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Poincaré-Bendixson Theory

𝑑𝑥 𝑡

𝑑𝑡
= 𝑓 𝑥 𝑡 𝑥ℝ2

(2nd order system)

Assume 𝑓(𝑥) is continuously differentiable throughout this lecture.

Historical perspective:

1. Poincaré [late 19
th

century]

2. Bendixson [1901] – more rigorous result

Theorem [Poincaré]: Let 𝛾:= {𝑥(𝑡; 𝑥0), 𝑡 ≥ 0} be a bounded (semi)orbit, and

let Ω be its limit set (set of all accumulation points of 𝑥(𝑡; 𝑥0) as 𝑡 → ∞).

Then, Ω either contains an equilibrium point or Ω is a periodic orbit.
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Accumulation point: If every open neighborhood 

𝐵(𝑥, 𝜀) of 𝑥 contains infinitely many points of 𝒜, 

then 𝑥 is called an accumulation point of 𝒜. 

Note: 𝑥 does not need to belong to 𝒜. 

Example:

𝒜 = 1 −
1

𝑛
, 𝑛 ∈ ℕ = 0,

1

2
,
2

3
,
3

4
,
4

5
, ⋯

Thus, 𝑥 = lim
𝑛→∞

1 −
1

𝑛
= 1 is an accumulation 

point of 𝒜, but 𝑥 ∉ 𝒜.

For an orbit 𝛾:= {𝑥(𝑡; 𝑥0), 𝑡 ≥ 0}, we call a point

𝑥 an accumulation point if there exists a sequence

{𝑡𝑛, 𝑛 ∈ ℕ} such that 

lim
𝑛→∞

𝑡𝑛 = ∞

lim
𝑛→∞

𝑥 𝑡𝑛; 𝑥0 = 𝑥

𝑥

ε > 0

𝒜

0 1

2

3

4
𝑥 = 1

𝑥(𝑡; 𝑥0)

𝑥0

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5
𝑡6

𝑡7
𝑡8

𝑡9

𝑡𝑛𝑥
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The theorem is a lot simpler than it appears.

Basically, 3 things can happen to a trajectory in ℝ2

1. it diverges (explodes out of bounds)

2. it approaches an equilibrium point

3. it approaches a periodic orbit

Poincaré Theorem

𝑥0

𝑥0

𝑥0

𝑥0

𝑥0
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Theorem [Bendixson]: Suppose 𝒟  ℝ2
is simply connected and

𝑑𝑖𝑣 𝑓:= 𝜕𝑓1/𝜕𝑥1+ 𝜕𝑓2/𝜕𝑥2 has a constant (+/-) sign on 𝒟. Then there does

not exist a periodic orbit entirely lying in 𝒟.

Example: investigate whether the system

𝑑𝑥1/𝑑𝑡 = −𝑥2− 𝑥1(𝑥1
2 + 𝑥2

2− 1)
𝑑𝑥2/𝑑𝑡 = 𝑥1− 𝑥2(𝑥1

2 + 𝑥2
2− 1)

has a periodic orbit in the region 𝒟

Note:  𝑓1 and  𝑓2 are continuously differentiable.

𝑑𝑖𝑣 𝑓 =
𝜕𝑓1

𝜕𝑥1
+

𝜕𝑓2

𝜕𝑥2
= − 𝑥1

2 + 𝑥2
2 − 1 − 2𝑥1

2 − 𝑥1
2 + 𝑥2

2 − 1 − 2𝑥2
2 = −4 𝑥1

2 + 𝑥2
2 −

1

2

A 𝒟 = 𝑥 ∈ ℝ2: 𝑥 <
1

2
B 𝒟 = 𝑥 ∈ ℝ2: 𝑥 < 2
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Thus, on 𝒟 we have: 𝑥1
2 + 𝑥2

2 −
1

2
< 0. Since 𝑑𝑖𝑣 𝑓 = −4 𝑥1

2 + 𝑥2
2 −

1

2
, on 𝒟 we 

have: 𝑑𝑖𝑣 𝑓 > 0

Conclusion: There is no periodic orbit entirely lying in 𝒟.

