

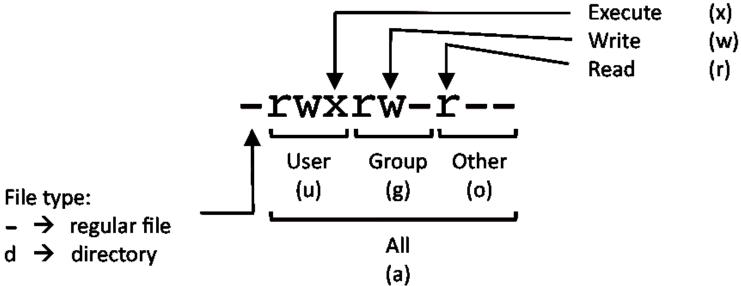
Real-world examples

- Single machine
 - Unix/Linux permission bits
 - SELinux
- Mobile device
 - Android
- Organization assets
 - Active Directory

DAC & MAC

• Discretionary Access Control (DAC):

- Provides access based on identity of the user
- A subject with a certain access permission is capable of *passing* that permission (perhaps indirectly) on to any other subject.
- Example: Unix user-group-other permission bits
- Anyone with access can propagate information
- Mandatory Access Control (MAC):
 - Admins creates a set of levels and each user is linked with a specific access level. He/she can access all the resources that are not greater than his/her access level.



Unix/Linux permission bits (DAC)

total 52							
drwxr-xr-x	2	sssit	4096	May	18	11:54	Desktop
drwx	4	sssit	4096	May	18	11:20	Disk1
drwxr-xr-x	2	sssit	4096	May	18	12:59	Documents
drwxr-xr-x	3	sssit	4096	May	11	17:55	Downloads
- FW- F F	1	sssit	8445	May	12	04:23	examples.desktop
drwxr-xr-x	2	sssit	4096	May	12	04:27	Music
drwxr-xr-x	2	sssit	4096	May	18	12:55	Pictures
drwxr-xr-x	2	sssit	4096	May	12	04:27	Public
drwxr-xr-x	2	sssit	4096	May	12	04:27	Templates
drwxrwxr-x	2	sssit	4096	May	18	09:47	Untitled Folde
drwxr-xr-x	2	sssit	4096	May	12	04:27	Videos
sssit@Java	Тро	bint:~S					

• Run Is -I in Linux

SELinux (MAC)

- Security-Enhanced Linux (SELinux) is an implementation of MAC in the Linux kernel, checking for allowed operations after DAC is checked.
 - Idea traced back to NSA project, GNU GPL in 2000
 - Enabled by default in Red Hat Enterprise Linux
- SELinux depends upon labels to match actions and policies.
 - Labels determine what is allowed.
 - Sockets, files, and processes all have labels.
 - SELinux decisions are based on labels assigned to these objects and the policy defining how they may interact.
- SELinux users and roles do not have to be related to the actual system users and roles
 - most of the real users share the same SELinux username

SELinux (Cond.)

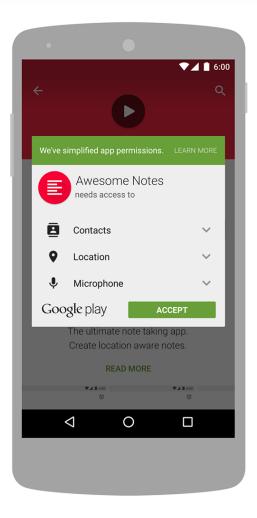
- SELinux Label
 - user:role:type:mls_level

~]# ls -lZ /etc/file1
-rw-r--r-. root root unconfined_u:object_r:etc_t:s0 /etc/file1

- SELinux Policy
 - allow domains types:classes permissions;
 - *Domain* A label for the process or set of processes
 - Type A label for the object (e.g. file, socket) or set of objects.
 - Class The kind of object (e.g. file, socket) being accessed.
 - Permission The operation (e.g. read, write) being performed.

allow domain null_device:chr_file { open };

