
Countermeasures for users

• Use software acquired from reliable sources

• Test software in an isolated environment

• Only open attachments when you know them to be safe

• Treat every website as potentially harmful

• Create and maintain backups

4/26/2019 Zhou Li 1

Virus detection

• Virus scanners look for signs of malicious code infection using
signatures

• Detection mechanisms:
• Known string patterns in files or memory

• Execution patterns

• Storage patterns

• Traditional virus scanners have trouble keeping up with new
malware—detect about 45% of infections

4/26/2019 Zhou Li 2

Virus signatures

• How to extract virus signature
• Signature is found in every infected object by the virus, but not otherwise

• Statistical methods on a large corpus of programs

• How to do fast scan
• Boyer-Moore fast string search algorithm

• Demo: https://www.cs.utexas.edu/users/moore/best-ideas/string-
searching/fstrpos-example.html

• Virus signature
• Hexdecimal opcode: 88 16 00 80 88 26 00 0d cd 13 cd 19

• With many NOPs: 88 16 00 80 90 88 26 00 0d 90 90 cd 13 90 90 90 cd 19

4/26/2019 Zhou Li 3

https://www.cs.utexas.edu/users/moore/best-ideas/string-searching/fstrpos-example.html

Virus detection based on machine-learning

4/26/2019 Zhou Li 4https://www.researchgate.net/publication/267213086_An_Architecture_Utilizing_the_Crowd_for_Building_an_Anti-virus_Knowledge_Base

• Data collection

• User

• Security company

• Public sources (e.g.,

virusshare.com)

• Labeling

• Expert

• Existing scanner (e.g.,

VirusTotal)

• Feature extraction

• Static (PE header, …)

• Dynamic (runtime behavior)

• Model training

• Random Forest, Linear

Regression, CNN, RNN, …

• Testing and validation

https://www.researchgate.net/publication/267213086_An_Architecture_Utilizing_the_Crowd_for_Building_an_Anti-virus_Knowledge_Base

What if I want to learn more?

• Play with tools
• IDA Pro, commercial

• Ghidra from NSA, open-source (https://www.ghidra-sre.org/)

• Online learning resources and research papers
• E.g., buffer overflow tutorial (link provided by Tommy)

• Do CTF (Capture-the-Flag) competition
• Cyber@UCI, https://cyberclub.ics.uci.edu/

• NYU CSAW CTF, https://csaw.engineering.nyu.edu/ctf

• DefCon CTF, https://www.defcon.org/html/links/dc-ctf.html

• …

4/26/2019 Zhou Li 5

https://www.ghidra-sre.org/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://cyberclub.ics.uci.edu/
https://csaw.engineering.nyu.edu/ctf
https://www.defcon.org/html/links/dc-ctf.html

DARPA Cyber Grand Challenge

• Machine
hacking
machine

4/26/2019 Zhou Li 6

Software vulnerabilities
lab instructions

EECS 195

Spring 2019

Zhou Li

4/26/2019 Zhou Li 7

Lab tasks

• Turning Off Countermeasures

• Run shellcode

• Exploit the vulnerability

• Defeat dash’s countermeasure

• Defeat ASLR

• Turn on StackGuard

• Turn on Non-executable stack protection

4/26/2019 Zhou Li 8

Shellcode
Aim: Allow to run more commands (i.e) to gain access of the
system.

Shell Program (c code)

4/26/2019 Zhou Li 9

Launch shell

Shellcode (in binary)

%eax = 0 (avoid 0 in code)

set end of string “/bin/sh”

4/26/2019 Zhou Li 10

More details in lab description

Invoke shellcode in runtime

4/26/2019 Zhou Li 11

Exploit the vulnerability

• Task A: Find the offset distance between the base of the buffer
and return address.

• Task B: Find the address to place the shellcode.

• Modify exploit.c to create badfile with the shellcode binary
correctly placed.

• Run the compiled vulnerable stack.c to load badfile and
overwrite the stack.

