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Objectives

• Learn about memory organization, buffer overflows, and 
relevant countermeasures

• Common programming bugs, such as off-by-one errors, race 
conditions, and incomplete mediation

• Survey of past malware and malware capabilities

• Virus detection

• Tips for programmers on writing code for security
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Programs and unintentional oversights

• Program
• Implementation of algorithms/specifications/functionalities

• Source code (C, C++, Java, …)

• Binary code (after compilation)

• Unintentional oversights
• Human error => software flaw (vulnerabilities) => exploitation
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Types of software vulnerabilities

• Buffer overflows

• TOCTTOU

• Undocumented access points (backdoors)

• Off-by-one errors

• Integer overflows

• Unterminated null-terminated string

• Parameter length, type, or number errors

• Unsafe utility libraries

• Race Condition

• …
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Buffer overflows

• Oversights to document or check excessive data

• Attacker’s inputs are expected to go into regions of memory 
allocated for data, but those inputs are instead allowed to 
overwrite memory holding executable code

• The trick for an attacker is finding buffer overflow opportunities 
that lead to overwritten memory being executed, and finding the 
right code to input

• Break access control on code execution and lead to privilege 
escalation
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Buffer overflows (cond.)

Extremely common bug in C/C++ programs.

• First major exploit:  1988 Internet Worm.   Fingerd.

Source:  web.nvd.nist.gov

whenever possible avoid C/C++

… but often cannot avoid C/C++

Need to understand 

attacks and defenses
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Background

• Memory
• Holding code & data

• Code is indistinguishable from data in
memory representation

• Code & data can be referenced 
through address or CPU register

• Both OS and user applications co-
exist in memory (different space)

• Isolation & access control (e.g., page 
table) at hardware/OS level to 
prevent unauthorized access
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Program Memory Stack
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Registers

- Data registers
- EAX, EBX, ECX, EDX
- Many are used for function parameters

- Pointer registers
- EIP (Instruction Pointer): stores the offset address of the next instruction 

to be executed
- ESP (Stack Pointer)
- EBP (Base Pointer)

- Index registers
- Control registers
- Segment registers
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Stack Frame

- EBP: Base Pointer
- Points to previous frame pointer
- EBP+offset: to locate variables
- The return address will always be at EBP+4, the first parameter will 

always be at EBP+8, and the first local variable will be at EBP-4 (or 
EBP-8). 

- ESP: Stack Pointer, pointing to the stack top (low address)
- shifted when POP&PUSH

https://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/ 11
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Order of the function arguments in stack
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x = a + bgcc -S <filename>: c to assembly



Function Call Stack

void f(int a, int b)

{

int x;

}

void main()

{

f(1,2);

printf("hello world");

}

EBP

ESP
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Stack Layout for Function Call Chain

main()

foo()

bar()
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Vulnerable Program
● Reading 300 bytes of data from 

badfile.

● Storing the file contents into a str

variable of size 400 bytes.

● Calling foo function with str as an 

argument.

Note : Badfile is created by the user 

and hence the contents are in control 

of the user.
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Vulnerable Program
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Consequences of Buffer Overflow

Overwriting return address with some random address can point 
to :

• Invalid instruction
• Non-existing address
• Access violation
• Attacker’s code                   Malicious code to gain access
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How to Run Malicious Code
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