Homework to Chapter 29

Friday, November 8, 2019 7:25 PM

- (1) Find the minimal polynomial of \$\sqrt{2+\sqrt{3}}\$ over Q why is it irreducible?
- 2) Let $\alpha \in \mathbb{C}$ be transcendental over \mathbb{Q} and $\beta \in \mathbb{Q}(\omega) \setminus \mathbb{Q}$ Show that α is algebraic over $\mathbb{Q}(\beta)$ Hint Represent β as $\frac{f(\alpha)}{g(\alpha)}$ and use this to find a polynomial with coefficients in $Q(\beta)$ that has α as a root
- 3) Show that $\cos\left(\frac{2\pi}{5}\right)$ is algebraic over Q. What is the degree of its minimal polynomial.
- 4) Show that the fields Q(Vz) and Q(V3) are not isomorphic
- (5) Let $Z_p \subset E$ a field extension and assume that $d \in E \setminus Z_p$ is a root of f(x) = x' a with $a \in Z_p$. Classify $(Z_p \sqcup)^n, \times)$ according to the Fundamental Theorem of Finitely Generated Abelian Groups
- 6 Let FCE be an extension of finite fields. Suppose that $|F|=p^a$ and $|E|=q^b$ with p. q prime. Show that
 - (a) p=q(6) a divides b.