
Software vulnerabilities&
Malicious software

EECS 195

Spring 2019

Zhou Li

4/22/2019 Zhou Li 1

Objectives

• Learn about memory organization, buffer overflows, and
relevant countermeasures

• Common programming bugs, such as off-by-one errors, race
conditions, and incomplete mediation

• Survey of past malware and malware capabilities

• Virus detection

• Tips for programmers on writing code for security

4/22/2019 Zhou Li 2

4/22/2019 Zhou Li 3

Software security?

Leo, doctor

Jim, programmer

The system is

hacked. Find

out why?

OMG. Let

me try.

Hospital Information System

Shared workstation

Security tools

Authentication

Access

Control

Cryptography

vulnerability

vulnerability

malware

(threat)

Programs and unintentional oversights

• Program
• Implementation of algorithms/specifications/functionalities

• Source code (C, C++, Java, …)

• Binary code (after compilation)

• Unintentional oversights
• Human error => software flaw (vulnerabilities) => exploitation

4/22/2019 Zhou Li 4

Source

Code

Binary

Code

Operating

System
Compile Execute

Static

Library

Dynamic

Library

Types of software vulnerabilities

• Buffer overflows

• TOCTTOU

• Undocumented access points (backdoors)

• Off-by-one errors

• Integer overflows

• Unterminated null-terminated string

• Parameter length, type, or number errors

• Unsafe utility libraries

• Race Condition

• …

4/22/2019 Zhou Li 5

Buffer overflows

• Oversights to document or check excessive data

• Attacker’s inputs are expected to go into regions of memory
allocated for data, but those inputs are instead allowed to
overwrite memory holding executable code

• The trick for an attacker is finding buffer overflow opportunities
that lead to overwritten memory being executed, and finding the
right code to input

• Break access control on code execution and lead to privilege
escalation

4/22/2019 Zhou Li 6

Buffer overflows (cond.)

Extremely common bug in C/C++ programs.

• First major exploit: 1988 Internet Worm. Fingerd.

Source: web.nvd.nist.gov

whenever possible avoid C/C++

… but often cannot avoid C/C++

Need to understand

attacks and defenses

4/22/2019 Zhou Li 7

Background

• Memory
• Holding code & data

• Code is indistinguishable from data in
memory representation

• Code & data can be referenced
through address or CPU register

• Both OS and user applications co-
exist in memory (different space)

• Isolation & access control (e.g., page
table) at hardware/OS level to
prevent unauthorized access

4/22/2019 Zhou Li 8

Data

Code

Program Memory Stack

ptr points to

the memory

here

a,b, ptr

y

x

4/22/2019 Zhou Li 9

Buffer overflows

Registers

- Data registers
- EAX, EBX, ECX, EDX
- Many are used for function parameters

- Pointer registers
- EIP (Instruction Pointer): stores the offset address of the next instruction

to be executed
- ESP (Stack Pointer)
- EBP (Base Pointer)

- Index registers
- Control registers
- Segment registers

10

Stack Frame

- EBP: Base Pointer
- Points to previous frame pointer
- EBP+offset: to locate variables
- The return address will always be at EBP+4, the first parameter will

always be at EBP+8, and the first local variable will be at EBP-4 (or
EBP-8).

- ESP: Stack Pointer, pointing to the stack top (low address)
- shifted when POP&PUSH

https://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/ 11

https://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/

Order of the function arguments in stack

4/22/2019 Zhou Li 12

x = a + bgcc -S <filename>: c to assembly

Function Call Stack

void f(int a, int b)

{

int x;

}

void main()

{

f(1,2);

printf("hello world");

}

EBP

ESP

4/22/2019 Zhou Li 13

Stack Layout for Function Call Chain

main()

foo()

bar()

4/22/2019 Zhou Li 14

EBP

EBP

EBP

Vulnerable Program
● Reading 300 bytes of data from

badfile.

● Storing the file contents into a str

variable of size 400 bytes.

● Calling foo function with str as an

argument.

Note : Badfile is created by the user

and hence the contents are in control

of the user.

4/22/2019 Zhou Li 15

Vulnerable Program

4/22/2019 Zhou Li 16

Consequences of Buffer Overflow

Overwriting return address with some random address can point
to :

• Invalid instruction
• Non-existing address
• Access violation
• Attacker’s code Malicious code to gain access

4/22/2019 Zhou Li 17

How to Run Malicious Code

4/22/2019 Zhou Li 18

