UCI Samueli

School of Engineering

Tracking Bug (Privacy Issue)

Web
bugs
« Tiny image unseen to web users %
. . . A%
« URL linked to third-party site @
« Can be used by an advertiser to Clorist 1 Bakery
track a buyer across shopping ®\ Targeted ad /@
S|teS Visit from 200.100.1.10 @ Visit from 200.100.1.10

/|

A A

-

5/22/2019 Zhou Li 1

ClicksRUs

UCI Samueli
School of Engineering

Tracking with Browser Cookies

* Cookies are a small bit of information stored on a computer
assoclated with a specific server

 When you access a website, it might store information as a cookie
« Every time you visit that server, the cookie is re-sent to the server
 Effectively used to hold state information over sessions

« Cookies can hold any type of (sensitive) information
« Passwords, credit card information, social security number, etc.
« Session cookies, non-persistent cookies, persistent cookies

5/22/2019 Zhou Li 2

UCI Samueli

School of Engineering

More on Cookies

« Cookies are stored on your computer and can be controlled
« Many sites require that you enable cookies in order to use the site
* Their storage on your computer naturally lends itself to exploits
* You can (and probably should) clear your cookies on a regular basis

» Cookies expire

* The expiration is set by the sites' session by default, which is chosen
by the server (e.g., Jan. 1, 2036)

* This means that cookies will probably stick around for a while

5/22/2019 Zhou Li 3

Taing Care of Your Cookies

« Managing your cookies in Chrome:

c 2> C 0 |'@ Chrome chrome://settings/content/cookies

UCI Samueli

School of Engineering

w| O @ :

% apps Y Bookmarks [New folder wr Bookmarks [5] MIT/LL Intranet € LLcaD [@) GitHub 3¢ LAHTE O CSRankings: Compu... 3 Group 51 [7 CS Wiki

Block

Allow

< Cookies

Block third-party cookies
Prevent third-party websites from saving and reading cookie data

Clear an exit

No sites added

Allow sites to save and read cookie data (recommended)

Keep local data only until you quit your browser

ADD

Question: user can’t be tracked if cookie is cleaned?

ADD

ADD

[F= Other Bookmarks

5/22/2019

Zhou Li

4 UCI Samueli
. é\\é\\ School of Engineering

Persistent User Tracking

 Tracking users over time, even after users clean cookies
 Tracking (sharing) users across trackers

* Tracking users over time
« Canvas fingerprinting
« Ever cookie (flash cookies)
« Cookie syncing: different trackers share user identifiers

5/22/2019 Zhou Li

Q0 UCI Samueli
. é\\s School of Engineering

1. Canvas Fingerprinting

* Tracker seeks to uniguely identify a user/browser
 Let the browser render some text (can be invisible to users)
« Generate browser signatures based text rendering

Very subtle differences for

different browsers
Cyen forapank JRExOqwz /e x| * Operating system
-~ :‘(’) ‘ % () ToDataURL() * Font library
LELUARENL ' ‘image/png; base64,i H

FillStyle() | R AISTaE L RA « Graphics card
FillRect() ' ! SWAAACWCAYAAABKWIXS . .

\ AAAeqleXgV1de.. Graphics driver

— * Browser implementation

o I
- e
{} Hash() o

5/22/2019 I 7poy L 6

UCI Samueli

School of Engineering

e Server-side attacks

 Dot-Dot-Slash (or directory traversal)
« Server-Side Include (SSI)

* Client-side attacks
» Cross-site Scripting (XSS)
» Cross-site Request Forgery (XSRF)

5/22/2019 Zhou Li 7

> UCI Samueli
. é\\é\\ School of Engineering

Dot-Dot-Slash

* Also known as “directory traversal,” this is when attackers use
the term “../" to access files that are on the target web server
but not meant to be accessed from outside

* Most commonly entered into the URL bar but may also be
combined with other attacks, such as XSS

* Root cause: inconsistent/missing access control

http://yoursite.com/webhits.htw?CiwebHits&File=../../../../../winnt/sys
tem32/autoexec.nt

