
Segmentation

Logical Arrangement of
Program

Physical Placement of

Program’s Segments

MAIN

SEG_A

SUB

DATA_SEG

MAIN

SUB

SEG_A

DATA_SEG

Operating
System
Segments

Segments for

Other Users

15/2/2019 Zhou Li

• A program is divided into separate, logical pieces.

• Each segment has its own set of access rights.

• OS maintains a table of each segment and its true

memory address, and it translates calls to each

segment using the table

• Advantages:

• OS can move segments around as necessary

• Segments can be removed from memory if they

aren’t being used currently

Segment Address Translation

Logical Program

MAIN

SEG_A

SUB

DATA_SEG

MAIN

SEG_A

SUB

DATA_SEG

a

c

g

h

Segment Translation Table
Address

0

a

b

c

d

e

f

g

h

i

FETCH<DATA_SEG,20>

Location 20 within Segment DATA_SEG

+

25/2/2019 Zhou Li

• When program generates an address of

<name, offset>, OS looks up name in

segment directory and determines the real

beginning address

• One table for each process

• Program knows nothing about actual address

• Security benefit

• Each address reference is checked

• Two or more users can share access to a

segment, with different access rights

• Problem

• How to decide segment size?

Paging
Logical Program

Page 0

Page 1

Page 2

Page 4

Page 3

Page 5

Page 6

Page 7

0

1

2

4

3

5

6

7

b

f

i

c

l

g

n

e

Page Translation Table
Page Address

Page 0

Page 4

Page 7

Page 1

Page 5

Page 2

Page 3

Page 6

MemoryAddress

0

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

+

Location
37, Page 4

FETCH<4,37>

35/2/2019 Zhou Li

• Program divided to equal-sized pages

• Each address is <page, offset>

• OS maintains a page table

• Offset beyond the end of a page results in a

carry into the page portion of address

• Problem:

• No logical boundary

Paged Segmentation

Memory

DATA_SEG Page 1

MAIN Page 0

SEG_A Page 1

MAIN Page 1

SEG_A Page 2

SUB Page 0

DATA_SEG Page 0

SEG_A Page 0

Address
0

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

Segment DATA_SEG Word 20

Logical Program

MAIN

SEG_A

SUB

DATA_SEG

Segment Translation Table

MAIN

SEG_A

SUB

DATA_SEG

Segment
Page
Table

0

1

c

f

Page Translation Tables

 For Segment MAIN
Page Address

0

1

2

n

e

g

 For Segment SEG_A
Page Address

0

1

l

b

0 i

 For Segment SUB
Page Address

Page Address

+

20 = Page 0

FETCH<DATA_SEG,20>

For Segment DATA_SEG

45/2/2019 Zhou Li

• Segmentation: logical protection

• Paging: efficiency

• Combined -> paged segmentation

• Programs can be broken into segments, and

the segments are then combined to fill pages.

Memory management by
contemporary hardware & OS

5/2/2019 Zhou Li 5

Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual to physical address

• Base (relocation) register + logical address => physical address

5/2/2019 Zhou Li 6

Segmentation Unit Paging Unit

Relocation and Limit Registers

5/2/2019 Zhou Li 7

Segmentation Hardware

• Registers (Intel CPU)
• CS: code segment

• DS: data segment

• SS: stack segment

• ES: extra segment

• FS and GS

5/2/2019 Zhou Li 8

Paging Hardware

5/2/2019 Zhou Li 9

TLB

• Page table could be kept in memory rather than paging
hardware (if too big)

• TLB (translation look-aside buffer) caches the address
translation (frequently accessed address)

• if page number is in the TLB, no need to access the page table

• if page number is not in the TLB, need to replace one TLB entry

• TLB usually use a fast-lookup hardware cache called associative
memory (memory that supports parallel search)

• TLB is usually small, 64 to 1024 entries

5/2/2019 Zhou Li 10

Hardware-based Protection

• Something like tagged architecture

• Each page table entry has a present (aka. valid) bit
• present: the page has a valid physical frame (block of same size as

page in memory), thus can be accessed

• Each page table entry contains some protection bits
• kernel/user, read/write, execution?, kernel-execution?

• Any violations of memory protection result in a trap to the kernel

5/2/2019 Zhou Li 11

How about other objects?

• File, external devices, network, …?

