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Objectives

• Basic security functions provided by operating systems

• System resources that require operating system protection

• Operating system design principles

• How operating systems control access to resources

• Contemporary OS protections on memory

• The history of trusted computing

• Characteristics of operating system rootkits

• Formally verified kernel: seL4
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Operating Systems (OS)

• OS: An executive or supervisor for a piece of computing machinery.
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Security-relevant features:

• Enforced sharing

• Inter-process communication and 

synchronization

• Protection of critical data

• Guaranteed fair service

• User authentication

• Memory protection

• File and I/O device access control

• Allocation and access control to 

general objects
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A Brief History of OS

• Single users, no OS, aka executives
• Program entered in binary by “switches” physically

• User schedules blocks of time for running the machine exclusively

• Security issues: physical protection of computer, programs and data

• Multiprogramming and shared use, aka monitors
• Waste of resources if only for one user’s tasks

• Concepts like scheduling, sharing and concurrent use are developed

• Executives provide service, monitors control the resources

• Security issues: protecting one user’s program & data from others

• Personal computers, changeover from multiuser mainframes
• Many security features like controlled sharing are forsaken
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Multitasking

• Process
• Created when running an application

• Assigned with system resources (called domain): files, access to 
devices & communications, memory and execution time.

• OS switches control between processes, allocating, deallocating and 
reallocating resources for processes.

• Thread
• A process consists of one or more threads, separate streams of 

execution.

• A thread executes in the same domain as other threads.

• Much less OS cost during thread switching.
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Protected Objects

• Memory

• Sharable I/O devices, such as disks

• Serially reusable I/O devices, such as printers

• Sharable programs and subprocedures

• Networks

• Sharable data

• Granularity for access control
• Larger the level, easier to implement, but could lead to over-privilege
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OS Layered Design to Protect Objects
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OS layers

• Security kernel: enforce security

• OS kernel: allocate primitive 

resources such as time or 

access to hardware devices

• Other OS functions: implement 

user’s interface to hardware
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Protection Rings (Hardware)

• Hardware-enforced by some CPU 
architectures that provide different CPU 
modes at the hardware or microcode level.

• Process and resources are in different rings 
(privilege levels).

• When a lesser privileged process tries to 
access a higher privileged process / 
resource, a general protection fault 
exception is reported by the OS.

• x86 implementations (Ring 0-3)
• Windows, Linux, macOS uses Ring 0 (kernel / 

privileged mode) and Ring 3 (user mode)

• DOS runs everything at Ring 3
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Privilege rings for the x86 available 

in protected modehttps://en.wikipedia.org/wiki/Protection_ring



Modular OS Design
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Modules come from different 

sources
• Hardware and drivers from device 

manufacturers

• Anti-virus from software vendors 

“hooks” into OS

• Cannot trust one another by default



Virtualization

• With virtualization, the OS presents each user 
with just the resources that user should see

• The user has access to a virtual machine (VM), 
which contains those resources

• The user cannot directly access resources that 
are outside the VM (sandbox)

• A hypervisor, or VM monitor, is the software that 
hosts VM

• Translates access requests between the VM and the OS

• Can support multiple OSs in VMs simultaneously
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Memory management
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Hardware Protection of Memory
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• Goal: program can share selected 

part of memory with other 

programs and even other users; 

OS and user can coexist in 

memory without interference

• Approach: fence 

• OS and user reside in different 

sides of memory (fixed)

• Too restrictive

• Excess space is wasted
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Fence Registers
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• Containing the address of the 

end of the OS

• Boundary can be changed

• Program’s instruction can be 

executed if the data’s address 

is greater than fence address

• Cannot protect one user from 

another
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Base/Bounds Registers
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• Base register: variable fence 

register about lower-bound

• Bounds register: upper-bound for a 

user program

• How to protect program address 

from modification by another user?

• Context switch

• OS changes content of base 

and bounds registers to reflect 

true address space of another 

user
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Two Pairs of Base/Bounds Registers
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• Erroneous addresses inside a user 

space can impact program

• Subscript is out of range 

• Undefined variable reference an 

address inside program space

• Solution: two pairs of registers

• Data registers

• Program registers



Tagged Architecture
Tag          Memory Word

R            0001

RW        0137

R            0099

X

X

R            4091

RW        0002

X

X

X
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Code:  R = Read-only      RW = Read/Write     

           X = Execute-only
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• What if we want to protect some data value 

but not all?

• Solution: tagged architecture
• Each word of machine memory has one or more 

extra bits to identify its access rights

• Example:
• Burroughs B6500-7500 three tag bits to 

separate data words, descriptors (pointers) and 

control words (stack pointers & addressing 

control words)

• Problem: compatibility with OS



Virtual Memory

• Two more approaches for memory protection 
• Segmentation

• Paging

• Can be implemented on top of a conventional machine structure

• Designed between 1965 and 1975
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