Thursday, November 14, 2019 6:51 PM

① Let V, W be two finite dimensional vector spaces over a field F and let $\varphi: V \rightarrow W$ a surjective linear map. Let $\{v_1, ..., v_k\}$ be a basis in $Ker(\psi) = V$.

Show that it can be extended to some basis

{V1, --, VK, VK+1, --, Vn } of V and that } \(\psi(\tau_{K+1}), --, \psi(\tau_n) \}

will be a basis of W

- 2) Let $\varphi: V \to W$ be an injective linear map of finite dimensional vector spaces. Show that there exists a linear map $\psi: W \to V$ such that the composition $V \to W \to V$ is the identity map on V.
- 3) Let $S=\{v_1, ..., v_k\} \subset V$ be a finite subset of elements in an abelian group V. We will say that S spans V over Z if any $v \in V$ is a linear combination $V = a_1 v_1 + ... + a_k v_k$ with $a_i \in Z$.

Give our example of an abelian group V and a set of two vectors $S = \{v_1, v_2\} \subset V$ such that

- (i) S spans V over Z, and
- (ii) $a_1v_1+a_2v_2=0$ for some $a_1\neq 0$, $a_2\neq 0$ in \mathbb{Z} , and (iii) heither $\frac{1}{2}v_1\frac{1}{4}$ nor $\frac{1}{2}v_2\frac{1}{4}$ Spans V over \mathbb{Z} .

(Remark This shows that the pruning lemma does not work over 2. The reason, of course, is that 2 is not a field)

- (4) Let FCE be a field extension of degree [E:F]=5Let $\angle EE$ be an element such that $\angle EF$. Show that also $\angle EF$.
- (5) Prove that any $b \in \mathbb{Q}(\sqrt[3]{7})$ is algebraic over \mathbb{Q} .