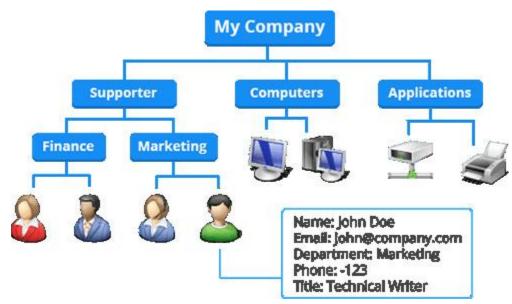
SELinux Administration													
ile <u>H</u> elp													
Select: Status	🛉 🧳 Add Propert	ies Delete											
Boolean File Labeling	Filter dirsrv												
User Mapping SELinux User	File Specification	Modify	Selinux		File Type								
Translation	/etc/dirsrv(/.*) /usr/lib/dirsrv(/.*)			_config_t:s0 _lib_t:s0	all files all files								
Policy Module	/var/run/dirsrv(/.*)	File Type	all files 🔶	_var_run_t:s0 _var_log_t:s0 _var_lib_t:s0 _var_lock_t:si) all files								
	/var/log/dirsrv(/.*) /var/lib/dirsrv(/.*) /var/lock/dirsrv(/.*)	SELinux Type MLS	dirsrv_var_run_t		all files								
	/usr/share/dirsrv(/.* /var/run/ldap-agent		Cancel	_share_t:s0 _snmp_var_r									
	/var/log/dirsrv/ldap-agent.log system_u:object_r:dirsrv_snmp_var_lc all files												


Configure file label

R

Android access control

- Each app runs in its own sandbox.
 - A unique Linux UID assigned for each app when installation
 - DAC is enforced: permission bits
 - Permissions are granted by user at install-time/run-time
- SELinux mode adopted by Android (since 4.3)
 - Permissive mode, in which permission denials are logged but not enforced.
 - *Enforcing* mode, in which permissions denials are both logged **and** enforced.
- Android 4.3: permissive => Android 4.4: partial enforcement => Android 5.5: everything enforcement



Install-time permissions

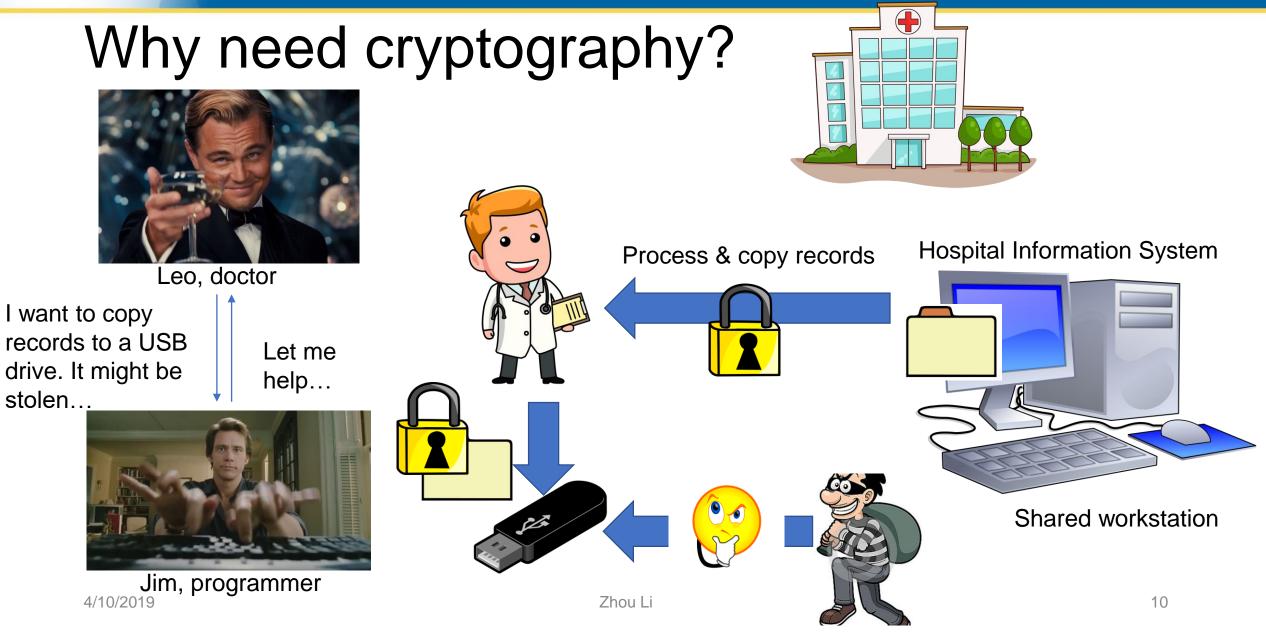
Active Directory

- Active Directory (AD) is a directory service that Microsoft developed for the Windows domain networks.
- Domain controller
 - Authentication and authorization

