Solutions to the midterm
(1) First consider isomorphisms of 22 and 32 as abelian groups (not rings). The generators of additive groups are ± 2 and ± 3, respectively. So an additive isomorphism $\varphi:(22,+) \rightarrow(32, t)$ must send generator to generator and hence $\varphi(2)= \pm 3$. Bus

$$
\varphi(4)=\varphi(2+2)= \pm 6 \neq \varphi(2) \cdot \varphi(2)
$$

so such φ would not be multiplicative and a ring isomorphism does not exist.
(2) By the long division algorithm:

$$
x^{4}+x^{3}+x^{2}-x+1=(x+2)\left(x^{3}-x^{2}+3 x-7\right)+15
$$

(and 15 is also the value of $x^{4}+x^{3}+x^{2}-x+1$ at $x=-2$) we need the values of prime p such that $15 \equiv 0($ mod $p)$ These are the prime factors of 15 , i.e. $p=3$ and $p=5$
(3) If F is the field of quotients then $\mathbb{Z}_{5}[x] \hookrightarrow F$ is a subring. But $\left\{1, x, x^{2}, x^{3}, \ldots\right\} \subset \mathbb{Z}_{5}[x]$ is an infinite subset. So $\mathbb{2}_{5}[x]$ is infinite and F is infinite as well.

We know that $1+1+1+1+1=0$ in F since this holds in 2_{5} and $2_{5} \subset 2_{5}[x] \subset F$. Also $m \cdot 1=0$ does not hold in F for $m=1, \ldots, 4$ since it does not hold in \mathbb{Z}_{5}. So $m=5$ is the characteristic of F.
(4) First we check that $g=2$ is a generator.

Since $2^{12} \equiv 1(\bmod 13)$ by Fermat, the $m u$ Hiplicative

Since $2^{12} \equiv 1(\bmod 13)$ by Fermat, the multiplicative order of 2 divides 12. If that order were <12 we would have $2^{6} \equiv 1$ or $2^{4} \equiv 1$. But $2^{6}=\left(2^{3}\right)^{2}=6^{4} \equiv-1$ and $2^{4}=\left(2^{2}\right)^{2}=16 \equiv 3$. Hence $g=2$ is a generator.

This means $\left(\mathbb{Z}_{12},+\right) \rightarrow\left(Z_{13}^{\infty}, x\right)$ is a group $a \longmapsto 2^{a} \quad$ isomorphism.
Other multiplicative generators of Z_{13}^{∞} correspond to a which are additive generators of \mathbb{Z}_{12}. This happens when $\operatorname{gcd}(a, 12)=1$ so $a \in\{1,5,7,11\} \subset \mathbb{Z}_{12}$.

So the set of multiplicative generators is

$$
\left\{2^{1}, 2^{5}, 2^{7}, 2^{11}\right\}=\{2,6,7,11\} \subset \mathbb{Z}_{1_{3}}^{x}
$$

