Solutions to homework 9

Wednesday, December 4, 2019 9:43 AM

(1) Monic irreducible polynomials of degree 1 are x,x-1,x+1. Divide out by those:

$$\frac{\chi^{9}-\chi}{\chi(\chi-1)(\chi+1)} = \frac{\chi^{8}-1}{\chi^{2}-1} = \frac{(\chi^{4}+1)(\chi^{4}-1)}{\chi^{2}-1} = (\chi^{4}+1)(\chi^{2}+1)$$

we see that x2+1 is monic and irreducible (no roots in #3), and expect (x4+1) to split into a pair of dyrée 2 irreducibles. Such irreducibles would be of the form X+ax+1 (since x=0 Should not be a root). There is a total of 6 possibilities but three one reducible - (xx1)2, (x-1)2, (X+1)(x-1). Eliminating those we are left with $\chi^{2}+1$, $\chi^{2}-\chi-1$, $\chi^{2}+\chi-1$.

So $\chi^9 - \chi = \chi(\chi - 1)(\chi + 1)(\chi^2 + 1)(\chi^2 - \chi - 1)(\chi^2 + \chi - 1)$

- 2) Fipr CFpm iff n/m 50 Fig has Subfields #\(\frac{1}{2}\), \(\frac{1}{8}\). If \(\frac{1}{2}(\alpha) \neq \text{F}_4\) it must be one of those smaller subfields. So \(\frac{1}{2}(\alpha) = \frac{1}{6}4\) precisely when of F4 UFB UFZ. Since Fint = fz (intersection is also a subfield) we find that the size of Fig (Fy UFs) is 64 - 4 - 8 + 2 = 54
- 3) We can think of Ffy, resp. Fig, as the set of solutions to $x^4-x=0$, resp $x^{16}-x=0$, in $\frac{1}{2}$. Elimination than co

- of solutions to $X^4-x=0$, resp $X^{16}-x=0$, in T_2 . Eliminating the case x=0 we get equations $X^3=1$ (defining $F_4=1F_2=0$) and $X^{15}=1$ (defining $F_6=1F_2=0$). But if $X^{15}=1$ and $Y=X^5=1$ then $Y^3=1$. So if $X\in F_{16}=1$ then $Y=X^5\in F_4=0$, as required
- 9 If 2+i=2,2z then N(2+i)=N(2,)N(2z)so 5=N(2,)N(2z). Since $N(2) \in 2^{30}$ we have either N(2,)=1 or N(2z)=1. Since $N(a+bi)=a^2+b^2$, N(2)=1 happens only for $2=1,\pm i$. So either 2, or 2, must be a unif and 2+i is irreducible
- 5) We want to construct a surjective ring homomorphism $\psi: 2E:] \rightarrow 25$ with Kernel 2ti. Since $i^2=-1$ in 2E:], we would have $\psi(i)^2=-1$ (mod 5).

 So $\psi(i)=\pm 2$. Then $\psi(a+bi)=a\pm 2b$.

 Since we want 2+i to ker ψ we choose $\psi(i)=-2$. Then $\psi(a+bi)=0$ (a) a-2b=0 a = 2b so $\ker \psi=\frac{9}{2}2b+bi$ $\psi=\frac{1}{2}$ (2+i)

 By the first isomorphism that for rings, $25=\lim \psi=\frac{2}{2}[i]/(2+i)$

(6) If 7=2,22 truen 49=N/7)=N/2,)N/22). As in problem 4, N(z:)=1 implies that zi is a unit. But $N(z_i) = 7$ would mean that a2+b2=7 which has no integral solutions. So either 21 or 22 must be a cunit and hence 7 is irreducible We can identify 2(i)/(7) with $2_7(x)/(x+1)$ atbi $\longrightarrow atbx \pmod{x^2t_1}$ Since x2+1 is irreducible in 27 (x) (no Solutions for $\chi^2 = -1$ (mod 7), the quotient $\mathbb{Z}_7 [x]/(x^2+1)$ is a field with 49 elements, as required.