• We learnt some in “Access Control”

• Easier to control because they can separated logically &
physically

• E.g., Linux DAC for files

• E.g., application-based network isolation through port

5/2/2019 Zhou Li 12

Objectives

• Basic security functions provided by operating systems

• System resources that require operating system protection

• Operating system design principles

• How operating systems control access to resources

• The history of trusted computing

• Characteristics of operating system rootkits

• Formally verified kernel: seL4

5/2/2019 Zhou Li 13

Trusted Systems

• A trusted system is one that has been shown to warrant some
degree of trust that it will perform certain activities faithfully

• Characteristics of a trusted system:
• A defined policy that details what security qualities it enforces

• Appropriate measures and mechanisms by which it can enforce
security adequately

• Independent scrutiny or evaluation to ensure that the mechanisms
have been selected and implemented properly

145/2/2019 Zhou Li

History of Trusted Systems

Trusted Computer

System Evaluation

Criteria

Security

Technology

Planning

Study

British,

German,

French

Criteria

Combined

Federal

Criteria

E.C. Information

Technology

Security

Evaluation

Criteria

Common

Criteria

Security Controls

for Computer

Systems

1970 1983 1991 1994

1972 1988 1992

155/2/2019 Zhou Li

“Orange book”

“Orange Book”
• Trusted Computer System Evaluation Criteria (TCSEC)

• Drafted in late 1970s by DoD, released in 1980s

• Specify functionality, design principles and evaluation
methodology for trusted computer systems

5/2/2019 Zhou Li 16

Evaluation Assurance Level (for IT product)

Trusted Computing Base (TCB)

Non-TCB

Primitive I/O

Basic operations

Clocks, timing

Interrupt handling

Hardware: registers, memory

Capabilities

User request interpreter

User process coordination, synchronization

User environment: objects, names (e.g., files)

User I/O

Procedures, user processes

Creation and deletion of user objects

Directories

Extended types

Segmentation, paging, memory management

User applications

Utilities

TCB

175/2/2019 Zhou Li

• TCB: everything necessary for a system

to enforce its security policy

• Assuming you allow attacker to write all

the non-TCB code, TCB won’t be

impaired.

TCB implementations

• Security kernel
• Small kernel (~10K LoC) between OS and hardware

• Secure startup
• Ensure no malicious code can block or interfere with security enforcement

• Trusted path
• An unforgeable connection by which the user can be confident of communicating

directly with the OS

• Object reuse control
• OS clears memory before reassigning it to ensure that leftover data doesn’t become

compromised

• Audit
• Trusted systems track security-relevant changes
• Audit logs must be protected against tampering and deletion

185/2/2019 Zhou Li

Trusted Platform Module (TPM)

• Trusted hardware to support TCB

• Measure and attest the software running on a computer

• TPM brought authenticated boot (secure startup) into the mainstream

• It provides hardware support for remote attestation (trusted path +
verifying secure startup)

• TPM offers few primitives
• Measurement, cryptography, key generation, PRNG

• Controlled by physical presence of the machine

• BIOS is Core Root of Trust for Measurement (CRTM)

• More information: www.trustedcomputinggroup.org

5/2/2019 Zhou Li 19

http://www.trustedcomputinggroup.org/

Where are the TPMs?

5/2/2019 Zhou Li 20

Objectives

• Basic security functions provided by operating systems

• System resources that require operating system protection

• Operating system design principles

• How operating systems control access to resources

• The history of trusted computing

• Characteristics of operating system rootkits

• Formally verified kernel: seL4

5/2/2019 Zhou Li 21

Rootkits

• A rootkit is a malicious software package that attains and takes
advantage of root status or effectively becomes part of the OS

• Rootkits often go to great length to avoid being discovered or, if
discovered and partially removed, to reestablish themselves

• This can include intercepting or modifying basic OS functions

22

Hiding Rootkits

• If rootkit is at c:/winnt/apps/mal_code.exe
• You or Anti-Virus can find it using Windows API and clean it

• What if Windows API is changed by the rootkit?

5/2/2019 Zhou Li 23

Unmodified Modified

Intercepted

Sony XCP Rootkit

• Identified by a security expert Mark Russinovich with a rootkit
revealer that intercepts NTQueryDirectoryObject API.

• XCP rootkit was installed automatically from Sony music CD to
prevent a user from copying the tunes.

