UCI Samueli

School of Engineering

Countermeasures for users

» Use software acquired from reliable sources

 Test software in an isolated environment

* Only open attachments when you know them to be safe
* Treat every website as potentially harmful

« Create and maintain backups

4/26/2019 Zhou Li 1

UCI Samueli

School of Engineering

Virus detection

* Virus scanners look for signs of malicious code infection using
signatures

 Detection mechanisms:

« Known string patterns in files or memory
« Execution patterns
« Storage patterns

 Traditional virus scanners have trouble keeping up with new
malware—detect about 45% of infections

4/26/2019 Zhou Li 2

UCI Samueli

School of Engineering

Virus signatures

« How to extract virus signature

 Signature is found in every infected object by the virus, but not otherwise
« Statistical methods on a large corpus of programs

 How to do fast scan
« Boyer-Moore fast string search algorithm
 Demo: https://www.cs.utexas.edu/users/moore/best-ideas/string-
searching/fstrpos-example.html
* Virus signature
« Hexdecimal opcode: 88 16 00 80 88 26 00 Od cd 13 cd 19
« With many NOPs: 88 16 00 80 90 88 26 00 0d 90 90 c¢d 13 90 90 90 cd 19

4/26/2019 Zhou Li 3

https://www.cs.utexas.edu/users/moore/best-ideas/string-searching/fstrpos-example.html

UCI Samueli

School of Engineering

Virus detection based on machine-learning

. Data collection /—The architecture of CrowdMAV N
e User 1. Virus o 46
o Security company Dccot;glc[ﬁ:; o detec'tion by Un:::;:sctlf;ed ! oo | &
« Public sources (e.g., problems but - Sc\z:'r:rl:isng Suggested | Classification Expert ‘Exper
virusshare.com) reported as o apent rules s
« Labeling bemign 4 1 3. b'Aachine ‘\ 6
* Expert ‘ Learning Expert |~
) E_XIStlng scanner (e'g" Unclassified U . ' Detected and Virus s:mplcs New[ruleg i e
VlrusTotaI) files m;ﬁ ’,'(’Iassiﬁcd objects &Bcnign files & bch'aviour
* Feature extraction - - Y Y
- Static (PE header, ...) ;E The anti-virus knowledge base
« Dynamic (runtime behavior) inputs|
« Model training Applications
-+ Random Forest, Linear ’eps‘::;::t:' U_B
Regression, CNN, RNN,ﬁ;’; 1): | |
« Testing and validation \e - P,

4/26/2(ﬁ1§,tps:llwww.researchqate.net/|oublication/267213086 An Architecture, I_.tilizinq the Crowd for Building an Anti-virus Knowledge Base 4

Z_TTUUT T

https://www.researchgate.net/publication/267213086_An_Architecture_Utilizing_the_Crowd_for_Building_an_Anti-virus_Knowledge_Base

UCI Samueli

School of Engineering

What If | want to learn more?

 Play with tools
* IDA Pro, commercial
« Ghidra from NSA, open-source (https://www.ghidra-sre.org/)

* Online learning resources and research papers
* E.g., buffer overflow tutorial (link provided by Tommy)

Do CTF (Capture-the-Flag) competition
« Cyber@UCI, https://cyberclub.ics.uci.edu/
* NYU CSAW CTF, https://csaw.engineering.nyu.edu/ctf
 DefCon CTF, https://www.defcon.org/html/links/dc-ctf.html

4/26/2019 Zhou Li 5

https://www.ghidra-sre.org/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://cyberclub.ics.uci.edu/
https://csaw.engineering.nyu.edu/ctf
https://www.defcon.org/html/links/dc-ctf.html

UCI Samueli

School of Engineering

 Machine
hacking
machine

4/26/2019

Software vulnerabilities
lab Instructions

EECS 195
Spring 2019
Zhou Li

4/26/2019 Zhou Li

4 UCI Samueli
é\\é\\ School of Engineering

Lab tasks

* Run shellcode

 Exploit the vulnerability

» Defeat dash’s countermeasure

» Defeat ASLR

* Turn on StackGuard

* Turn on Non-executable stack protection

4/26/2019 Zhou Li 8

~ UCI Samuel
. [= - School of Engineering

Shllcode

Aim: Allow to run more commands (i.e) to gain access of the
system.

