x_{2}}
\end{aligned}
$$

As long as second partial derivatives are continuous, we have that:

$$
\frac{\partial^{2} V}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} V}{\partial x_{2} \partial x_{1}}
$$

(symmetry of $2^{\text {nd }}$ derivatives)

How to find V if we suspect our system is a gradient system? Example:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}^{2}+x_{2} \cos \left(x_{1}\right)=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=2 x_{1} x_{2}+\sin \left(x_{1}\right)=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Since: $f_{1}=-\frac{\partial V}{\partial x_{1}}$, we have:

$$
\begin{aligned}
& V\left(x_{1}, x_{2}\right)=-\int f_{1}(x_{1}, \underbrace{x_{2}}_{\text {const }}) d x_{1}=-\int\left(x_{2}^{2}+x_{2} \cos \left(x_{1}\right)\right) d x_{1} \\
& =-x_{2}^{2} x_{1}-x_{2} \sin \left(x_{1}\right)+\phi\left(x_{2}\right)
\end{aligned}
$$

Similarly: $f_{2}=-\frac{\partial V}{\partial x_{2}}$, implies:

$$
\begin{aligned}
& V\left(x_{1}, x_{2}\right)=-\int f_{2}(\underbrace{x_{1}}_{\text {const }}, x_{2}) d x_{1}=-\int\left(2 x_{1} x_{2}+\sin \left(x_{1}\right)\right) d x_{2} \\
& =-2 x_{1} \frac{x_{2}^{2}}{2}-x_{2} \sin \left(x_{1}\right)+\psi\left(x_{1}\right)=-x_{1} x_{2}^{2}-x_{2} \sin \left(x_{1}\right)+\psi\left(x_{1}\right)
\end{aligned}
$$

Since we want: $-x_{2}^{2} x_{1}-x_{2} \sin \left(x_{1}\right)+\phi\left(x_{2}\right)=-x_{1} x_{2}^{2}-x_{2} \sin \left(x_{1}\right)+\psi\left(x_{1}\right)$ for all x_{1} and x_{2}, we must have $\phi\left(x_{2}\right)=\psi\left(x_{1}\right)=$ Const. Therefore any function of the form: $V\left(x_{1}, x_{2}\right)=-x_{1} x_{2}^{2}-x_{2} \sin \left(x_{1}\right)+$ Const. is the potential of the above system.

Theorem: Gradient systems cannot have closed orbits (including limit cycles). In other words they cannot oscillate.

Proof by contradiction. Suppose there is a closed orbit. Starting from t_{0}, after a period T, the system would come back to the same state, incurring a zero net change of the potential V :

$$
\begin{aligned}
& \underbrace{\Delta V}_{0}=\int_{t_{0}}^{t_{0}+T} d V(t)=\int_{t_{0}}^{t_{0}+T} \frac{d V(t)}{d t} d t \\
& =\int_{t_{0}}^{t_{0}+T} \frac{\partial V(t)}{\partial x} \dot{x}(t) d t=\int_{t_{0}}^{t_{0}+T} \underbrace{\nabla^{T} V(x)}_{-f^{T}(x)} \dot{x}(t) d t \\
& =-\int_{t_{0}}^{t_{0}+T} \underbrace{f^{T}(x)}_{\dot{x}^{T}} \dot{x}(t) d t=\int_{t_{0}}^{t_{0}+T}\|\dot{x}(t)\|^{2} d t=0
\end{aligned}
$$

The above is true iff: $\|\dot{x}(t)\|=0$, which implies that $\underbrace{\dot{x} \equiv 0}_{\text {equilibrium }}$, which contradicts the initial premise that the system evolves along a closed orbit.

The intuition is clear here:

$$
\begin{gathered}
V(x)=\text { const. contours } \\
c_{1}>c_{2}>c_{3}
\end{gathered}
$$

Note, since $\nabla V(x)$ is a gradient of V, it is perpendicular to the contour (or more precisely the tangent to the contour).

If this is a gradient system, then $d x / d t$ is perpendicular to the contour since

$$
\frac{d x}{d t}=-\nabla V(x)
$$

The solutions evolve along trajectories which are perpendicular to the contours

$$
V(x)=\text { const } .
$$

If trajectories are perpendicular to the contours, then no trajectory can be closed (the system evolves by following the gradient).

Theorem [Lyapunov 1892]: Let x^{*} be an equilibrium point of an n-th order system $d x(t) / d t=f(x(t))$. If there exists a continuously differentiable function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that:

1) $V(x)>0$ for all $x \neq x^{*}$ and $V\left(x^{*}\right)=0$.
2) $d V(x) / d t \leq 0$ for all $x \neq x^{*}$

Then x^{*} is Lyapunov stable.
If 2$) d V(x) / d t<0$ for all $x \neq x^{*}$, then x^{*} is globally asymptotically stable (Lyapunov stable + globally attractive). Such a function V is called the Lyapunov function.

If the Lyapunov function exists, the system cannot have a closed (or periodic) orbit.