• Only Sony’s music player can play the music

• Blocks display of any program (Sony’s) whose name begins with sys

• It can be abused to hide virus like sysvirus-1

• Sony issued an uninstaller, but has serious bug

5/2/2019 Zhou Li 24

TDSS Rootkit

• A family of rootkit (TDL-1 through TDL-4)

• It installed filter code in the drivers
• Drops all references to files begins with “tdl” (hide malicious files)

• Blocks access to any disk volume, certain network ports

• It modifies a Windows registry API NTEnumerateKey to hide
added registry keys

• Modifying the first several bytes by inserting a jump to an extension
(called splicing)

• Turned into botnet for TDL-3 (3 million infection)

5/2/2019 Zhou Li 25

Objectives

• Basic security functions provided by operating systems

• System resources that require operating system protection

• Operating system design principles

• How operating systems control access to resources

• The history of trusted computing

• Characteristics of operating system rootkits

• Formally verified kernel: seL4

5/2/2019 Zhou Li 26

What is seL4 and Why Should I Care?

● seL4, the secure embedded L4 microkernel, is the first formally verified microkernel, which
offers fundamental software separation properties, and provides new opportunities to build
assured computer systems.

● The seL4 Center of Excellence is a multi-organization group that was formed to increase
collaboration between seL4 contributors, adoption of seL4, and the maturity of seL4 by
increasing stability, continuing adoption of modern software engineering practices, and
adding formally verifiable features and software libraries.

● seL4 is one of the fastest operating system kernels that has been designed for security and
safety, and opportunities for those with seL4 expertise exist in several areas:
– seL4 is the basis for many next generation secure hardware-software stacks
– Cyberattack protection for autonomous vehicles (drones, helicopters, land robots, trucks)
– ISOSCELES architecture – a reference implementation for mixed-criticality medical and Internet of

Things (IoT) systems designs has been developed over seL4
– Securing self-driving vehicles in the commercial sector
– These are just a few examples. For detailed information about exciting seL4-related efforts in

government, industry, and academia, please see the presentations from the 2018 seL4 Summit:
https://www.sel4-us.org/summit/#agenda

5/2/2019 Zhou Li 27

https://www.sel4-us.org/summit/#agenda

seL4 formal proof

binary is correct with respect to spec and enforces isolation5/2/2019 Zhou Li 28

void kernel_call ()
{

…
…
…

}

formal, high-level,
functional
description of the
expected behaviour

Accomplishments of First Year seL4 Interns

● Interns in the 2018 seL4 Internship
Program worked side-by-side with
engineers to produce the first
official U.S.-based release of the
seL4 software
https://github.com/sel4-us/

● Design Goals Included:
– Simplicity – Clear and readable API

– Security – Reduce chances for
error/misconfiguration

– Generic – Do not strictly enforce a
specific architecture

– Maintainable – Leave ample room for
project growth

seL4 Microkernel

seL4 Libraries

New CoE Libraries

Physical memory map kernel call

Thread-safe bookkeeping
Thread-safe malloc
Non-executable memory mapping fixes
Bug fixes

Simplified initialization
Process create/destroy
Thread create/destroy
Simple IPC setup
Synchronization API

Change Log:

New Features:

5/2/2019 Zhou Li 29

https://github.com/sel4-us/

seL4 and the CoE 2019 Internship Program

● Where can I find additional seL4 information?
– U.S.-based seL4 Center of Excellence: https://www.sel4-us.org/

– Wiki containing an overview of seL4 technology: https://www.sel4-us.org/wiki/doku.php

– seL4 Summit Hands-on Raspberry Pi3 training: https://www.sel4-us.org/summit/training/

– U.S.-based seL4 public GitHub repository: https://github.com/sel4-us/

– Australian based seL4 website: http://sel4.org/

● The seL4 CoE plans to continue its Internship Program during Summer 2019. For
more information, please contact: mail@sel4-us.org (U.S. citizenship or
Permanent Residency required).

5/2/2019 Zhou Li 30

https://www.sel4-us.org/
https://www.sel4-us.org/wiki/doku.php
https://www.sel4-us.org/summit/training/
https://github.com/sel4-us/
http://sel4.org/
mailto:mail@sel4-us.org

Summary
• OSs have evolved from supporting single users and single programs

to many users and programs at once

• Resources that require OS protection: memory, I/O devices,
programs, and networks

• OSs use layered and modular designs for simplification and to
separate critical functions from noncritical ones

• Resource access control can be enforced in a number of ways,
including virtualization, segmentation, hardware memory protection,
and reference monitors

• Rootkits are malicious software packages that attain root status or
effectively become part of the OS

• New OS security models enabled by new platforms

315/2/2019 Zhou Li

Slides Credit

• Operating Systems (Fall/Winter 2018), Yajin Zhou, ZJU

• Security in computing 5th edition, Textbook Slides

5/2/2019 Zhou Li 32