Shell Program (c code)

#include <stddef.h>
vold main ()

{ Launch shell
char *name[2]; *///////

name[0] = "/bin/sh";
name|[1l] = NULL;
execve (name[0], name, NULL);

4/26/2019 Zhou Li

She”COde (ln blnarY) More details in lab description

const char code[] =

"\x31\xcO" /* xorl $eax, $eax «/ <«— %eax =0 (avoid 0in code)
"\x50" /* pushl Feax +/ <« setend of string “/bin/sh”
"\x68""//sh" /* pushl S0x68732f2f «/

"\x68""/bin" /* pushl S0x6e69622f «+/

"\x89\xe3" /* movl %esp, $ebx * / +« set %ebx

"\x50" /* pushl Zeax * /

"\x53" /* pushl %ebx * /

"\x89\xel" /* movl tesp, tecx * / “ set %ecx

"\x99" /* cdq * / “ set %edx
"\xb0\x0b" /* movb $0x0b, %al «/ <+ set %eax
"\xcd\x80" /* int 50x80 * / <+ invoke execve ()

&
r

4/26/2019 Zhou Li 10

UCI Samueli

School of Engineering

Invoke shellcode In runtime

int main(int argc, char *xargv)
{
char buf[sizeof (code)];
strcpy (buf, code);
[((void () ())buf) ();]|

4/26/2019 Zhou Li 11

S UClI Samueli
. é\\é\\ School of Engineering

Exploit the vulnerabllity

 Task A: Find the offset distance between the base of the buffer
and return address.

« Task B: Find the address to place the shellcode.

* Modify exploit.c to create badfile with the shellcode binary
correctly placed.

* Run the compiled vulnerable stack.c to load badfile and
overwrite the stack.

4/26/2019 Zhou Li 12

UCI Samueli

School of Engineering

Vulnerable program

/* Vunlerable program: stack.c =/
/* You can get this program from the lab’s website =x/

* Read 517 characters [ous S

#include <stdio.h>

fr()rT] t)Ei(jfiIEB #include <string.h>

int bof (char =*str)

{
char buffer[24];

[) Copy It to bU'ﬁ:er[24] Of /* The following statement has a buffer overflow problem =/

strcpy (buffer, str); @
bof

return 1;

int main(int argc, char **xargv)

char str[517];
FILE sbadfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
bof (str) ;
printf ("Returned Properly\n");

4/26/2019 return 1;

UCI Samueli

School of Engineering

Creation of The Malicious Input (badfile)

4/26/2019

Overwrite

Return Address

NOP | NOP | —==——~- ‘ | ----- NOP Shellcode
| TN
Startof Task A Task B
Buffer (Distance) (Address)

Zhou Li

14

9 ¢ UCI Samueli
. é\\é\\ : School of Engineering

TaskA: Distance Between Buffer Base Address
and Return Address

Using GDB
1.Set breakpoint

(gdb) b bot e Breakpoint at vulnerable function using
(gdb) run gdb
2.Print buffer address e Find the base address of buffer
(gdb) p &buffer e Find the address of the current frame
3.Print frame pointer address pointer
(gdb) p $ebp e Computer return address

4.Calculate distance
(gdb) p 0x02 - 0x01
5.Exit (quit)

4/26/2019 Zhou Li 15

UCI Samueli

School of Engineering

Task B : Address of Malicious Code

* To increase the chances of jumping

to the correct address, of the
malicious code, we can fill the
badfile with NOP instructions and

place the malicious code at the end

of the buffer.

Note : NOP- Instruction that does
nothing.

