

Cryptographic checksum

- A function that produces a checksum (smaller than message)
 - A digest function using a key only known to sender and recipient
 - Ensure both integrity and authenticity
 - Used for code-tamper protection and message-integrity protection in transit
 - The choices of hashing algorithms are Message Digest (MD) by Ron Rivest of RSA Labs or Secure Hash Algorithm (SHA) led by US government
 - MD: MD4, MD5; SHA: SHA1, SHA2, SHA3

Constructing cryptographic checksum

- HMAC (Hash Message Authentication Code)
- Problem to solve: how to merge key with hash

H: hash function; k: key; m: message;

example of H: SHA-2-256 ; output is 256 bits

Building a MAC out of a hash function:

Paddings to make fixed-size block

$$\operatorname{HMAC}(K,m) = \operatorname{H}\left(\begin{pmatrix} K' \oplus opad \end{pmatrix} || \operatorname{H}\left((K' \oplus ipad) || m \end{pmatrix}
ight)$$

 $K' = \begin{cases} \operatorname{H}(K) & K \text{ is larger than block size} \\ K & \text{otherwise} \end{cases}$

https://en.wikipedia.org/wiki/HMAC

Cryptoanalysis on crypto checksums

- MD5 broken by Xiaoyun Wang et al. at 2004
 - Collisions of full MD5 less than 1 hour on IBM p690 cluster
- SHA-1 theoretically broken by Xiaoyun Wang et al. at 2005
 - 2⁶⁹ steps (<< 2⁸⁰ rounds) to find a collision
- SHA-1 practically broken by Google at 2017
 - First collision found with 6500 CPU years and 100 GPU years

Input				Output	
Algorithm	Maximum Message Size (bits)	Block Size (bits)	Rounds	Message Digest Size (bits)	
MD5	264	512	64	128	
SHA-1	264	512	80	160	
SHA-2-224	264	512	64	224	
SHA-2-256	264	512	64	256	
SHA-2-384	2 ¹²⁸	1024	80	384	
SHA-2-512	2128	1024	80	512	
SHA-3-256	unlimited	1088	24	256	
SHA-3-512	unlimited	576	24	512	

Current Secure Hash Standard Properties

Elliptic Curve Cryptography

- RSA algorithm is patented
- Alternative asymmetric cryptography: Elliptic Curve Cryptography (ECC)
 - The general algorithm is in the public domain
 - ECC can provide similar security to RSA using a shorter key length
 - Mainly used for key exchange and digital signature
 - Satisfying group properties in mathematics (closure, associativity, identify element, inverse)
 - Public key: Q = d*P (d is private key, P is a point on curve)
 - Encryption: $C_1 = k^*P$, $C_2 = M + k^*Q$
 - Decryption: $M = C_2 d^*C_1$

Simple elliptic curve

To learn more about cryptography

Zhou Li

Public Key Infrastructure (PKI) EECS 195 Spring 2019

Zhou Li

Summary of cryptographic basics

- Goal: secured message transmission
- What can be achieved?
 - Message confidentiality: symmetric encryption
 - Key management: asymmetric encryption
 - Message integrity: cryptographic checksum
- What's still missing?
 - Trust of sender/receiver identity!
 - E.g., given a public key of Microsoft, how do you know it's from Microsoft?
 - A trusted 3rd-party can "vouch for" is needed

8

Trust based on respected individual

- Question: how can Ann verifies Andrew work in the same company?
- Solution: Ann asks Bill asks Camilla asks Betty and gets response
 - Key exchange between Ann and Andrew: Betty attaches a 632a statement ("I know Andrew") to a Andrew's key and pass on

Scale it up

- Problem: how to scale up the procedure for a large org (100K+ people)?
 - President: Edward
 - Division Manager: Diana, ...
 - Department Manager: Delwyn, ...
 - Project Manager: Mukesh, ...
 - Group Leader: Camilla, ...
 - Task Leader: Bill, ...
 - Worker: Andrew, ...

Zhou Li

Trust based on respected individual (cond.)

- Problem 1: what if one person is not available sometime?
 - Andrew asks for his complete chain of 632a forms from president to him
 - Andrew gets signatures any time his superiors are available
 - Andrew gives a copy of 632a forms and his key to Ann
- Problem 2: what if one person (e.g., president) is never available?
 - President (Edward): "I attest the identity of my division manager (Diana) and I trust he/she to attest her subordinates"
 - Diana copies delegation letters
 - Andrew and Ann compare package of letters
 - Key exchange can happen when president is the same

Digital Certificate and CA

- Digital Certificate: trustable identity bounded with public key
- CA (Certificate Authority): trusted 3rd-party service certifying binding

To create Diana's certificate:

Diana creates and delivers to Edward:

Name: Diana Position: Division Manager Public key: 17EF83CA ...

Edward adds:

Name: Diana	hash value
Position: Division Manager	128C4
Public key: 17EF83CA	

Edward signs with his private key:

Name: Diana	hash value
Position: Division Manager	128C4
Public key: 17EF83CA	

Which is Diana's certificate.

To create Delwyn's certificate:

Delwyn creates and delivers to Diana:

Name: Delwyn Position: Dept Manager Public key: 3AB3882C ...

Diana adds:

Name: Delwyn	hash value
Position: Dept Manager	48CFA
Public key: 3AB3882C	

Diana signs with her private key:

Name: Delwyn	hash value
Position: Dept Manager	48CFA
Public key: 3AB3882C	

And appends her certificate:

Name: Delwyn Position: Dept Manager Public key: 3AB3882C	hash value 48CFA
Name: Diana Position: Division Manager Public key: 17EF83CA	hash value 128C4

Which is Delwyn's certificate.

