Software vulnerabilities&
Malicious software

EECS 195
Spring 2019
Zhou Li

4/22/2019 Zhou Li

UCI Samueli

School of Engineering

Objectives

* Learn about memory organization, buffer overflows, and
relevant countermeasures

« Common programming bugs, such as off-by-one errors, race
conditions, and incomplete mediation

« Survey of past malware and malware capabillities
* Virus detection

_y " o f .

4/22/2019 Zhou Li 2

\/

Leo. doctor
The system is
hacked. Find 2';"%? Let
out why? Y-

Jim, programmer
4/22/2019

Access
Control
Cryptography

Zhou Li

UCI Samueli

School of Engineering

*f Shared workstation

malware
(threat)

Q“\
S

‘ UCI Samueli
School of Engineering

Programs and unintentional oversights

* Program
« Implementation of algorithms/specifications/functionalities
« Source code (C, C++, Java, ...)
 Binary code (after compilation)

« Unintentional oversights
 Human error => software flaw (vulnerabilities) => e:

Static ‘ Dynamic
Library ‘ Library
A

T ¢) e e @)
4

Code

oo fation

L 4

Operating
System

Source
Code

4/22/2019 Zhou Li 4

Types of software vulnerabilities

 Buffer overflows

« TOCTTOU

« Undocumented access points (backdoors)
+ Off-by-ohe-errors

* Integer overflows

el . et

e Daramaotar lannath twwino nor ntimhaoar orrarc
1 CAT CATT I OO LOL] L;IIuLII, Lyrl\;, \ W} | TTITVATTIN U] LITT UL WV

« Unsafe utility libraries
* Race Condition

4/22/2019 Zhou Li

UCI Samueli

School of Engineering

UCI Samueli

School of Engineering

Buffer overflows

» Oversights to document or check excessive data

 Attacker’s inputs are expected to go into regions of memory
allocated for data, but those inputs are instead allowed to
overwrite memory holding executable code

 The trick for an attacker is finding buffer overflow opportunities
that lead to overwritten memory being executed, and finding the
right code to input

* Break access control on code execution and lead to privilege
escalation

4/22/2019 Zhou Li 6

Buffer overflows (cond.)

UCI Samueli

School of Engineering

Extremely common bug in C/C++ programs.

 First major exploit: 1988 Internet Worm. Fingerd.

1000 —

whenever possible avoid C/C++

... but often cannot avoid C/C++
Need to understand
attacks and defenses

4/22/2019 Zhou Li

1
mmmmmmmmmmmmmmmm

& &
NNNNNNNNNNNNNNNNNNN

Source: web.nvd.nist.gov

UCI Samueli

School of Engineering

Background Data

Store sum = 7178

* Memory D
« Holding code & data

>0><1COAI
» Code is indistinguishable from data in {l
memory representation Execute instruction

“Jump forward 10

 Code & data can be referenced bytes™
through address or CPU register

« Both OS and user applications co-
exist in memory (different space)

* |solation & access control (e.g., page
table) at hardware/OS level to
prevent unauthorized access

Code

Memory

4/22/2019 Zhou Li 8

QL UCI Samueli

. é\\é\\ : School of Engineering
Program Memory Stack e overlons

L ey

int main() (High addre
{ Stack
// data stored on stack a’b’ ptr

int a=2;
float b=2.5; 3%
static int y;

// allocate memory on heap ptr points to T
int »ptr = (int *) malloc(2+sizeof(int)); the memory —» Heap
here
// values 5 and 6 stored on heap
ptr[0]=5; y —» BSS segment
ptr(1]=6;
X — » Data segment

// deallocate memory on heap
free (ptr); Text segment
(Low address)

return 1;

4/22/2019 Zhou Li 9

Registers

- Data reqisters
- EAX, EBX, ECX, EDX

- Many are used for function parameters

- Pointer reqisters

- EIP (Instruction Pointer): stores the offset address of the next instruction

to be executed
- ESP (Stack Pointer)