4/26/2019

Malicious
Code

(Overwrite)

MNew Return Address

(Overwrite)

(Overwrite)

Zhou Li

(Without NOP)

Inaccurate
Guess —
Failed Attack

)

<«— ¢ebp

g

Malicious
Code

NOP

NOP

NOP

New Return Address

(Overwrite)

Inaccurate
Guess —
Successful Attack

)

ebp

(Overwrite)

(With NOP)

=

16

UCI Samueli

School of Engineering

La tasks

* Run shellcode
 Exploit the vulnerability

 Defeat dash’s countermeasure
« SetUID background

» Defeat ASLR
* Turn on StackGuard
« Turn on Non-executable stack protection

4/26/2019 Zhou Li 17

< UCI Samueli

NN
. -\ ‘ School of Engineering

S

Need for Privileged Programs

 Password Dilemma
 Permissions of /etc/shadow File:

—-YW—r————— 1 root shadow 1443 May 23 12:33 /etc/shadow
t Only writable to the owner

« How would normal users change their password?

root:565012BPz . KSTbPkT6H6Db4 /BBcLWbQI1cFjn@R25yqtgqrSrFedfCgybQWWnwR4ks /. rjgyM7Xw
h/pDyc5U1BWOzkWh7T9ZGu. :15933:0:99999:7:::

daemon:*:15749:0:99999:7:::

bin:*:15749:0:99999:7:::

Sys:*:15749:0:99999:7:::

Sync:*:15749:0:99999:7:::

games:*:15749:0:99999:7:::

iman:*:15749:08:99999:7:::

lp:*:15749:0:99999:7:::

— UCI Samueli
. é\\s\ School of Engineering

Two-Tier Approach

* Implementing fine-grained access Programs
control in operating systems make
OS over complicated.

Fine-grained
Access Control by

Privileged Programs

* OS relies on extension to enforce

fine-grained access control \
Generic Access Control by 0OS
— (e.g. system calls) i
* Privileged programs are such Protected Resource
extensions

Set-UID program
* Allow user to run a program with the program owner’s
privilege.
* Allow users to run programs with temporary elevated privileges
* Program marked with a special bit “s”
 Example: the passwd program

$ 1s -1 /usr/bin/passwd
-rwsr-xr-x 1 root root 41284 Sep 12 2012 /usr/bin/passwd

Set-UID Concept

« Every process has two User IDs.

 Real UID (RUID): Identifies real owner of process

« Effective UID (EUID): Identifies privilege of a process
« Access control is based on EUID

 When a normal program is executed, RUID = EUID, they
both equal to the ID of the user who runs the program

 When a Set-UID is executed, RUID # EUID. RUID still equal
to the user’s ID, but EUID equals to the program owner’s ID.

« If the program is owned by root, the program runs with the root
privilege.

-_|_w \ :
:é\\s . UCI Samueli

Turn a Program into Set-UID

o seed@VM:~5 cp /bin/fcat ./mycat
tha?-?etthe O\{V.nel’ seed@VM:~$ sudo chown root mycat
Of a 1iie 10 root . seed@VM:~5 1s -1 mycat

-TwXxr-xr-x 1 root seed 46764 Nov 1 13:09

School of Engineering

seed@vM: ~S
- Before Enabling seed@VM:~$ mycat /etc/shadow
Set-UID bit: mycat: /etc/shadow: Permission denied
' seed@vM: ~$

seed@vM: ~5 sudo chmod 4755 mycat
_ seed@vM: ~5 mycat fetc/shadow
* After Enabling the root:$6$012BPz.KSFbPkT6H6Db4A /BBCLWbQI1CF jn
Set-UID bt : h/pDyc5U1BWOzkWh7T9ZGu. : 15933:0:99999:7: : :
dﬂENﬂﬁ:*:lE?qg:ﬂ:gggggI?: -
bin:*:15749:0:99999:7: ::
Sys:*:15749:0:99999:7:::

UCI Samueli

School of Engineering

How Is Set-UID Secure?

