

Other Database Security Concerns

- Redundancy/Internal Consistency
 - Error detection and correction codes to protect data integrity
 - E.g., Parity bits, Hamming codes, and cyclic redundancy checks (CRC)
 - Can be applied to single fields, records or entire DB
 - Shadow fields
 - Entire attributes or records are duplicated in DB
- Recovery
 - DB maintains a change log, allowing it to repeat changes as necessary
- Concurrency/Consistency
 - DB uses locks and atomic operations to maintain consistency
 - Writes are treated as atomic operations
 - Records are locked during write so they cannot be read in a partially updated state

Example of Concurrency/Consistency

- Assume a DB maintains seat reservations for an airline flight
- Agent A and B try to reserve seats at the same time

-	SIGN happens only when the at is unassigned	Agent A	Agent B
	SELECT (SEAT-NO='11D')		SELECT (SEAT-NO='11D')
	ASSIGN 'MOCK,E' TO PASSENGI	ER-NAME	ASSIGN 'EDWARDS,S' TO PASSENGER-NAME

- Without consistency guarantee, A and B will get into race condition, reserving the same seats
- DB resolves the problem by treating the entire query-update cycle as a single atomic operation

Database Disclosure

- Sensitive data
- Types of disclosures
- Preventing disclosures

Sensitive Data

- Inherently sensitive
 - E.g., passwords, locations of weapons
- From a sensitive source
 - E.g., confidential informant
- Declared sensitive by DB admin
 - E.g., classified document, name of an anonymous donor
- Part of a sensitive attribute or record
 - E.g., salary attribute in an employment database
- Sensitive in relation to previously disclosed information
 - E.g., an encrypted file combined with the password to open it

DB should protect sensitive data from *direct* or *indirect* access

Types of Disclosures

- Exact value of sensitive data
 - The sensitive data are directly obtained by adversary after query
 - Can be DB's misconfiguration or DB admin's oversight
- Bounds on sensitive value
 - Learn a sensitive value y is between two values, L and H
 - Can be done through binary search
- Negative result
 - Learn *z* is not the value of *y*
 - E.g., 0 is not the total number of felony convictions => person is a felony

Types of Disclosures (cond.)

- Existence
 - Whether a record/element exists in DB
 - E.g., whether the number of phone calls field exists
- Probable value
 - Determine the probability that certain elements has certain value
 - E.g., try to find out whether president of US is registered in Tory party

Count(Residence="1600 Pennsylvania Avenue") = 4 Count(Residence="1600 Pennsylvania Avenue" AND Tory=TRUE) = 1

25% likelihood

Inference Attack

- A way to derive sensitive data from nonsensitive data
- Sensitive query (result associated with only one person)

List NAME where SEX=M and DRUGS=1

 Query seems to conceal drug usage but actually reveals it

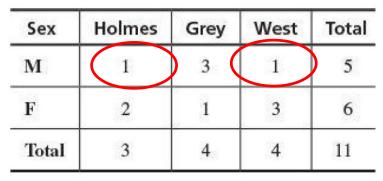
List NAME where (SEX=M and DRUGS=1) or (SEX!=M and SEX!=F) or (DORM=AYRES)

Sensitive fields

Name	Sex	Race	Aid	Fines	Drugs	Dorm
Adams	М	C	5000	45.	1	Holmes
Bailey	М	В	0	0.	0	Grey
Chin	F	A	3000	20.	0	West
Dewitt	М	В	1000	35.	3	Grey
Earhart	F	с	2000	95.	1	Holmes
Fein	F	С	1000	15.	0	West
Groff	М	С	4000	0.	3	West
Hill	F	В	5000	10.	2	Holmes
Koch	F	с	0	0.	1	West
Liu	F	A	0	10.	2	Grey
Majors	М	С	2000	0.	2	Grey

Student info

Zhou Li


Inference by Arithmetic

- E.g., US Census Bureau collects personal data and release statistics
 - Only count, sum and mean are released
 - Individual names, addresses or other personal characteristics are suppressed
 - What sensitive info can be revealed from count, sum and mean?
- Inference from sum
 - Sum up the aid by dorm and sex

	Holmes	Grey	West	Total
М	5000	3000	4000	12000
F	7000	0	4000	11000
Total	12000	3000	8000	23000

No female in Grey received aid

- Inference from count
 - Count of records by dorm and sex
 - Usually combined with sum inference

1 male in Holmes and 1 male in West received \$5000 and \$4000

Inference by Arithmetic (cond.)