B 𝒟 = 𝑥 ∈ ℝ2: 𝑥 < 2 = 𝑥 ∈ ℝ2: 𝑥1
2 + 𝑥2

2 < 4

Since 𝑑𝑖𝑣 𝑓 = −4 𝑥1
2 + 𝑥2

2 −
1

2
, 𝑑𝑖𝑣 𝑓 changes the sign when 𝑥1

2 + 𝑥2
2 =

1

2
or 

𝑥1
2 + 𝑥2

2 =
1

2
. 

Conclusion: 𝑑𝑖𝑣 𝑓 changes the sign on 𝒟, therefore, there could be a periodic

orbit entirely lying in 𝒟.  

To test this hypothesis, we switch to polar coordinates.

A 𝒟 = 𝑥 ∈ ℝ2: 𝑥 <
1

2
= 𝑥 ∈ ℝ2: 𝑥1

2 + 𝑥2
2 <

1

2
= 𝑥 ∈ ℝ2: 𝑥1

2 + 𝑥2
2 <

1

2
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𝑑𝑥1/𝑑𝑡 = −𝑥2− 𝑥1(𝑥1
2 + 𝑥2

2− 1)
𝑑𝑥2/𝑑𝑡 = 𝑥1− 𝑥2(𝑥1

2 + 𝑥2
2− 1)

Polar coordinates: 𝑥1 = 𝜌 cos 𝜑 , 𝑥2 = 𝜌 sin 𝜑

ሶ𝑥1 = ሶ𝜌 cos 𝜑 − 𝜌 sin 𝜑 ሶ𝜑
ሶ𝑥2 = ሶ𝜌 sin 𝜑 + 𝜌 cos 𝜑 ሶ𝜑

ሶ𝑥1
ሶ𝑥2

=
cos 𝜑 −𝜌 sin 𝜑

sin 𝜑 𝜌 cos 𝜑

ሶ𝜌
ሶ𝜑

ሶ𝜌
ሶ𝜑
=

cos 𝜑 −𝜌 sin 𝜑

sin 𝜑 𝜌 cos 𝜑

−1
ሶ𝑥1
ሶ𝑥2

ሶ𝜌
ሶ𝜑
=

1

𝜌 cos2 𝜑 +𝜌 sin2 𝜑

𝜌 cos 𝜑 𝜌 sin 𝜑

− sin 𝜑 cos 𝜑

ሶ𝑥1
ሶ𝑥2

ሶ𝜌
ሶ𝜑
=

1

𝜌

𝜌 cos 𝜑 𝜌 sin 𝜑

− sin 𝜑 cos 𝜑

−𝜌 sin 𝜑 − 𝜌 cos 𝜑 (𝜌2 cos2 𝜑 +𝜌2 sin2 𝜑 − 1)

𝜌 cos 𝜑 − 𝜌 sin 𝜑 (𝜌2 cos2 𝜑 +𝜌2 sin2 𝜑 − 1)

ሶ𝜌
ሶ𝜑
=

𝜌 cos 𝜑 𝜌 sin 𝜑

− sin 𝜑 cos 𝜑

− sin 𝜑 − cos 𝜑 (𝜌2 − 1)

cos 𝜑 − sin 𝜑 (𝜌2 − 1)

𝑥1

𝑥2

𝜌

𝜑

𝜌 cos 𝜑

𝜌
si
n
𝜑



7

ሶ𝜌
ሶ𝜑
=

𝜌 cos 𝜑 𝜌 sin 𝜑

− sin 𝜑 cos 𝜑

− sin 𝜑 − cos 𝜑 (𝜌2 − 1)

cos 𝜑 − sin 𝜑 (𝜌2 − 1)

ሶ𝜌
ሶ𝜑
=

−𝜌 cos 𝜑 sin 𝜑 − 𝜌 cos2(𝜑) (𝜌2 − 1) + 𝜌 sin 𝜑 cos 𝜑 − 𝜌 sin2 𝜑 𝜌2 − 1

sin2 𝜑 + sin 𝜑 cos 𝜑 𝜌2 − 1 + cos2 𝜑 − sin 𝜑 cos 𝜑 (𝜌2 − 1)

