Math 120B: Sample Final

Closed book, closed notes, no calculators. Each problem is worth 10 points. Time: 80 minutes. Please explain your solutions. Just giving an answer is not enough.

1. Suppose that $I \subset \mathbb{Z}[x]$ is an ideal and there is a prime $p \in \mathbb{Z}$ which is in I. Show that I can be generated by two elements, i.e. there exists $z \in I$ such that $\left.I=\left\{r_{1} p+r_{2} z \mid r_{1}, r_{2} \in \mathbb{Z}[x]\right]\right\}$.
2. Is it true that the intersection of two prime ideals is always a prime ideal? Explain.
3. Let F be a field and assume that $R=F[x] /(f(x))$ is an integral domain for some polynomial $f(x)$. Show that in fact R is a field.
4. Let $F \subset E$ be a field extension of finite degree and assume that the degree $[E: F]=p$ is a prime. Show that for any $\alpha \in E$ either $F(\alpha)=F$ or $F(\alpha)=E$.
5. Let $f_{1}, f_{2} \in F[x]$ be two polynomials (and F is a field). Let $g=$ $\operatorname{gcd}\left(f_{1}, f_{2}\right)$. Show that the ideal I generated by f_{1}, f_{2} (i.e.

$$
I=\left\{h_{1} f_{1}+h_{2} f_{2} \quad \mid \quad h_{1}, h_{2} \in F[x]\right\}
$$

satisfies $I=(g(x))$.
6. Construct a field with 32 elements. Prove that what you have constructed indeed has 32 elements and that it is indeed a field.

