

How to address this issue?

- Enforce privacy-preserving data mining
 - E.g., government can use it to alleviate people's worry in excessive data collection
- Naïve approach: removing identifying information from data
 - E.g., removing full name from collected data before analysis or release
- The approach doesn't work when statistical inference attack is performed

Statistical Inference Attack

- Uses data analysis to illegitimately gain knowledge about a subject or database.
- A subject's sensitive information can be considered as leaked if an adversary can infer its real value with a high confidence.
 - Assume data can be queried by any user publicly
 - Assume that the adversary can choose the query (e.g., full name and date)
 - Could cross-reference with external knowledge about full name or date
 - To find a particular subject's sensitive information with high confidence

Netflix De-Anonymization

- Narayanan and Shmatikov de-anonymization technique (2008)
 - Adversary who knows only a little bit about an individual subscriber can easily identify this subscriber's record in the dataset
- Overview
 - Model: Database N records of M attributes (NxM)
 - Adversary Goal: de-anonymize an anonymous record r from the public database
 - Compute score for each record r from *auxiliary info*
 - Claim: For sparse datasets, like Netflix reviews, much less auxiliary info is necessary to distinguish records

Netflix De-Anonymization

- Applied to Netflix Prize dataset
 - Anonymized dataset of 500,000 Netflix subscribers
 - Finding: simply removing identifying information is insufficient for anonymity
- How much does an adversary need to know about a Netflix subscriber to identify if her record is in the DB?
 - Auxiliary info: Individual ratings of a movie and the dates of ratings
 - Result: If adversary knows 8 movie ratings (of which 2 may be completely wrong) and dates that may have a 14-day error, 99% of records be uniquely identified

Netflix De-Anonymization (Approach)

- Auxiliary info: IMDb reviews other movie reviews
 - Obtained Netflix info for some acquaintances very few records were perturbed in Netflix dataset
- Given this info, compute *similarity* between non-anonymous records and those in data set - for two attributes: *rating* and *date*
- Find *best match* and test if much better than next match (e.g., compare difference to standard deviation)

Preventing Data Inference

- Is there a method that prevents detection of identifying information in records in databases?
 - While still returning accurate answers to queries?
- Maximizing the accuracy of query results while minimizing the chances of identifying records

Differential Privacy

- Consider a party that holds a dataset of sensitive information (*e.g.* medical records, voter registration information, email usage)
 - Its goal is to provide global, statistical information about the data publicly available, while preserving the privacy of the included users.

"Epsilon"-Differential Privacy

- Assume two datasets D1 and D2 only differs a single element (data about one person)
- A randomized algorithm A (for providing global, statistical info) is epsilondifferentially private if Pr[A(D₁) ∈ S] ≤ e^ε × Pr[A(D₂) ∈ S].
- Probability that output of A for D1 (with person's data) contains user data is no greater than e^{epsilon} * probability of any output of A for D2
- When epsilon is small, then probabilities would be very close
- That is, algorithm A should behave essentially the same on the two data sets

Differential Privacy Systems

- What does it mean in practice? Privacy is composable
 - Database and Algorithm A
 - Adversary requests queries on a database using A
 - Untrusted queries
 - Data owner can specify a "privacy budget" regarding an individual
 - The system computes a "privacy cost" for each query
 - Add noises to ensure the cost does not exceed the budget or allows the query if so
- Example systems:
 - Google RAPPOR (Randomized Aggregatable Privacy-Preserving Ordinal Response)
 - Apple's <u>differential privacy deployment</u>

Google RAPPOR

🔴 🔴 🌒 🌣 Se	ttings ×
← → C	chrome://settings
Chrome	Settings
History	Automatically send usage statistics and crash reports to Google
Extensions	Send <u>RAPPOR</u> statistics to Google
Settings	Send a "Do Not Track" request with your browsing traffic

Preventing Communication Inference

- What if you want to access a website anonymously?
 - Avoid government or adversarial tracking
- Is this possible on the Internet?
 - Traffic analysis: the process of intercepting and examining messages in order to deduce information from patterns - even encrypted communications
- Someone has access to one or more Internet routers, they can intercept messages and determine information, such as the source and destination

Reasonable Expectation

- Your communication traffic is public
- Traffic analysis is practical
- Some parties may want to block communications with some websites
- So what can you do?

