
Tracking Bug (Privacy Issue)

Florist Bakery

Targeted ad

3

21

Visit from 200.100.1.10 Visit from 200.100.1.10

ClicksRUs

Web

bugs 

1Zhou Li5/22/2019

• Tiny image unseen to web users

• URL linked to third-party site

• Can be used by an advertiser to

track a buyer across shopping 

sites



Tracking with Browser Cookies

• Cookies are a small bit of information stored on a computer 
associated with a specific server

• When you access a website, it might store information as a cookie

• Every time you visit that server, the cookie is re-sent to the server

• Effectively used to hold state information over sessions

• Cookies can hold any type of (sensitive) information
• Passwords, credit card information, social security number, etc.

• Session cookies, non-persistent cookies, persistent cookies

5/22/2019 Zhou Li 2



More on Cookies

• Cookies are stored on your computer and can be controlled
• Many sites require that you enable cookies in order to use the site

• Their storage on your computer naturally lends itself to exploits

• You can (and probably should) clear your cookies on a regular basis

• Cookies expire
• The expiration is set by the sites' session by default, which is chosen 

by the server (e.g., Jan. 1, 2036)

• This means that cookies will probably stick around for a while

5/22/2019 Zhou Li 3



Taking Care of Your Cookies

• Managing your cookies in Chrome:

5/22/2019 Zhou Li 4

Question: user can’t be tracked if cookie is cleaned?



Persistent User Tracking

• Tracking users over time, even after users clean cookies

• Tracking (sharing) users across trackers

• Tracking users over time
• Canvas fingerprinting

• Ever cookie (flash cookies)

• Cookie syncing: different trackers share user identifiers

5/22/2019 Zhou Li 5



1. Canvas Fingerprinting

• Tracker seeks to uniquely identify a user/browser
• Let the browser render some text (can be invisible to users)

• Generate browser signatures based text rendering

5/22/2019 Zhou Li 6

Very subtle differences for

different browsers

• Operating system

• Font library

• Graphics card

• Graphics driver

• Browser implementation

• …



Obtaining user or website data

• Server-side attacks
• Dot-Dot-Slash (or directory traversal)

• Server-Side Include (SSI)

• Client-side attacks
• Cross-site Scripting (XSS)

• Cross-site Request Forgery (XSRF)

5/22/2019 Zhou Li 7



Dot-Dot-Slash

• Also known as “directory traversal,” this is when attackers use 
the term “../” to access files that are on the target web server 
but not meant to be accessed from outside

• Most commonly entered into the URL bar but may also be 
combined with other attacks, such as XSS

• Root cause: inconsistent/missing access control

8Zhou Li5/22/2019



Example

• Passwd not protected

• User ID leaked 

5/22/2019 Zhou Li 9



Server-Side Include (SSI)

• SSI is an interpreted server-side scripting language that can be 
used for basic web server directives, such as including files and 
executing commands, like sending email after user click button on 
web page

• SSI attack allows the exploitation of a web application by injecting 
scripts in HTML pages or executing arbitrary codes remotely

• The web server parses and executes the directives before 
supplying the page. Then, the attack result will be viewable the 
next time that the page is loaded for the user's browser.

•

10Zhou Li5/22/2019



Client-side Security: Browser Policies

• Key mechanism: Same-origin policy (SOP) 
• SOP is a sandbox model: only the site that stores the information in the 

browser can read or modify that information

• An untrusted page cannot corrupt the user’s actions at other 
sites nor can it issue transactions on behalf of the user

• Applies to cookies, JavaScript access to DOMs, and plugins
• Cookies: cookie from origin A not visible to origin B

• DOM (Document Object Model) : script from origin A cannot read or set 
properties for origin B

5/22/2019 Zhou Li 11



Confining the Power of JavaScript Scripts

• Given all that power, browsers need to make sure JS scripts 
don’t abuse it

• For example, don’t want a script sent from hackerz.com web 
server to read cookies belonging to bank.com...

• ... or alter layout of a bank.com web page

• ... or read keystrokes typed by user while focus is on a 
bank.com page!

5/22/2019 Zhou Li 12



SOP

5/22/2019 Zhou Li 13



Same-origin Examples

• Origin: protocol, hostname, port, but not path

• Same Origin
• http://www.example.org/here

• http://www.example.org/there

• same protocol: http, host: example, default port 80

• How about these?
• http://www.example.org/here

• https://www.example.org/there

• http://www.example.org:8080/hello

• http://www.hacker.org/you

5/22/2019 Zhou Li 14



More on SOP

• Origin comparisons with http://store.company.com/dir/page.html

5/22/2019 Zhou Li 15



SOP protection scope

• Content (e.g. JavaScript) from site A and site B are under 
different windows, frames and iframes, separated by SOP

• <iframe src=“siteB”></iframe>

• If site A includes site B through script tag, unprotected by SOP
• <script src=“siteB”>…</script>

• If site A includes code in URL parameters, unprotected by SOP
• XSS, XSRF

5/22/2019 Zhou Li 16



Cross-site Scripting (XSS)

• Problem: Lack of input sanitization on a trusted website

• Attack: attacker submits code as data to a trusted website; 
later, the trusted website serves that malicious script to users 

• Outcome: allows the attacker to have their scripts run as if they 
were a part of the trusted site

5/22/2019 Zhou Li 17



Types of XSS Attacks

● Non-persistent (Reflected) XSS Attack

● Persistent (Stored) XSS Attack



Non-persistent (Reflected) XSS Attack

If a website with a reflective behavior

takes user inputs, then :

● Attackers can put JavaScript 

code in the input

● When the input is reflected back, 

the JavaScript code will be 

injected into the web page



Vulnerable HTML page

20

http://www.example.com/search?input=word

<HTML>

<script>

function getUrlVars() {

var vars = {};

var parts = window.location.href.replace(/[?&]+([^=&]+)=([^&]*)/gi, function(m,key,value) {

vars[key] = value;

});

return vars;

}

var input = getUrlVars()[“input"];

</script>

<div id=“output”></div>

<script> document.getElementById(“output”).innerText = “User searched ” + input; </script>

</HTML>

http://www.example.com/search
http://www.example.com/search?input=word


Non-persistent (Reflected) XSS Attack

21

http://www.example.com/search?input=<script>alert(“attack”);</script>

<HTML>

<script>

function getUrlVars() {

var vars = {};

var parts = window.location.href.replace(/[?&]+([^=&]+)=([^&]*)/gi, function(m,key,value) {

vars[key] = value;

});

return vars;

}

var input = getUrlVars()[“input"];

</script>

<div id=“output”> </div>

<script> document.getElementById(“output”).innerText = “User searched ” + input; </script>

</HTML>

After JavaScript runs

User searched <script> alert(“attack”); </script> </div>

http://www.example.com/search?input=


How to attack user

● The attacker sends the following URL to the victim
○ http://www.example.com/search?input=<script>alert(“attack”);</script>

● The victim clicks on this link

● Malicious JavaScript code executed on example.com
○ This example pops up the a dialog
○ But real-world attacker can do much more, like leaking cookies to attacker’s 

website, installing keylogger

● This example is also named DOM XSS

http://www.example.com/search?input=<script>alert(“attack”);</script

