
OS Security
EECS 195

Spring 2019

Zhou Li

5/1/2019 Zhou Li 1

Objectives

• Basic security functions provided by operating systems

• System resources that require operating system protection

• Operating system design principles

• How operating systems control access to resources

• Contemporary OS protections on memory

• The history of trusted computing

• Characteristics of operating system rootkits

• Formally verified kernel: seL4

5/1/2019 Zhou Li 2

Operating Systems (OS)

• OS: An executive or supervisor for a piece of computing machinery.

5/1/2019 Zhou Li 3

Operating System Functions

Operating

System

Memory

I/O Devices

Users

User Interface

Resource Allocation

CPU

Data

Program
Libraries

Synchronization,

Concurrency

Control, Deadlock

Management,

Communication,

Accounting

Services

4

Security-relevant features:

• Enforced sharing

• Inter-process communication and

synchronization

• Protection of critical data

• Guaranteed fair service

• User authentication

• Memory protection

• File and I/O device access control

• Allocation and access control to

general objects

5/1/2019 Zhou Li

A Brief History of OS

• Single users, no OS, aka executives
• Program entered in binary by “switches” physically

• User schedules blocks of time for running the machine exclusively

• Security issues: physical protection of computer, programs and data

• Multiprogramming and shared use, aka monitors
• Waste of resources if only for one user’s tasks

• Concepts like scheduling, sharing and concurrent use are developed

• Executives provide service, monitors control the resources

• Security issues: protecting one user’s program & data from others

• Personal computers, changeover from multiuser mainframes
• Many security features like controlled sharing are forsaken

5/1/2019 Zhou Li 5

Multitasking

• Process
• Created when running an application

• Assigned with system resources (called domain): files, access to
devices & communications, memory and execution time.

• OS switches control between processes, allocating, deallocating and
reallocating resources for processes.

• Thread
• A process consists of one or more threads, separate streams of

execution.

• A thread executes in the same domain as other threads.

• Much less OS cost during thread switching.

5/1/2019 Zhou Li 6

Protected Objects

• Memory

• Sharable I/O devices, such as disks

• Serially reusable I/O devices, such as printers

• Sharable programs and subprocedures

• Networks

• Sharable data

• Granularity for access control
• Larger the level, easier to implement, but could lead to over-privilege

7

OS Layered Design to Protect Objects

Hardware

Security Functions

Synchronization, Allocation

Scheduling, Sharing,

Memory Management

File Systems, Device Allocation

Utility Functions

Compilers, Data base Managers

User Processes

Subprocesses of User Processes

Security
Kernel

Operating
System
Kernel

Operating
System

8

OS layers

• Security kernel: enforce security

• OS kernel: allocate primitive

resources such as time or

access to hardware devices

• Other OS functions: implement

user’s interface to hardware

5/1/2019 Zhou Li

Protection Rings (Hardware)

• Hardware-enforced by some CPU
architectures that provide different CPU
modes at the hardware or microcode level.

• Process and resources are in different rings
(privilege levels).

• When a lesser privileged process tries to
access a higher privileged process /
resource, a general protection fault
exception is reported by the OS.

• x86 implementations (Ring 0-3)
• Windows, Linux, macOS uses Ring 0 (kernel /

privileged mode) and Ring 3 (user mode)

• DOS runs everything at Ring 3

5/1/2019 Zhou Li 9

Privilege rings for the x86 available

in protected modehttps://en.wikipedia.org/wiki/Protection_ring

Modular OS Design
Users Users Users Users Users

User Mode

User Interface

System Services Interface

Privileged Mode

File A/V Net Backup ShellObjectSec

I/O Synch Memory Comm SecTime

Primitive Services

Hardware Interface and Abstraction

Microkernel Kernel Mode Drivers

Hardware

10

Modules come from different

sources
• Hardware and drivers from device

manufacturers

• Anti-virus from software vendors

“hooks” into OS

• Cannot trust one another by default

Virtualization

• With virtualization, the OS presents each user
with just the resources that user should see

• The user has access to a virtual machine (VM),
which contains those resources

• The user cannot directly access resources that
are outside the VM (sandbox)

• A hypervisor, or VM monitor, is the software that
hosts VM

• Translates access requests between the VM and the OS

• Can support multiple OSs in VMs simultaneously

115/1/2019 Zhou Li

Memory management

5/1/2019 Zhou Li 12

Hardware Protection of Memory
Memory

Operating System

User Program Space

Addresses

 0

n

n + 1

High

Hardware
Address

Limitation

Addressing
Range

13

• Goal: program can share selected

part of memory with other

programs and even other users;

OS and user can coexist in

memory without interference

• Approach: fence

• OS and user reside in different

sides of memory (fixed)

• Too restrictive

• Excess space is wasted

5/1/2019 Zhou Li

Fence Registers

Address
Limit

Register

Memory

Operating

System Version 2

User Program
Space

Addresses
 0

p

p + 1

High

p + 1

Address
Limit

Register

Memory

Operating

System Version 1

User Program
Space

Addresses
 0

n

n + 1

High

n + 1

Addressing
Range

Addressing
Range

14

• Containing the address of the

end of the OS

• Boundary can be changed

• Program’s instruction can be

executed if the data’s address

is greater than fence address

• Cannot protect one user from

another

5/1/2019 Zhou Li

Base/Bounds Registers

Memory

Operating
System

User A
Program Space

Addresses
 0

n

n + 1

High

Base Register

n + 1

Bounds Register

p

User C
Program Space

User B
Program Space

User Program
Space

q

q + 1

p

p + 1

15

• Base register: variable fence

register about lower-bound

• Bounds register: upper-bound for a

user program

• How to protect program address

from modification by another user?

• Context switch

• OS changes content of base

and bounds registers to reflect

true address space of another

user

5/1/2019 Zhou Li

Two Pairs of Base/Bounds Registers

Operating
System

Program Base

Program Bounds

User Program
and Data

Space

Data Base

Data Bounds
User B

Data Space

User A
Data Space

User C
Data Space

User A
Program Space

User C
Program Space

User B
Program Space

165/1/2019 Zhou Li

• Erroneous addresses inside a user

space can impact program

• Subscript is out of range

• Undefined variable reference an

address inside program space

• Solution: two pairs of registers

• Data registers

• Program registers

Tagged Architecture
Tag Memory Word

R 0001

RW 0137

R 0099

X

X

R 4091

RW 0002

X

X

X

X

Code: R = Read-only RW = Read/Write

 X = Execute-only
175/1/2019 Zhou Li

• What if we want to protect some data value

but not all?

• Solution: tagged architecture
• Each word of machine memory has one or more

extra bits to identify its access rights

• Example:
• Burroughs B6500-7500 three tag bits to

separate data words, descriptors (pointers) and

control words (stack pointers & addressing

control words)

• Problem: compatibility with OS

Virtual Memory

• Two more approaches for memory protection
• Segmentation

• Paging

• Can be implemented on top of a conventional machine structure

• Designed between 1965 and 1975

5/1/2019 Zhou Li 18