- EBP (Base Pointer) L
- Index registers EAX
- Control registers e
- Segment registers e

32-bit registers

31 1615 87 0{}
BH BL | Bx
CH EE
'DH DL | px

16-bit registers

Accumulator
Base
Counter

Data

UCI Samueli

School of Engineering

10

UCI Samueli

School of Engineering

Stack Frame

- EBP: Base Pointer
Points to previous frame pointer
EBP+offset: to locate variables
The return address will always be at EBP+4, the first parameter will

always be at EBP+8, and the first local variable will be at EBP-4 (or
EBP-8).

- ESP: Stack Pointer, pointing to the stack top (low address)
shifted when POP&PUSH

https://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/ 11

https://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/

UCI Samueli

School of Engineering

Order of the function arguments In stack

void func (int a, int b)

{

int x, v;

X = a + b;
y = a — b;
}
gcc -S <filename>: c to assembly X=a+b
mov 1l 12 (5ebp), %eax ; b is stored in Sebp + 12
mov 1l 8 (Sebp), %Sedx ; a 1s stored in %ebp + 8
addl sedx, %eax

mov 1l seax, —8(%ebp) ; X 1s stored in %ebp — 8
4/22/2019 Zhou Li 12

Fuction Call Stack

void f (int a, int b)
{

int x;
}

void main ()

{
£(1,2);

printf ("hello world");

4/22/2019

Stack
grows

main()
stack
frame

f()
stack
frame

Zhou Li

—

-

LR

UCI Samueli

School of Engineering

(High address)

Value of b: 2

Value of a: 1

Return Address —

Points to printf()
> in main()

Previous Frame Pointer

— EBP

Value of x

~— ESP

(Low address)

13

4 UCI Samueli
. é\\é\\ School of Engineering

Stack Layout for Function Call Chain

Stack (High address)
STove main()
main() = — EBP l
] foo()
foo() — main()’s Frame Pointer &= EBP l
: Current bar()
bar() — foo()’s Frame Pointer
V% — Fra?me EBP
— Pointer

412212019 (Low address) Zhou Li 14

Vulnerable Program

int main(int argc, char *+*argv)
{

char str[400];

FILE xbadfile;

badfile = fopen("badfile", "r");
fread(str, sizeof (char), 300, badfile);
foo(str) ;| <

printf ("Returned Properly\n");
return 1;

}

4/22/2019 Zhou Li

UCI Samueli

School of Engineering

e Reading 300 bytes of data from
badfile.

e Storing the file contents into a str
variable of size 400 bytes.

e Calling foo function with str as an
argument.

Note : Badfile is created by the user

and hence the contents are in control
of the user.

15

Vulnerable Program

/* stack.c */

/+ This program has a buffer overflow vulnerability. +/ Stack
finclude <stdlib.h> Brows
finclude <stdio.h> main|()
finclude <string.h> stack
frame
int foo(char #str)
{
char buffer([100]; foo()
stack
/+ The following statement has a buffer overflow problem #/ frame
strcpy (buffer, str); c———

return 1;

4/22/2019 Zhou Li

—

-

VI

UCI Samueli

School of Engineering

str (pointer)

Return Address

Previous Frame Pointer

buffer[11]

buil'fer[ﬂ]

(High address)
A
2
8
g
3
@
(Low address)
16

Consequences of Buffer Overflow

Overwriting return address with some random address can point
to :

 |nvalid instruction
* Non-existing address
* Access violation

« Attacker’s code » Malicious code to gain access

4/22/2019 Zhou Li 17

How to Run Malicious Code

4/22/2019

Stack before the buffer copy

Malicious
Code

Arguments

Return Address

Previous Frame Pointer

New Address

buffer[99]

buffer[0]

(badfile)
Zhou Li

UCI Samueli

School of Engineering

Stack after the buffer copy

Malicious
Code

(Overwrite)

- New Return Address

(Overwrite)

(Overwrite)

<« ebp

18