Public Key Infrastructure (PKI)

Private

 Tackle's the problem of certificate (public key and identity) creation and distribution

Implementations of PKI

- X.509 certificate
- Root and intermediate CAs
- Attacks against PKI

Getting certificates

- · Let's get paypal's certificates
 - \$ openssl s_client -showcerts -connect www.paypal.com:443 </dev/null</pre>

```
----BEGIN CERTIFICATE----
```

MIIHWTCCBkGgAwIBAgIQLNGVEFQ30N5KOSAFavbCfzANBgkqhkiG9w0BAQsFADB3 MQswCQYDVQQGEwJVUzEdMBsGA1UEChMUU3ltYW50ZWMgQ29ycG9yYXRpb24xHzAd ... (omitted) ... GN/QMQ3a55rjwNQnA3s2WWuHGPaE/jMG17iiL20/hUdIvLE9+wA+fWrey5//74x1

NeQitYiySDIepHGnng==

----END CERTIFICATE----

• Save the above data to paypal.pem, and use the following command decode it (see next slide)

```
$ openssl x509 -in paypal.pem -text -noout
```


Example of X.509 Certificate (1st Part)

Certificate: Data: Serial Number: 2c:d1:95:10:54:37:d0:de:4a:39:20:05:6a:f6:c2:7f Signature Algorithm: sha256WithRSAEncryption **Issuer:** C=US, O=Symantec Corporation, OU=Symantec Trust Network, CN=Symantec Class 3 EV SSL CA - G3 The CA's identity Validity Not Before: Feb 2 00:00:00 2016 GMT (Symantec) Not After : Oct 30 23:59:59 2017 GMT Subject: 1.3.6.1.4.1.311.60.2.1.3=US/ 1.3.6.1.4.1.311.60.2.1.2=Delaware/ businessCategory=Private Organization/ The owner of serialNumber=3014267, C=US/ the certificate postalCode=95131-2021, ST=California, L=San Jose/street=2211 N 1st St, (paypal) O=PavPal, Inc., OU=CDN Support, CN=www.paypal.com

Example of X.509 Certificate (2nd Part)

X.509 certificate in browser

Certificate	Certificate
General Details Certification Path	General Details Certification Path
Certificate Information This certificate is intended for the following purpose(s): • Ensures the identity of a remote computer	Show: <all></all>
Issued to: VeriSign Class 3 Public Primary Certification Authority - G5 Issued by: VeriSign Class 3 Public Primary Certification Authority - G5	Issuer VeriSign Class 3 Public Primary Valid from Tuesday, November 07, 2006 Valid to Wednesday, July 16, 2036 4: Subject VeriSign Class 3 Public Primary Public key RSA (2048 Bits) Image: Construct and the state of the st
Issuer Statement	Certificate
Learn more about <u>certificates</u>	Certification path

Root and Intermediate Certificate Authorities

There are many CAs in the real world, and they are organized in a hierarchical structure.

Root CAs and Self-Signed Certificate

- A root CA's public key is also stored in an X.509 certificate. It is selfsigned.
- Self-signed: the entries for the issuer and the subject are identical.
 - Set Subject: C=US, O=VeriSign, Inc., OU=VeriSign Trust Network, OU=(c) 2006 VeriSign, Inc. - For authorized use only, CN=VeriSign Class 3 Public Primary Certification Authority - G5 Subject: C=US, O=VeriSign, Inc., OU=VeriSign Trust Network, OU=(c) 2006 VeriSign, Inc. - For authorized use only, CN=VeriSign Class 3 Public Primary Certification Authority - G5
- How can they be trusted?
 - Public keys of root CAs are pre-installed in the OS, browsers and other software

Intermediate CAs and Chain of Trust

Trusted CAs in the Real World

- Not all of the trusted CAs are present in all browsers.
- According to W3Techs in April 2017, Comodo takes most of the market share followed by IdenTrust, Symantec Group, GoDaddy Group, GlobalSign and DigiCert.
- The list of trusted CAs supported by browser can be found:
 - For the Chrome browser:
 - Settings -> Show advanced settings -> Manage Certificates

• For the Firefox browser:

 Edit -> Preferences -> Advanced -> Certificates -> View Certificates -> Certificate Manager -> Authorities

Attack on CA's Verification Process

- CA's job has two parts:
 - Verify the relationship between certificate applicant and the subject information inside the certificate
 - Put a digital signature on the certificate
- Case study: Comodo Breach [March 2011]
 - Popular root CA.
 - The approval process in Southern Europe was compromised.
 - Nine certificates were issued to seven domains and hence the attacker could provide false attestation.
 - One of the affected domain (a key domain for the Firefox browser): addons.mozilla.org

Attack on CA's Signing Process

 If the CA's private key is compromised, attackers can sign a certificate with any arbitrary data in the subject field.

• Case Study: the DigiNotar Breach [June-July 2011]

- A top commercial CA
- Attacker got DigiNotar's private key
- 531 rogue certificates were issued.
- Traffic intended for Google subdomains was intercepted: MITM attack.
- How CAs Protect Their Private Key
 - Hardware Security Model (HSM)

How do you implement cryptography?

Slides credit

- Security in computing 5th edition, Textbook Slides
- Computer security, a hands-on approach, Textbook Slides