Example: show that the system:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}-x_{1}^{3} \\
& \dot{x}_{2}=-x_{1}-x_{2}^{3}
\end{aligned}
$$

has no closed orbits.
Hint: $V(x)=a x_{1}^{2}+b x_{2}^{2}$

Find equilibria:

$$
\begin{aligned}
& \dot{x}_{1}=0 \Rightarrow x_{2}=x_{1}^{3} \\
& \dot{x}_{2}=0 \Rightarrow x_{1}=-x_{2}^{3} \Rightarrow x_{1}^{3}=-x_{2}^{9} \Rightarrow x_{2}+x_{2}^{9}=0 \Rightarrow x_{2}=0, x_{1}=0 \\
& x^{\star}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Check the conditions of the Lyapunov Theorem:

1) $V(x)>0, \forall x \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$ (as long as $a>0$ and $b>0$), and $V\left(x^{\star}\right)=0$
2) $\frac{d V(x)}{d t}=\frac{\partial V(x)}{\partial x} \dot{x}(t)=\left[\begin{array}{ll}2 a x_{1} & 2 b x_{2}\end{array}\right]\left[\begin{array}{c}x_{2}-x_{1}^{3} \\ -x_{1}-x_{2}^{3}\end{array}\right]$

$$
=2 a x_{1} x_{2}-2 a x_{1}^{4}-2 b x_{1} x_{2}-2 b x_{2}^{4} \quad(a=b)
$$

$$
=-2 a \underbrace{\left(x_{1}^{4}+x_{2}^{4}\right)}_{>0}<0 \text { as long as } x \neq x^{\star}
$$

Conclusion: $V(x)=a\left(x_{1}^{2}+x_{2}^{2}\right)$ is a Lyapunov function, therefore the system cannot have closed orbits.

Example: show that the system:

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+4 x_{2} \\
& \dot{x}_{2}=-x_{1}-x_{2}^{3}
\end{aligned}
$$

has no closed orbits.
Hint: $V(x)=x_{1}^{2}+b x_{2}^{2}$
Find equilibria:

$$
\begin{aligned}
& \dot{x}_{1}=0 \Rightarrow x_{1}=4 x_{2} \\
& \dot{x}_{2}=0 \Rightarrow x_{1}=-x_{2}^{3} \Rightarrow x_{2}^{3}+4 x_{2}=0 \Rightarrow x_{2}=0, x_{1}=0 \\
& x^{\star}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Check the conditions of the Lyapunov Theorem:

1) $V(x)>0, \forall x \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$ (as long as $b>0$), and $V\left(x^{\star}\right)=0$
2) $\frac{d V(x)}{d t}=\frac{\partial V(x)}{\partial x} \dot{x}(t)=\left[\begin{array}{ll}2 x_{1} & 2 b x_{2}\end{array}\right]\left[\begin{array}{c}-x_{1}+4 x_{2} \\ -x_{1}-x_{2}^{3}\end{array}\right]$

$$
\begin{aligned}
& =-2 x_{1}^{2}+8 x_{1} x_{2}-2 b x_{1} x_{2}-2 b x_{2}^{4}(b=4) \\
& =-2 \underbrace{\left(x_{1}^{2}+4 x_{2}^{4}\right)}_{>0}<0 \text { as long as } x \neq x^{\star}
\end{aligned}
$$

Conclusion: $V(x)=x_{1}^{2}+4 x_{2}^{2}$ is a Lyapunov function, therefore the system cannot have closed orbits.

Conservative Systems

$$
d x(t) / d t=f(x(t)) \quad x \in \mathbb{R}^{n}
$$

If there exists a continuous function $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$, that is:
(i) non-constant on every open set and
(ii) constant along every trajectory, i.e. $d E(x) / d t=0$
then the system above is called a conservative system, and the quantity $E(x)$ represents a conserved quantity.

Conservative systems have no attracting equilibria. For conservative systems, the linearized center is also a nonlinear center (despite being nonhyperbolic).

Example: pendulum with no friction:

$$
\underbrace{m L \ddot{\theta}}_{\text {inertia }}+\underbrace{m g \sin \theta}_{\text {gravity }}=0
$$

State variables:

$$
\begin{aligned}
& x_{1}:=\theta \Rightarrow \dot{x}_{1}=x_{2} \\
& x_{2}:=\dot{\theta} \Rightarrow \dot{x}_{2}=-\frac{g}{L} \sin x_{1}
\end{aligned}
$$

The conserved quantity candidate-energy function:

$$
\begin{aligned}
& E=E_{k}+E_{p}=\frac{1}{2} m v^{2}+m g h \\
& E=\frac{1}{2} m(L \dot{\theta})^{2}+m g(L-L \cos \theta) \quad L \cos \theta \\
& E \propto \frac{1}{2} L^{2}(\dot{\theta})^{2}+g L(1-\cos \theta) \\
& E \propto \frac{L}{2} x_{2}^{2}+g\left(1-\cos x_{1}\right) \\
& \frac{d E(x)}{d t}=\frac{\partial E}{\partial x} \dot{x}(t)=\left[\begin{array}{ll}
g \sin x_{1} & L x_{2}
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
-\frac{g}{L} \sin x_{1}
\end{array}\right] \\
& \frac{d E(x)}{d t}=g x_{2} \sin x_{1}-g x_{2} \sin x_{1}=0
\end{aligned}
$$

Since $E(x)=$ Const., this system cannot have attracting equilibria.