Zhou Li

Summary

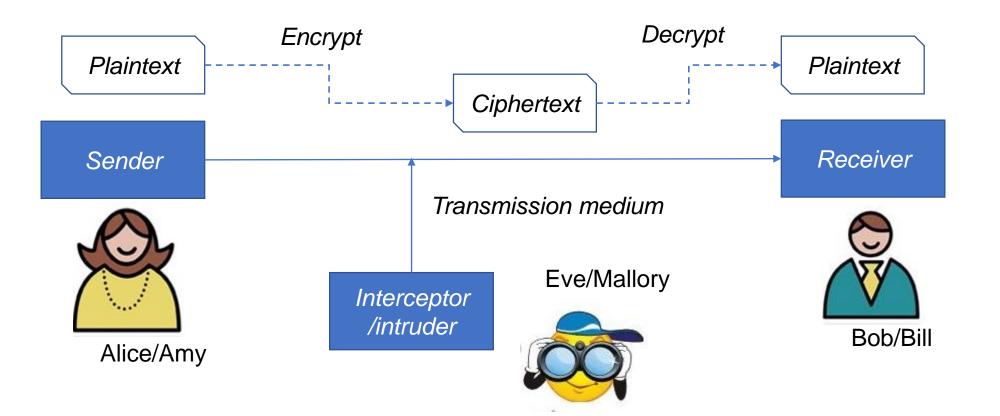
- Goal of access control
 - Limiting who can access what in what ways
- Access control components
 - Reference monitor
 - Policy storage: access control directory/matrix/list
- Optimizations
 - Capability, RBAC
- Real-world examples
 - Linux permission bits, SELinux, Android, Active Directory


Cryptography (basics)

EECS 195

Spring 2019

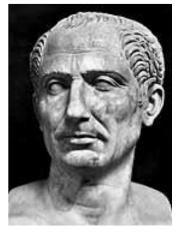
Zhou Li



Adversary model

- Suppose a sender wants to send a message to a recipient. An attacker may attempt to
 - Block the message
 - Intercept the message
 - Modify the message
 - Fabricate an authentic-looking alternate message

Terminology

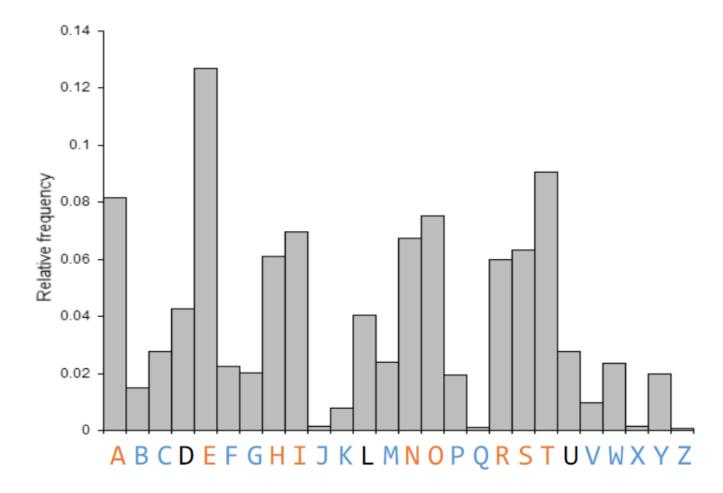

"Ancient Crypto": Substitution ciphers

- Caesar cipher shifts letters with a constant of K
 - Encryption: **ci** := (**pi** + **k**) mod 26
 - Decryption: pi := (ci k) mod 26
- "TREATY IMPOSSIBLE" -> "wuhdwb lpsrvvleoh"
- Pros: Easy to remember and use
- Cons: obvious patterns in ciphertext
 - Ciphertext is deterministic: same plaintext always gives the same ciphertext

vjku oguucig ku pqv vqq jctf vq dtgcm

too to this message is not too hard to break

Julius Caesar used caesar cipher to communicate with his generals 2100 years ago



Caesar Cipher Cryptanalysis

• Simple substitution ciphers don't alter symbol frequency

"Modern Crypto": Secret key

- E, D: encryption, decryption algorithm
- K: secret key (e.g. 128 bits)
- M, C: plaintext, ciphertext
- Alice encrypts her message M using K
 - C = E(M, K)
- Alice gives K' to Bob (sometimes K=K')
- Only Bob can decrypt the message C
 - M = D(C, K')