ሶ𝜌
ሶ𝜑
= −𝜌 𝜌2 − 1

1

ሶ𝜌 = 𝜌 1 − 𝜌2

ሶ𝜑 = 1

A 𝒟 = 𝑥 ∈ ℝ2: 𝑥 <
1

2
= 𝜌 ≥ 0, 𝜑 ∈ 0, 2𝜋 : 𝜌 <

1

2

B 𝒟 = 𝑥 ∈ ℝ2: 𝑥 < 2 = 𝜌 ≥ 0, 𝜑 ∈ 0, 2𝜋 : 𝜌 < 2
𝑥2

𝑥1
1

-1

1

-1

𝜌 = 1; ሶ𝜌 = 0

ሶ𝜌 > 0

ሶ𝜌 < 0
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Theorem [Poincare-Bendixson]: Suppose that: 

(1) 𝒟  ℝ2
is a closed and bounded set

(2) 𝑑𝑥(𝑡)/𝑑𝑡 = 𝑓(𝑥(𝑡)) is a continuously differentiable vector field on an 

open set  𝑆  𝒟
(3) There are no equilibrium points in 𝒟. 

(4) There exists a trajectory that is confined to 𝒟, meaning if it starts in 𝒟
it remains in 𝒟 for all future times. 

Then, either the trajectory is a closed orbit or its limit set is a closed orbit.

Example: use Poincaré-Bendixson Theorem to investigate whether the

system:

𝑑𝜌

𝑑𝑡
= 𝜌 1 − 𝜌2

𝑑𝜑

𝑑𝑡
= −1

A 𝒟 = 𝜌 ≥ 0, 𝜑 ∈ [0, 2𝜋]: 1 − 𝜀 ≤ 𝜌 ≤ 1 + 𝜀, 0 < 𝜀 < 1
B 𝒟 = 𝜌 ≥ 0, 𝜑 ∈ [0, 2𝜋]: 1 + 𝜀 ≤ 𝜌 ≤ 2

has a limit cycle on 𝒟, where



1) 𝒟 is closed and bounded in both (A) and (B)

2) 𝑓𝜌 and 𝑓𝜑 are continuously differentiable on any open set  𝑆  𝒟

3) There are no equilibrium points in 𝒟.

Equilibria: ሶ𝜌 = 0 ⇒ 𝜌 1 − 𝜌2 = 0 ⇒ 𝜌∗ = 0 or 𝜌∗ = 1

Since ሶ𝜑 ≠ 0, only 𝜌∗ = 0 is an equilibrium. Note 𝜌∗ = 0 ⇒ 𝑥1
∗ = 𝑥2

∗ = 0

9

ሶ𝜌 ቚ
1−𝜀

> 0

ሶ𝜌 ቚ
1+𝜀

< 0

(A)

𝑥1

𝑥2

𝟏 + 𝜺−𝟏 − 𝜺

−𝟏 − 𝜺

𝟏 + 𝜺

𝟏 − 𝜺

−𝟏 + 𝜺

𝑑𝜌

𝑑𝑡
= 𝜌 1 − 𝜌2

𝑑𝜑

𝑑𝑡
= −1

𝑥1

𝑥2

𝟏 + 𝜺−𝟏 − 𝜺

−𝟏 − 𝜺

𝟏 + 𝜺

𝒟 is a trapping region

𝟐

𝟐

−𝟐

−𝟐
𝟏 − 𝜺−𝟏 + 𝜺

𝒟 is not a
trapping
region

(B)



Note: 𝑥1, 𝑥2 > 0 (since they are 

concentrations)

Nullclines: 

ሶ𝑥1= 0
𝑥2 𝑎 + 𝑥1

2 = 𝑥1

𝑥2 =
𝑥1

𝑎 + 𝑥1
2

Peak at: 𝑥2
′ = 0 ⇒ 𝑎 + 𝑥1

2 − 2𝑥1
2 = 0 ⇒ 𝑥1 = 𝑎

Second nullcline: 

ሶ𝑥2= 0
𝑥2 𝑎 + 𝑥1

2 = 𝑏

𝑥2 =
𝑏

𝑎 + 𝑥1
2

Peak at: 𝑥2
′ = 0 ⇒ −2𝑏𝑥1 = 0 ⇒ 𝑥1 = 0

Equilibrium: 𝑥1
∗ = 𝑏, 𝑥2

∗ =
𝑏

𝑎+𝑏2

Example: glycolysis equation: 

ሶ𝑥1 = −𝑥1 + 𝑎𝑥2 + 𝑥1
2𝑥2

ሶ𝑥2 = 𝑏 − 𝑎𝑥2 − 𝑥1
2𝑥2 𝑎, 𝑏 > 0

ሶ𝑥1= 0

ሶ𝑥2= 0
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How to find the trapping region 𝒟?

