Homework to chapters 33,46

Tuesday, November 19, 2019 8:31 PM

Let \mathbb{F}_p denote the finite field with p^n elements. Recall that for any prime p and integer $n \ge 1$, \mathbb{F}_p exists and is essentially unique.

- ① Show that $x^9 x \in \mathbb{Z}_3[x]$ is a product of all irreducible monic polynomials of degree 1 and 2.
- ② Find all subfields of F_{64} . How many $\alpha \in F_{64}$ satisfy $F_{2}(\alpha) = F_{64}$
- ① Consider the extension of finite fields $F_4 \subset F_{16}$. Show that for any $x \in F_{16}$ we always have $x^5 \in F_4$ (Hint: identify $F_4 \subset F_{16}$ as the subset of elements that satisfy $x^4 x = 0$).
- Gonsider the Euclidean Domain $2[i] = \{a+bi \mid a,b\in 2\}$ with the norm function $N(a+bi) = a^2 + b^2$. Using N(2,2z) = N(2,)N(2z) show that $z = 2+i \in 2[i]$ is irreducible (i.e. $z = x \cdot y$ in 2[i] can only happen if x or y is a unit in 2[i]).
- 5) Using the previous problem and Euclidean Divison show that 2E:1/(2+i) is a field with 5 elements. Conclude that 2E:1/(2+i) is isomorphic to 2s-
- 6 Show that 7 is irreducible in 2 [i] and that 2[i]/(7) is a field with 49 elements