4/26/2019 Zhou Li 12

Vulnerable program

• Read 517 characters
from badfile

• Copy it to buffer[24] of
bof

4/26/2019 Zhou Li 13

Creation of The Malicious Input (badfile)

4/26/2019 Zhou Li 14

Task A : Distance Between Buffer Base Address
and Return Address

Using GDB

1.Set breakpoint

(gdb) b bof

(gdb) run

2.Print buffer address

(gdb) p &buffer

3.Print frame pointer address

(gdb) p $ebp

4.Calculate distance

(gdb) p 0x02 – 0x01

5.Exit (quit)

● Breakpoint at vulnerable function using

gdb

● Find the base address of buffer

● Find the address of the current frame

pointer

● Computer return address

4/26/2019 Zhou Li 15

Task B : Address of Malicious Code

• To increase the chances of jumping
to the correct address, of the
malicious code, we can fill the
badfile with NOP instructions and
place the malicious code at the end
of the buffer.

Note : NOP- Instruction that does
nothing.

4/26/2019 Zhou Li 16

Lab tasks

• Turning Off Countermeasures

• Run shellcode

• Exploit the vulnerability

• Defeat dash’s countermeasure
• SetUID background

• Defeat ASLR

• Turn on StackGuard

• Turn on Non-executable stack protection

4/26/2019 Zhou Li 17

Need for Privileged Programs
• Password Dilemma

• Permissions of /etc/shadow File:

• How would normal users change their password?

Two-Tier Approach
• Implementing fine-grained access

control in operating systems make
OS over complicated.

• OS relies on extension to enforce
fine-grained access control

• Privileged programs are such
extensions

Set-UID program

• Allow user to run a program with the program owner’s

privilege.

• Allow users to run programs with temporary elevated privileges

• Program marked with a special bit “s”

• Example: the passwd program

$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 41284 Sep 12 2012 /usr/bin/passwd

Set-UID Concept

• Every process has two User IDs.

• Real UID (RUID): Identifies real owner of process

• Effective UID (EUID): Identifies privilege of a process

• Access control is based on EUID

• When a normal program is executed, RUID = EUID, they
both equal to the ID of the user who runs the program

• When a Set-UID is executed, RUID ≠ EUID. RUID still equal
to the user’s ID, but EUID equals to the program owner’s ID.

• If the program is owned by root, the program runs with the root
privilege.

Turn a Program into Set-UID
• Change the owner

of a file to root :

• Before Enabling
Set-UID bit:

• After Enabling the
Set-UID bit :

How is Set-UID Secure?

• Allows normal users to escalate privileges
• This is different from directly giving the privilege (sudo command)

• Only Set-UID program’s code can be executed (restricted behavior)

• Unsafe to turn all programs into Set-UID
• The capabilities of some programs are too broad, easily abused

• Example: /bin/sh

• Example: vi

Dash’s countermeasure

• The /bin/sh symbolic link points to the /bin/dash shell

• dash shell in Ubuntu 16.04 prevents itself being executed in a
Set-UID process

• If dash detects that it is executed in a Set-UID process, it immediately
changes the effective user ID to the process’s real user ID

• Task 1 describes how to disable this check

• Task 2 asks you to overcome this check

4/26/2019 Zhou Li 24

Countermeasures
Developer approaches:

• Use of safer functions like strncpy(), strncat() etc, safer dynamic link

libraries that check the length of the data before copying.

OS approaches:

• ASLR (Address Space Layout Randomization)

Compiler approaches:

• Stack-Guard

Hardware approaches:

• Non-Executable Stack

Principle of ASLR

Difficult to guess %ebp address and address of the malicious code

Difficult to guess the stack address in the memory.

To randomize the start location of the stack that is every time the code
is loaded in the memory, the stack address changes.

Address Space Layout Randomization

Address Space Layout Randomization : Working

1

3

2

Non-executable stack

Prevent attack code execution by marking stack as non-executable

• NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott
• NX bit in every Page Table Entry (PTE)

• Deployment:

• Linux (via PaX project); OpenBSD
• Windows DEP (data execution prevention): since XP SP2 (2004)

• Visual Studio: /NXCompat[:NO]

• Limitations:
• Some apps need executable heap (e.g. JITs).
• Can be easily bypassed using Return Oriented Programming (ROP)

4/26/2019 Zhou Li 29

Examples: DEP controls in Windows

DEP terminating a program

4/26/2019 Zhou Li 30