When 𝒙𝟐 = 𝟎, ሶ𝒙𝟏 = −𝒙𝟏, ሶ𝒙𝟐 = 𝒃

When 𝒙𝟏 = 𝟎, ሶ𝒙𝟏 = 𝒂𝒙𝟐, ሶ𝒙𝟐 = 𝒃 − 𝒂𝒙𝟐

Thus, it makes sense that 𝑥1 = 0
and 𝑥2 = 0 are borders of 𝒟.

When 𝒙𝟐 =
𝒃

𝒂
, ሶ𝒙𝟐 = −𝒙𝟏

𝟐 𝒃

𝒂

Therefore, ሶ𝒙𝟐 < 𝟎, and it can also be 

shown that ሶ𝒙𝟏 > 𝟎

When 𝒙𝟏 = 𝒃, we have: 

ሶ𝒙𝟏 =
𝒃𝟑

𝒂
, ሶ𝒙𝟐 = −

𝒃𝟑

𝒂

(the slope of the vector field is -1, i.e. 

the angle is -45
o

at point (𝒃, 𝒃/𝒂)
In general, for large values of 𝑥1 we 

have that : 
ሶ𝑥1 ≈ 𝑥1

2𝑥2
ሶ𝑥2 ≈ −𝑥1

2𝑥2
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From the point (b,b/a) we move while 

following the vector field (slope =-1). 

The equation of this line is:

𝑥2 = −𝑥1 + 𝑛, and to find the 

intercept, we note that the line 

passes through the point (b,b/a), i.e. 

𝑏

𝑎
= −𝑏 + 𝑛, i.e. 𝑛 =

𝑏

𝑎
+ 𝑏

All we now have to do is to show that 

along this line, the vector field points 

toward the suspected region 𝒟.

From the dynamics:

ሶ𝒙𝟏 = −𝒙𝟏 + 𝒂𝒙𝟐 + 𝒙𝟏
𝟐𝒙𝟐 > 𝟎

α>0

ሶ𝒙𝟐 = 𝒃 − 𝒂𝒙𝟐 − 𝒙𝟏
𝟐𝒙𝟐 = 𝒃 − 𝜶 < 𝟎

Therefore, if  𝑥1 > 𝑏 (until dashed line 

intersects the blue nullcline), we 

have: ሶ𝒙𝟏 < ሶ𝒙𝟐
(e.g. ሶ𝒙𝟏 = 𝒃 − 𝜶 − 𝜺 )



13

Zoom in on the circle and draw a vertical

line straight from the intersection of the

dashed line and blue nullcline.

Due to the smoothness of the vector field,

the trajectories keep pointing inward.

Can we conclude that the region 𝒟 (shaded)

is a trapping region?

Not yet! We need to cut the

equilibrium out and prove that it

is some sort of repeller (unstable

equilibrium).
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Linearize the system:

ሶ𝑥1 = −𝑥1 + 𝑎𝑥2 + 𝑥1
2𝑥2

ሶ𝑥2 = 𝑏 − 𝑎𝑥2 − 𝑥1
2𝑥2

The Jacobian matrix is:

𝐷𝑓 𝑥 =
−1 + 2𝑥1𝑥2 𝑎 + 𝑥1

2

−2𝑥1𝑥2 − 𝑎 + 𝑥1
2

At equilibrium point:

𝐷𝑓 𝑏,
𝑏

𝑎 + 𝑏2
= 𝐴 =

−1 + 2
𝑏2

𝑎 + 𝑏2
𝑎 + 𝑏2

−2
𝑏2

𝑎 + 𝑏2
− 𝑎 + 𝑏2

Note that:

det 𝐴 = ∆= 𝑎 + 𝑏2 > 0

tr 𝐴 = 𝜏 = −1 + 2
𝑏2

𝑎+𝑏2
− 𝑎 + 𝑏2

tr 𝐴 = 𝜏 = −
𝑏4 + 2𝑎 − 1 𝑏2 + (𝑎2 + 𝑎)

𝑎 + 𝑏2

Hence, the equilibrium is unstable if 𝜏 > 0 and stable if 𝜏 < 0. The division

line is 𝜏 = 0, i.e. 𝑏2 =
1−2𝑎± 1−8𝑎

2



15


