
Data Mining (DM)

• Data mining (DM) uses statistics, machine learning, mathematical models,
and other techniques to discover patterns and relations on large datasets
automatically

• Tools: association, sequences, classification, clustering and prediction

• Can support many application domains, including security (detecting cyber-attacks)

• The size and value of the datasets lead to high security & privacy risks
• Private personal data

• Confidential intellectual property

1

Challenges: Correctness and Integrity

• Error in one data element can impact many results of DM
• DM has no backlink from result to source

• E.g., what if your name is wrongly linked to a terrorist and processed by DM?

• Inconsistent data semantics across sources
• E.g., one DB has income by dollar and another has income in euros

• False positives and false negatives draw error conclusions

6/3/2019 Zhou Li 2

Challenges: Privacy

• Big data enables new data collecting and correlating capabilities, causing
new privacy issues

• E.g., automatically inferring your preferences and showing relevant ads

• How can we protect our privacy? How can we contain data collectors’
unlimited capabilities?

• Data anonymization

• Privacy-preserving analytics

• More to cover in “Privacy” lectures

6/3/2019 Zhou Li 3

SQL Injection (or SQLI)

• Background

• Examples of SQLI

• Prevention

6/3/2019 Zhou Li 4

SQL Injection Background

• Web server treats user supplied “data” as “code”

• Execute the SQL query with malicious data (code)

• Compromise back-end database

• Comparison with XSS
• XSS executes on client

• SQLI executes on server

• But the root-cause for both are the
confusion between code and data

6/3/2019 Zhou Li 5

It’s a big real-world threat

Procedure of SQL Injection

• 1. A website has a form, e.g., login

• 2. Attacker submits form with SQL
exploit data

• 3. Server builds string with exploit data

• 4. Server sends SQL query to DB

• 5. DB executes query, including exploit,
sends data back

• 6. Server returns data to user

6/3/2019 Zhou Li 6

SQL Injection Example

6/3/2019 Zhou Li 7

SQL Injection Example (cond.)

6/3/2019 Zhou Li 8

SQL Injection Example (cond.)

6/3/2019 Zhou Li 9

6/3/2019 Zhou Li 10

SQL Injection Example 2

6/3/2019 Zhou Li 11

SQL Injection Example 2 (cond.)

6/3/2019 Zhou Li 12

SQL Injection Example 2 (cond.)

6/3/2019 Zhou Li 13

SQL Injection Example 2 (cond.)

• A more damaging breach of user privacy:

• Attacker is able to
• Combine the results of two queries

• Empty table from first query with the sensitive credit card info of all
users from second query

6/3/2019 Zhou Li 14

SQL Injection Example 2 (cond.)

6/3/2019 Zhou Li 15

Different Types of SQL Injections

• SQL injection can modify any type of query

• SELECT statements
• SELECT * FROM accounts WHERE user=‘${u}’ AND pass=‘${p}’

• INSERT statements
• INSERT INTO accounts (user, pass) VALUES (‘${u}’, ‘${p}’)

• Note that in this case one has to figure out how many values to insert

• UPDATE statements
• UPDATE accounts SET pass=‘${np}’ WHERE user= ‘${u}’ AND pass=‘${p}’

• DELETE statements
• DELETE * FROM accounts WHERE user=‘${u}’

6/3/2019 Zhou Li 16

Determining Number/Types of Parameters

• Determine the number of columns in a query
• Send progressively longer NULL columns

• Until the correct query is returned
• UNION SELECT NULL

• UNION SELECT NULL, NULL

• UNION SELECT NULL, NULL, NULL

• Determine type of columns
• E.g., to determine if a column that has a string type

• UNION SELECT ‘foo’, NULL, NULL

• UNION SELECT NULL, ‘foo’, NULL

• UNION SELECT NULL, NULL, ‘foo’

6/3/2019 Zhou Li 17

Preventing SQL Injection

• Whitelisting
• Why? Blacklisting chars doesn’t work:

• Forget to filter out some characters

• Could prevent valid input (e.g. username O’Brien)

• Allow well-defined set of safe values: [A-Za-z0-9]* [0-1][0-9]

• Valid input set defined through regular expressions

• Can be implemented in a web application firewall

• Escaping
• For valid string inputs like username o’connor, use escape characters.

Ex: escape(o’connor) = o’’connor (only works for string inputs)

6/3/2019 Zhou Li 18

Preventing SQL Injection (Cond.)

• Developers must never allow client-supplied data to modify SQL
statements

• Stored procedures
• Isolate applications from SQL

• All SQL statements required by the application are stored procedures on
the database server

• Prepared statements
• Statements are compiled into SQL statements before user input is added

6/3/2019 Zhou Li 19

SQL Injection – Prevention

• Prepared statements
• Specify structure of query then provide arguments

• Prepared statements – example

• Sanitize inputs

• Limit the output of debugging information, which can be exploited to learn
DB schema

6/3/2019 Zhou Li 20

$stmt = $db->prepare("select * from `users` where `username` =

:name and `password` = SHA1(CONCAT(:pass, `salt`)) limit 1;");

$stmt->bindParam(':name', $name);

$stmt->bindParam(':pass', $pass);

Summary

• Database security requirements include:
• Physical integrity, Logical integrity, Element integrity, Auditability, Access control, User

authentication, Availability

• There are many subtle ways for sensitive data to be inadvertently
disclosed, and there is no single answer for prevention

• Data mining and big data have numerous open security and privacy
challenges

• SQL injection breaks DB integrity and the consequences can propagate to
all users

21

Slides credit

• Security in computing 5th edition, Textbook Slides

• SQL Injection, Gang Wang

6/3/2019 Zhou Li 22