Secret key

• K=K'?

Symmetric (secret) key encryption

- The keys for encryption and decryption are the same.
- Communicating parties must have the same key before communication

Asymmetric (public) key encryption

- Public key is published for anyone to encrypt a message
- Only authorized parties have the private key to decrypt the message

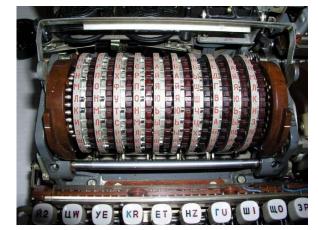
Encryption algorithm

- Rule #1: Use public known encryption algorithm
 - *Never* use a proprietary cipher!
- Encryption strength depends on key length
- Algorithms
 - One-time pad (OTP)
 - Stream Cipher using PRG
 - Block Cipher (AES, DES, RC4, ...)
 - Asymmetric: RSA, Elliptic Curve

Cryptographic primitives

- Goal: robust against cryptanalysis
- Substitution and transposition
 - Substitution: one set of bits is exchanged for another
 - Transposition: rearranging ciphertext order to break any repeating patterns in the underlying plaintext.
- Confusion and diffusion
 - Confusion: algorithm to reduce the predictability of ciphertext when changing one character in plaintext
 - Diffusion: spread the information from the plaintext over the entire ciphertext

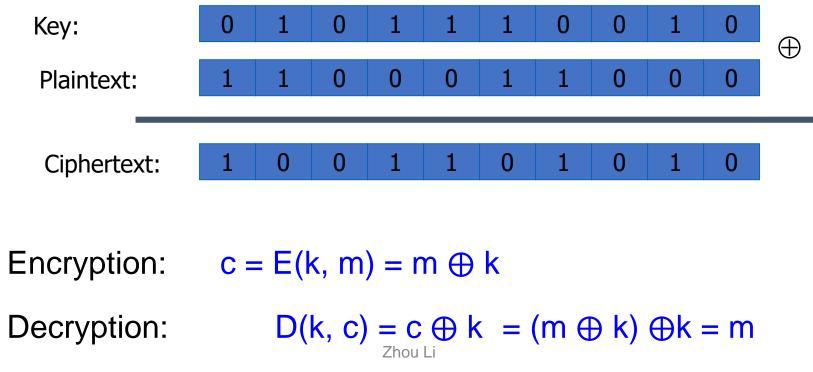
Shannon's characteristics of good ciphers


- 1. The amount of secrecy needed should determine the amount of labor appropriate for the encryption and decryption
- 2. The set of keys and the enciphering algorithm should be free from complexity
- 3. The implementation of the process should be as simple as possible
- 4. Errors in ciphering should not propagate and cause corruption of further information in the message
- 5. The size of the enciphered text should be no larger than the text of the original message

Cryptanalysis

- Goal: test/break an encryption algorithm/message
- Cryptanalysis is successful if the work force is reasonable
 - Work force: amount of efforts, like time
- Conditions of cryptanalysis
 - Cipher-text only
 - Known-plaintext (know both plaintext and ciphertext)
 - Chosen-plaintext (can select prepared plaintext and see ciphertext)
 - Chosen-ciphertext (chosen-plaintext & select ciphertext and see plaintext)
- Human fallibility and software/hardware implementation bugs also lead to code breaking!

Cryptography Engineering, Ferguson et al.



Fialka cipher machine

Stream Cipher: One Time Pad (OTP)

- Stream ciphers encrypt one bit or one byte at a time
- Gilbert S. Vernam (1917)
- OTP: Key is only used to encrypt one message

