Poincaré-Bendixson Theory

d’;(tt) = f(x(¥)) xeR? (2nd order system)

Assume f(x) is continuously differentiable throughout this lecture.
Historical perspective:

1. Poincaré [late 19th century]
2. Bendixson [1901] - more rigorous result

Theorem [Poincaré]: Let y:= {x(t;x,),t = 0} be a bounded (semi)orbit, and
let Q be its limit set (set of all accumulation points of x(¢t; x,) as t - o).
Then, Q either contains an equilibrium point or Q is a periodic orbit.



Accumulation point: If every open neighborhood A
B(x, ) of x contains infinitely many points of A,
then x is called an accumulation point of A.

Note: x does not need to belong to A.

Example:

a-fi-inen}-foii2-]

Thus, x = lim (1 — 1) = 1 is an accumulation 0
n—oo n

point of A, but x & A.

For an orbit y: = {x(t; x,),t = 0}, we call a point
x an accumulation point if there exists a sequence t, to
{t,,n € N} such that

lim t,, = oo
n—>00
lim x(t,; xy) = x

n—00




The theorem is a lot simpler than it appears.

Basically, 3 things can happen to a trajectory in R?

1. it diverges (explodes out of bounds)
2. it approaches an equilibrium point

Poincaré Theorem
3. it approaches a periodic orbit

~limit set

z*-limit set



Theorem [Bendixson]: Suppose D c R? is simply connected and

div f:=0f,/0x, + 0f,/0x, has a constant (+/-) sign on D. Then there does
not exist a periodic orbit entirely lying in D.

Example: investigate whether the system

dx,/dt = —x, — x;(x> + x,2— 1)

has a periodic orbit in the region D

_ 2. L}
(A) D—{xEIR%.IIxII<\/E
(B) D ={xeR? |x|| <2}

Note: f, and f, are continuously differentiable.

div =200 428 o (62452 —1)—2x2 — (6% +x2 —1) — 2x2 = —4(x12+x§—1)
axl 6x2




_ 2, 1] _ 2. [2 2 1] _ 2. .2 2 1
(A) D—{xEIR.||x||<ﬁ}—{xEIR{.\/x1+x2<\/§}—{xE]R.x1+x2 <2}
Thus, on D we have: x# + x2 —§< 0. Since div f = —4 (xlz + x2 —%), on D we
have: div f > 0

Conclusion: There is no periodic orbit entirely lying in D.
(B) D={xeR%|xll<2}={xeR%/x}+2 <4

Since div f

2 L .2 —
Vxi{+ x5 =

Conclusion: div f changes the sign on D, therefore, there could be a periodic
orbit entirely lying in D.

—4 (xlz + x2 —%), div f changes the sign when x# + x% = % or

§-|H Il

To test this hypothesis, we switch to polar coordinates.



Polar coordinates: x; = p cos(@),x, = psin(p) X5

X1 = pcos(p) — psin(@)@
Xz = psin(p) + p cos(p)¢

p sin(p)

sin(p)  pcos(e)

[M] _ [COS(fp) —p sin(w)] [P]
X2 @

Pl _ [Cos(<p) —p sin(<p)]_1 [xll
@] Lsin(p) pcos(p) X7

Pl _ 1 [pCOS(cp) psin(cp)] [xll
@] pcost(e)+psin?(p) [—sin(p)  cos(p) |1x;

Pl _1 [p cos(p) p sin(cp)] [—p sin(¢) — p cos(@) (p* cos?(@) + p*sin®(p) — 1)
¢l pl=sin(p) cos(e) 1| pcos(p) — psin(p) (p? cos?(p) + p®sin®(p) — 1)

[P] _ [p cos(p) p Sin(<p)] l— sin(¢) — cos(p) (p* — 1)
¢l 1-sin(p) cos(p) || cos(p) — sin(p) (p? — 1)



[ﬂ] _ [p cos(p) p Sin(sv)] [— sin(p) — cos(¢) (p? — 1)
ol = l=sin(@) cos(e) || cos(p) - sin(p) (p? — 1)

—p cos(@) sin(g) — p cos?(@) (p? — 1) + psin(e) cos(p) — psin?(p)(p* — 1)

Pl _
¢l sin(¢) + sin(¢) cos(p) (p? — 1) + cos*(¢) — sin(g) cos(¢) (p* — 1)
Pl = [-p(p* - 1)]
ol Tl 1
p=p-p?)
¢ =1

_ 2. 1] _ : 1
(A) D—{xEIR.IIx||<ﬁ}— pZO,qu[O,Zﬂ].p<ﬁ}
(B) D={x€eR? |x[|<2}={p=0,¢0 €[0,2r]:p < 2}




Theorem [Poincare-Bendixson]: Suppose that:

(1) DcR? is a closed and bounded set

(2) dx(t)/dt = f(x(t)) is a continuously differentiable vector field on an
open set SoD

(3) There are no equilibrium points in D.