 Inference from mean 	Name	Sex	Drugs	Aid
• E.g., mean salary of all employees and mean salary	Bailey	М	0	0
of employees without the president reveals president's salary	Dewitt	М	3	1000
Inference from median	Majors	М	2	2000
 Find one point of intersection that happens to be 	Groff	M	3	4000
exactly in the middle	Adams	М	1	5000
q = median(AID where SEX=M)	Liu	F	2	0
	Majors	M	2	2000
p = median(AID where DRUGS=2)	Hill	F	2	5000
Majors' aid is 2000	L	Stuc	dent info 2	

Inference by Arithmetic (cond.)

Tracker attacks

- Run multiple queries and let them cancel each other out
- · Locate the desired record
- Is a specific case of linear system vulnerability (value of unknown variable can be learned by solving multiple linear equations)

count ((SEX=F) and (RACE=C) and (DORM=Holmes))

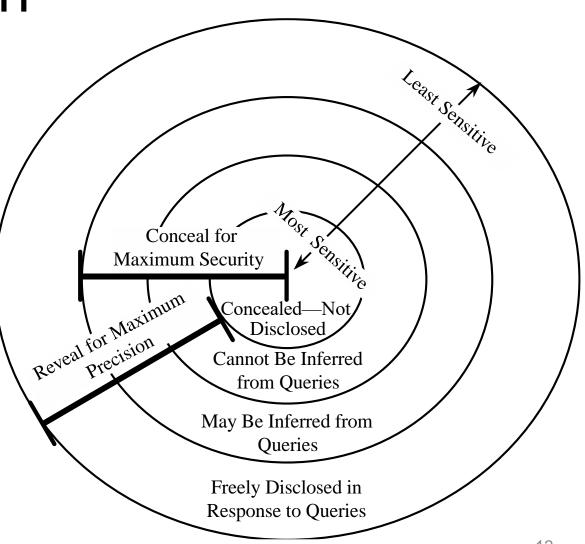
Sensitive query if the result is only one

count (SEX=F)

count ((SEX=F) and (RACE!=C) or (DORM!=Holmes))

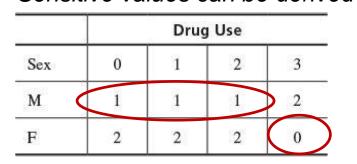
Not sensitive query if result > 1, but their difference (equals to the above query) is sensitive

Preventing Disclosure


- What can be done in addition to DB access control?
 - Suppression (sensitive data not forthcoming) or concealing (not exact same value)
- Suppress obviously sensitive information
 - Easy to implement
 - Easy to bypass
- Track what each user knows
 - Assess information leakage based on past queries
 - Doesn't work when multiple users collude
- Disguise the data
 - Random perturbation and rounding inhibits attacks that depend on exact values
 - But might introduce inaccurate result for legitimate users

Security vs. Precision

 Protect all sensitive data (security goal) while revealing as much non-sensitive data as possible (precision goal)



Statistical Suppression

- Limited response suppression
 - Eliminates low-frequency elements from being displayed
- Combined results
 - Merge rows and columns to protect sensitive values
 - Present values in ranges or rounding

Sensitive values can be derived

Combining values to suppress sensitive data

	Drug Use		
Sex	0 or 1	2 or 3	
M	2	3	
F	4	2	

• Random sample

Derive result from a random sample of DB instead of whole DB