Anonymous Routing

- Prevent adversary in the network from deducing the source and destination of communications
- Goals
 - Complicate traffic analysis
 - Separate identification from routing
 - Anonymous connections: hop-to-hop
 - Support many applications

Onion Routing

- A combination of techniques to encapsulate communications to make traffic analysis more difficult
 - Mixes: intermediaries that may pad, reorder, delay communications to complicate traffic analysis
 - Onion Routers: Communication infrastructure that act as mixes
 - Connections: Point-to-point between pairs of onion routers
 - Communications: changed on each link
- Idea: create end-to-end connections through a sequence of onion routers that change communications on each hop
 - Key to changing data the "onion"

Onion

- Initiator's proxy (W) chooses an anonymous connection
 - W-X-Y-Z, then destination
- Public key crypto is used to limit each onion router to only "peel" the layer intended for it
 - How would W create a public key message that only X could read?
 - How would W create messages for Y and Z inside the message for X?
- For efficiency, only encrypt a header using public key
 - Rest via symmetric key crypto

Onion

Onion Routing Process

Limitations of Onion Routing

- Performance-Anonymity Trade-off
 - How many onion routers are necessary?
- Traffic analysis is still possible
 - Does not completely eliminate analysis
- Web traffic may be distinct
 - May be difficult to hide
- Onion routers may be compromised
 - Broken if initiator's proxy is compromised
- Denial of service is possible

Tor - The Onion Router

- Second-generation Onion Router
- Significant improvements

- Perfect forward secrecy: Instead of using public keys that could eventually be compromised, use per-hop keys that are deleted when no longer in use
- Performance improvements: Shared TCP streams, congestion control
- Integrity checking: None before, end-to-end now
- Subsequent improvements include
 - Guard nodes
 - Improved path selection algorithms
- Used by Edward Snowden to send information about PRISM to the Guardian and Washington Post

Using Tor

- Tor Browser
 - Configured to browse using Tor network
- But that alone is not enough need to change your habits
 - Don't torrent over Tor sends your IP address
 - Don't enable or install browser plugins reveal your IP address
 - Use HTTPS versions of websites Tor only encrypts in the Tor network
 - Don't open documents downloaded through Tor while online they might contain internet resources (pdf and doc)
 - Use a bridge to hide that you are using Tor get friends to also

Privacy Impacts of Emerging Technologies

- RFID
- Electronic Voting
- VoIP
- Cloud Computing

Radio Frequency Identification (RFID)

- RFID tags are small, low-power, small-distance wireless radio transmitters
 - 5 centimeters to several meters
- When a tag receives a signal from a RFID reader on the correct frequency, it responds with its unique ID number
- Deployment: implanted under skin, embedded in credit card or identity badge, placed in shipping or inventory label

RFID Privacy Concerns

- RFID tracking could be pervasive
 - As RFID tags become more prevalent, and RFID readers are installed in more places, it becomes possible to track individuals wherever they go
 - As RFID tags are put on more items, it will become increasingly possible to discern personal information by reading those tags

Mitigation: RFID sleeve/shield

Electronic Voting

- Paper ballots are inefficient
- Electronic voting automatically collects ballots and is far more efficient
- How to protect voter privacy?
 - Voter info can be learnt by machine
- Solution needs to ensure accountability as well
 - Encrypting a vote using public key protects confidentiality, but unauthorized people can vote then

Electronic Voting Machine

Voice over IP (VoIP)

- VoIP transmits voice traffic over Internet, instead of traditional PSTN network
 - Your analog voice is converted to digital signals sent over Internet
- Major VoIP carriers: Skype, Google Talk and Vonage
- While VoIP provides encryption to voice calls, it also allows service providers to track calls' sources and destinations
 - VoIP provider has end-to-end visibility

Cloud Computing

- Cloud computing is on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user
- Because resources are managed by cloud provider, a third-party, there are privacy issues related to regional laws
 - Physical location of information in the cloud may have significant effects on privacy and confidentiality protections
 - Cloud data may have more than one legal location at a time, with different legal consequences
 - Laws could oblige cloud providers to examine user data for criminal activity
 - Legal uncertainties make it difficult to assess the status of cloud data

Summary

- What data is considered private is subjective
- Privacy laws vary widely by jurisdiction
- New privacy issues: Inference attacks
 - Protection: differential privacy
- New privacy enhancement technologies: anonymous communication
- Emerging technologies are fraught with privacy uncertainties, including both technological and legal issues

Slides credit

- Module: Privacy, Trent Jaeger
- Online Tracking, Amir Houmansadr