(4) There exists a trajectory that is confined to D, meaning if it starts in D
it remains in D for all future times.

Then, either the trajectory is a closed orbit or its limit set is a closed orbit.

Example: use Poincaré-Bendixson Theorem to investigate whether the
system:
dp
— = p(1 — p?
7t ) p(1—p®)
P
— =1
dt

has a limit cycle on D, where

A D={p=0pe[02n]:l—c<p<l+e 0<e<1)
B) D={p=0,0p€[0,2n]:1+ec<p<2} 8



1) Dis closed and bounded in both (A) and (B)

2) f, and f, are continuously differentiable on any open set oD

3) There are no equilibrium points in D.

% =p(1-p?)
do B
— =

. Equilibria: p=0=>p(1—-p?)=0=

p*=0lor(p* =1

Since ¢ # 0, only p* = 0 is an equilibrium. Note p* =0 =

*
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Example: glycolysis equation:
X1
X7

—x;, + ax, + x2x,
b —ax, — x?x,

ab >0

Note: x;,x, > 0 (since they are
concentrations)

o)
Nullclines:
J'Cl= 0
x,(a+ x2) = x;
X1

x = —
2 (a + x%)

Peak at: x; =0=>a+xf—2x7 =0>x, =+a
Second nullcline:

X'Z: 0

x,(a+x%)=b T2
b

x = —
2 (a + x%)

Peak at: x; = 0= —2bx,

el - b
Equilibrium: x{ = b, x5 =

ar0.5/(2*a)

ar0.5/(2%a)

b/a+b

b/a

O 1 1
0 a”0.5 b

b/a+b
1



How to find the trapping region D?

When
When X1 = O,X1 = axz,xz =b — ax-

Thus, it makes sense that x; =0
and x, = 0 are borders of D.

b . b
When x, = -, &, = —x%;

Therefore, x, < 0, and it can also be
shown that x; > 0

When x; = b, we have:
: b3 . b3
X1 =X2=—

(the slope of the vector field is -1, i.e.

the angle is -45° at point (b,b/a)
In general, for large values of x; we
X~ x2x,

Xy & —xfxz

have that :

batb T T

b/a

ar0.5/(2%a)f A~

b/a+b

b/a

2

ar0.5/(2a) -

0 .
0 a*05 b b/a+b
T



b/a+b

From the point (b,b/a) we move while
following the vector field (slope =-1). oa
The equation of this line is:

x, = —x; + n, and to find the
intercept, we note that the line

passes through the point (b,b/a), i.e
b

)

a

All we now have to do is to show that
along this line, the vector field points
toward the suspected region D. b/a+b

From the dynamlcs b/a

X1 = —X1+ ax, +x1x2 >0
\ J

|
>0 L2
xzzb—axz—x%xzzb—a<0

Therefore, if x; > b (until dashed line ool

intersects the blue nullcline), we
have: x| < |x,|
(e.g9. x4 =|b—a| —¢)

. b : : :
—=-b +Tl, l.e. n = Z‘l‘ b ar0.5/(2%a)f R s S

0 : -
0 a*0.5 b b/a+b

0 ' : - .
0 a"0.5 b '\\ b/a+b

'rl SO S



Zoom in on the circle and draw a vertical N
line straight from the intersection of the .
dashed line and blue nullcline.

Due to the smoothness of the vector field, T
the trajectories keep pointing inward. P .
Can we conclude that the region D (shaded) T
is a trapping region? E \\
bla+b - I ..... ’ ..................................................... r_ E \\\
L ‘ 0 bla+b
bia I

L2

an0.5/(2*a) [ o~

0 :
0a*0.5b

Not yet! We need to cut the
equilibrium out and prove that it
is some sort of repeller (unstable
equilibrium).

13



Linearize the system:
X, = —x1 + ax, + x%x,
X, = b —ax, — x¥x,

The Jacobian matrix is:

—1 + 2x4x a + x?
Df(x) = 1 o
—2X1X —(a + x;
At equilibrium point:
) 2
—l+2——5 a + b?
D = A =
f<b'a+b2> 4 , b? 2
“a+ b2 —(la+ )-
Note that:
det(4) = A=a+b? >0
_ b2 2
tr(A)_A;T_ 1+2a2+b2 2(a+b)
b*+ (2a — 1)b* + (a* + a
() =7 = — ( ) ( )

a + b2

Hence, the equilibrium is unstable if 7> 0 and stable if t < 0. The division
1-2a+vV1-8a

2 14

lineist =0, i.e. b?* =
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