5/22/2019 Zhou Li 8

UCI Samueli

School of Engineering

Exal I l p I e < & @ | O 192.168.100.24/directory-traversal/index.php?page/etc/passwd

page 1 v /

° P as SWd n Ot p rOte Cted ootx0:0root/root/bm/bash daemonx1:1:daemon:fusr/sbm:/bin/sh ‘
w2 2 b /bimban/sh sysae 33 sys/devibin/sh synex4 65534 syne /bm/bwsyne
o U Ser I D Ieaked amesx 3 60 games ust/games /bin/sh manx6: 12 manfvar/cache/man/bin/sh

pxl Tlp frarfspoollpdibin/sh mailx 8: 8 mail fvar/mail /bin/sh
ewsx 9 9 news fvar/spoolnews/buvsh vucpx 10: 10:uuep:var/spooliuncp /bi/sh
roxyx 1313 proxy/bimn/bin/sh warw-dataxz 33:33 www-data:fvar/wwar bin/sh
ackupx 3434 backupvar/backups/bin/sh lstx 38:38 IMathng List
Janager:var/ist/bm/sh wex39: 3% red/var/mnfired/bm/sh gnatsx41:41:Gnats
ug-FEeporting System (admin) frar/ib/gnats bin/sh
obodyx65534:65534 nobody /nonexstent/bin/sh
ibuuidx 100:10 1 var/lib/ibumd /bin/sh Debian-
extmx: 101: 103 frar/spool/ezamd Manftalse statdax 102:65534 fvar/ib/nfs: imn/talse
louzx 1000:1000:pdou, ,, /home/pilou/binbash
sshdx 103:65534 fvar/mun/sshd:usr/sbin/nologin
vsalx: 104:1001 /home/mysgl/bin/sh
essagebusx 105106 varfmun/dbus bin/false avalx 106: 107 Avaly mDINS
daemeon,,, fvarimn/avalu- daemon/bm/false haldaesmonxz 107109 Hardware
abstraction layer,,, fvar/mn/hal/binffalse pulsex:108:111:Pulse Audio
5/22/2019 daemon,,, fvar/mn/pulse /bm/false

UCI Samueli
School of Engineering

Server-Side Include (SSI)

« SSl Is an interpreted server-side scripting language that can be
used for basic web server directives, such as including files and
executing commands, like sending email after user click button on
web page

« SSI attack allows the exploitation of a web application by injecting
scripts in HTML pages or executing arbitrary codes remotely

* The web server parses and executes the directives before
supplying the page. Then, the attack result will be viewable the
next time that the page is loaded for the user's browser.

<! --#exec cmd="/usr/bin/telnet &"-->

5/22/2019 Zhou Li 10

—~ UCI Samueli
. é_\\ School of Engineering

Client-side Security: Browser Policies

« Key mechanism: Same-origin policy (SOP)
« SOP Is a sandbox model: only the site that stores the information in the
browser can read or modify that information

* An untrusted page cannot corrupt the user’s actions at other
sites nor can it issue transactions on behalf of the user

* Applies to cookies, JavaScript access to DOMs, and plugins
» Cookies: cookie from origin A not visible to origin B

« DOM (Document Object Model) : script from origin A cannot read or set
properties for origin B

5/22/2019 Zhou Li 11

Confining the Power of JavaScript Scripts

UCI Samueli

School of Engineering

* Given all that power, browsers need to make sure JS scripts
don’t abuse it

* For example, don’'t want a script sent from hackerz.com web
server to read cookies belonging to bank.com...

e ... Or alter

e ... Or read
bank.com

5/22/2019

ayout of a bank.com web page
Keystrokes typed by user while focus is on a

page!