 Allows normal users to escalate privileges
 This is different from directly giving the privilege (sudo command)
* Only Set-UID program’s code can be executed (restricted behavior)

« Unsafe to turn all programs into Set-UID
* The capabilities of some programs are too broad, easily abused
« Example: /bin/sh
« Example: vi

UCI Samueli

School of Engineering

Dash’s countermeasure

* The /bin/sh symbolic link points to the /bin/dash shell

« dash shell in Ubuntu 16.04 prevents itself being executed in a

Set-UID process

« |f dash detects that it is executed in a Set-UID process, it immediately
changes the effective user ID to the process’s real user ID

» Task 1 describes how to disable this check
» Task 2 asks you to overcome this check

4/26/2019 Zhou Li 24

UCI Samueli

School of Engineering

Countermeasures

OS approaches:
 ASLR (Address Space Layout Randomization)

Hardware approaches:

 Non-Executable Stack

UCI Samueli

School of Engineering

Principle of ASLR

To randomize the start location of the stack that is every time the code
IS loaded in the memory, the stack address changes.

|

Difficult to guess the stack address in the memory.

|

Difficult to guess %ebp address and address of the malicious code

—~ UCI Samueli
. é_\\ School of Engineering

Address Space Layout Randomization

#include <stdio.h>
#include <stdlib.h>

void main ()

{
char x[12];
char xy = malloc(sizeof (char)*12);

printf ("Address of buffer x (on stack): 0x%x\n", x);
printf ("Address of buffer y (on heap) : 0x%x\n", v);

UCI Samueli

School of Engineering

Address Space Layout Randomization : Working

$ sudo sysctl -w kernel.randomize va.space=0 5 sudo sysctl -w kernel.randomize va space=1

kernel.randomize_va_space = 0 kernel.randomize_va_space = 1
$ a.out $ a.out
Address of buffer x (on stack): Oxbffff370 Address of buffer x (on stack): 0xbf9debl0
Address of buffer y (on heap) : 0x804b008 Address of buffer y (on heap) : 0x804b008
$ a.out $ a.out
Address of buffer x (on stack): 0xbffff370 address of buffer x (on stack): 0xbf8c49d0
Address of buffer y (on heap) : 0x804b008 Address of buffer y (on heap) : 0x804b008
$ sudo sysctl -w kernel.randomize va space=2 ‘
kernel .randomize_va_space = 2

$ a.out

Address of buffer x (on stack): 0xbf9c76f0
‘ Address of buffer y (on heap) : 0x87e6008

5 a.out

Address of buffer x (on stack): O0xbfe69700

Address of buffer yv (on heap) : 0xal020008

UCI Samueli

School of Engineering

Non-executable stack

Prevent attack code execution by marking stack as non-executable

« NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott
* NX bit in every Page Table Entry (PTE)

* Deployment:
* Linux (via PaX project); OpenBSD
* Windows DEP (data execution prevention): since XP SP2 (2004)
. Visual Studio: /NXCompat[:NO]

 Limitations:
« Some apps need executable heap (e.g. JITs).
« Can be easily bypassed using Return Oriented Programming (ROP)

4/26/2019 Zhou Li 29

4/26/2019

Performance Options ==
| Wisual EFfects I ndvanced | Data Execution Prevention

_ Data Execution Prevention (DEP) helps prokect
=f é against damage From wiruses and other security

threats, How does it works

Turn on DEP For essential Windows programs and services
only

~) Turn on DEP For all programs and services except those I
select:

Add. ., Remowve

Your compuker's processor supporks hardware-based DEP.

[Ok] [Cancel] [

Apply]

UCI Samueli

School of Engineering

Examples: DEP controls in Windows

Data Execution Prevention - Microsoft Windows

To help protect your ©

puter, Wind has cl

o Mame; Windows Explorer
3! Publisher: Microsoft Corporation

d this program.

[Close Message |

Data Execution Prevention helps protect against damage from viruses and other
security threats. What should I do?

DEP terminating a program

Zhou Li 30