Zhou Li 12

UCI Samueli

School of Engineering

cannot access

each other's
your site data/methods, Yahoo.com

because it
violates same
domain origin

[7\ | policy

some javascript some javascript some javascript

methods methods i methods
data data < data
etc etc etc

& / & 4

can access each other's data/methods,
because they reside on the same domain

13

Same-origin Examples

* Origin: protocol, hosthame, port, but not path

« Same Origin
* http://www.example.org/here
 http://www.example.org/there
« same protocol: http, host: example, default port 80

* How about these?
* http://www.example.org/here
 https://www.example.org/there
* http://www.example.org:8080/hello
* http://www.hacker.org/you

5/22/2019 Zhou Li

UCI Samueli

School of Engineering

14

UCI Samueli

School of Engineering

More on SOP

 Origin comparisons with http://store.company.com/dir/page.html

URL Outcome Reason
http://store.company.com/dir2/other.html Success -
http://store.company.com/dir/inner/another html | Success -
https://store.company.com/secure.html Failure Different protocol
http://store.company.com:81/dir/etc.html Failure Different port
http://news.company.com/dir/other.html Failure Difterent host

5/22/2019 Zhou Li

15

UCI Samueli

School of Engineering

SOP protection scope

« Content (e.g. JavaScript) from site A and site B are under
different windows, frames and iframes, separated by SOP
 <iframe src="siteB"></iframe>

* |f site A includes site B through script tag, unprotected by SOP
« <script src="siteB">...</script>

* |f site A includes code in URL parameters, unprotected by SOP
« XSS, XSRF

5/22/2019 Zhou Li 16

> UCI Samueli
. é\\é\\ School of Engineering

Cross-site Scripting (XSS)

* Problem: Lack of input sanitization on a trusted website

« Attack: attacker submits code as data to a trusted website;
later, the trusted website serves that malicious script to users

« Outcome: allows the attacker to have their scripts run as if they
were a part of the trusted site

5/22/2019 Zhou Li 17

UCI Samueli

School of Engineering

Typs of XSS Attacks

. Non-persistent (Reflected) XSS Attack

. Persistent (Stored) XSS Attack

UCI Samueli

School of Engineering

NonQpersistent (Reflected) XSS Attack

If a website with a reflective behavior
takes user inputs, then :
B Malicious code
Attacker
Other pages or \.’
applications]Iy

s Page from

- the target websiti/
'y o

Victim

e Attackers can put JavaScript
code in the input

e When the input is reflected back,
the JavaScript code will be
Injected into the web page

& 7 website

UCI Samueli

School of Engineering

Vulnerable HTML page

http://www.example.com/search?input=word

<HTML>

<script>

function getUrIVars() {
var vars = {};

var parts = window.location.href.replace(/[?&]+([*=&]+)=(["&]*)/qgi, function(m,key,value) {
vars[key] = value;

D;

return vars;
}
var input = getUrlVars()[“input"];
</script>
<div id="output”™></div>
<script> document.getElementByld(“output”).innerText = “User searched ” + input; </script>
</HTML>

20

http://www.example.com/search
http://www.example.com/search?input=word

UCI Samueli

School of Engineering

Non-ersistent (Reflected) XSS Attack

http://www.example.com/search?input=<script>alert(“attack”);</script>

After JavaScript runs

<HTML>

<script>

function getUrIVars() {
var vars = {};

var parts = window.location.href.replace(/[?&]+([*=&]+)=(["&]*)/qgi, function(m,key,value) {

vars[key] = value; L

}), i An embedded page on this page says

return vars,; attack
var input = getUrlVars()[“input"]; “
</script>

<div id="output”> User searched <script> alert(“attack”); </script> </div>
<script> document.getElementByld(“output”).innerText = “User searched ” + input; </script>
</HTML>

21

http://www.example.com/search?input=

UCI Samueli

School of Engineering

How to attack user

« The attacker sends the following URL to the victim
o http://lwww.example.com/search?input=<script>alert(“attack”):</script>

o The victim clicks on this link

« Malicious JavaScript code executed on example.com
- This example pops up the a dialog
- But real-world attacker can do much more, like leaking cookies to attacker’s
website, installing keylogger

« This example is also named DOM XSS

http://www.example.com/search?input=<script>alert(“attack”);</script

